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Abstract— As an important building block of cognitive radio
networks, the interference channel with distributed and com-
peting radio access is currently an active area of research. In
this work, a basic two-by-two interference channel is studied
by considering random packet arrivals and random access. In
particular, each transmitter is assumed to select independently
and concurrently a transmission probability based on the state
of the system queues. Both the cases of perfect and partial
information about the transmitters’ backlogs are addressed.

The system is analyzed using tools from game theory, and
specifically from the theory of stochastic games. The main
conclusion is that random packet arrival has a beneficial effect
on the efficiency of decentralized random access. This result is
achieved by comparing the efficiency of Nash equilibria for the
case of backlogged users with the corresponding equilibria in
presence of random packet arrivals via numerical simulations.

I. INTRODUCTION

Spurred by the interest of the Federal Communications
Commission, unlicensed spectrum access (also referred to as
cognitive radio) is envisaged to be a major component of next
generation wireless networks [1]. A basic building block of
cognitive wireless network is the interference channel [2] [3],
that models the coexistence of different point-to-point links in
the same bandwidth. Appropriate assumptions for a cognitive
scenario include decentralization and competitiveness of the
participating links, which have been considered in a number
of recent papers [4] [5] [6], while focusing on power and rate
allocation. A basic condition underlying the existing literature
on the subject is that transmitters have an infinite backlog of
data to transmit.

With secondary spectrum access, exploiting the dynamics
of incoming traffic at the transmitters becomes of paramount
importance in order to achieve satisfactory spectral efficiency.
Towards the goal of modelling such a scenario, this paper
assumes random packet arrivals at the transmitters. Further-
more, being interested in distributed schemes that do not
require centralized control, we focus on random access. More
specifically, it is assumed that each user selects independently
and concurrently a transmission probability based on the state
of the system with the aim of maximizing a properly defined
utility function. Similar frameworks have been employed in
order to study random access in the multi-access channel,
see [8] [9] [10] [11] [12], and in the relay channel [13]. For
simplicity, our work considers a simple interference channel
with two competing links (see fig. 1).
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Fig. 1. Illustration of the interference channel with random access and
random packet arrivals.

The distributed system described above can be analyzed
using tools from game theory [15] [16]. In particular, since
we are interested in the dynamic behavior of the system,
we focus on stochastic games [17] [18] [19]. This approach
follows the recent works on multiaccess channel [11] and
on relay channels [13]. In the framework of game theory,
we are interested in evaluating the transmission policies of
the two transmitters that are the most likely outcome of the
decentralized optimization process. This amounts to evaluating
the Nash equilibria (NEs) of the system.

In this work, we investigate the NEs of the interference
channel with random packet arrival and random access in fig.
1. We consider two scenarios: 1) each transmitter has perfect
information about the state of the queues on both links; 2) each
transmitter is only aware of the state of its own queue. Based
on the available information, the transmitters optimize their
channel access probabilities toward the aim of maximizing
their respective utility in a rational and selfish way. We are
interested in assessing the efficiency of such a distributed
scheme. In other words, we ask: what is the performance
loss of concurrent optimization with respect to centralized
(cooperative) solutions (see [5] for further discussion on
efficiency)? By comparing NEs of a backlogged system with
those of a system with random packet arrivals, we conclude
that traffic dynamics has a beneficial effect on the efficiency
of decentralized random transmission.



Il. SYSTEM MODEL AND PROBLEM FORMULATION

We focus on an interference channel, consisting of two
sources and two destinations, where the transmitters have no
buffers (see fig. 1). The model follows the main assumptions
made in [11] for the analysis of a multiaccess channel and
[13] for a relay channel. Time is slotted and transmission of
each packet takes one slot. The arrival processes of packets
at the two sources are independent Bernoulli processes with
parameters A\; for the first link and A\, for the second link
(0 <A1 <1,0< Ay <1, measured in packets per slot). As
long as there is a packet at a source (i.e., as long as it has
not been successfully transmitted), new packets arriving at the
transmitter are discarded and lost'. Medium access control
is operated in a decentralized fashion according to a ran-
dom access protocol®. Each source with a backlogged packet
transmits with a given probability, which is optimized by the
transmitter. Since the system is assumed to lack a central
controller, optimization has to be carried out concurrently at
the two transmitters. In particular, we consider two scenarios:

1) Perfect information: at the beginning of each slot, say
the ¢th, the sth transmitter (¢ = 1, 2) is aware of whether
or not the other source has a packet to transmit. Accord-
ingly, it transmits the backlogged packet with probability
pl(-l) if the other transmitter has no packet in queue, and
p§2) otherwise. It is apparent that, while in the former
case there is no risk to incur in interference from a
simultaneous transmission, in the latter case the opposite
holds true. Therefore, in general each transmitter might
want to select different values for p{" and p{*. For
notational convenience, we define the vectors p; = [p§1>
P i =1,2;

2) Partial information: at the beginning of each slot, say
the tth, the 4th transmitter (¢ = 1, 2) is aware only of the
status of its own queue (i.e., of whether or not it has a
packet to transmit). In this scenario, each source trans-
mits with probability p; if it has a backlogged packet
(irrespective of the action of the second transmitter).
Notice that the first setup boils down to the second if
we constrain p{" = p{* = p, for i = 1,2. Therefore, in

the following, where not stated otherwise, we focus on

the first scenario, with the understanding that imposing
the above mentioned condition renders the presentation
valid for the second scenario as well®.

As discussed below, transmission of a given packet can
incur in outage due to impairments on the fading channel.

10r, equivalently, no new packets are generated until the current packet is
successfully transmitted.

2As discussed in [11], the considered model prescribing no buffers and
random access is appropriate to study the sporadic transmission of signalling
packets used for making reservation of a dedicated channel (e.g., according
to the RTS/CTS access scheme implemented in the Decentalized Control
Function mode of IEEE802.11 WLAN).

3A different model for the partial information case could be set up within
the framework of partiall observable stochastic games [14]. Here we focus on
the described framework where partial information is modelled as a limitation
of the space of available strategies (see also [12]).

It is assumed that the transmitter is correctly informed of
an erroneous reception (through transmission of a short Not-
ACKnowledge message from the receiver), and, in such an
event, considers the packet as not yet delivered and attempts
retransmission in future slots using the same policy. A precise
definition of the problem of decentralized optimization of the
transmission probabilities discussed above is presented in Sec.
I1-B. Instrumental to the formulation of the problem is the brief
discussion on the physical model of the interference channel
in the next Section.

A. Notation, physical model and main assumptions

At each time slot ¢, the dth transmitter (i = 1,2) de-
cides its action, i.e., whether to transmit (T) or wait (W),
according to the probabilities defined above. We denote as
Ay = Ay = {T, W} the set of actions available for the
first and second transmitter, respectively, and the vector a(t)
that contains the actions selected at the t¢th slot by the two
transmitters, a(t) = [a1(t) az(t)]” €A, where A = A; x As,.
Moreover, the state (backlog) of the system at the ¢th slot
is described by a variable S(¢) that takes values in the set
S = {517 Sa, S3, 54} = {(07 0)7 (1>O>7 (07 1)7 (17 1)}7 where
the first entry m in each tuple (m,n) describes the backlog
of the first transmitter (m = 1,0 according to whether or not
the first transmitter has a packet to transmit), and entry n has
the same role for the second transmitter. Notice that not all
the actions are available at all states, in particular, a user can
transmit only if it has packets in queue.

Let the sth transmitter be transmitting at the ¢th slot, i.e.,
a;(t) =T. Notice that throughout the paper we will denote a
given link as 7 (: = 1,2) and the other as j (j = 1,2, i # j).
The signal received by the destination of the ith link is

yi(t) = hii()xi(t) + faj (@) - v - hyi(t)x;(¢) +vilt), (1)

where the fading channels h;;(t) and h;;(t) are indepen-
dent complex circularly symmetric Gaussian variables, vary-
ing independently slot-by-slot (block-fading channel) with
E[lhii(¢)|?] = E[lhji(¢)]?] = 1; the transmitted signals are
assumed to have average power E[|z;(t)|%] = E[|z;(t)|?] =
P; the power of the additive Gaussian noise v;(t) reads
E[|vi(t)|?] = No; v > 0 is a positive real number measuring
the relative strength by which the interfering power is received
(see fig. 1); function f(-) equals 1 or 0 according to whether
its argument equals T or W (i.e., whether or not the other
user is transmitting). From (1), defining the average signal-to-
noise ratio as SNR = P/Ny, we can write the instantaneous
signal-to-noise-plus-interference ratio (SINR) at receiver 4 as
[has (1)
INR;(a; = . 2
SINR;(a;(t),t) T 7(a,0) P @
Transmission of a given packet is assumed to be successful
if the SINR is above a given threshold 3. Therefore, the
outage probability for the case where only the ith source is
transmitting (a;(¢t) = W) is

P — PISINR,(W,t) < 8] =1 — exp (%) )



whereas if both sources are transmitting simultaneously
(a;(t) = T), we have (see [22], eq. (15))

8
eXpl( SNR) S Po(i%
—ir3 =

g (4)

In order to obtain non-trivial solutions, we enforce a few

intuitive conditions on the system parameters. First, we rule
out the possibility that a user decides not to transmit: this
requires the following conditions

P2 = P[SINRy(T,t) < 8] =1—

out —

pgl) = 0then p§2) >0 (5a)

»? = 0thenp!” > 0. (5b)

Moreover, in order to prevent the system from getting stuck at
the state where both transmitters have a packet to deliver (S4)
(i.e., to avoid absorbing states), we impose that probability
p§2) is non-zero for at least one transmitter:

pt? =0 then pi¥) > 0. (6)

Notice that in case of partial information, conditions (5) and
(6) boil down to p; > 0 for i = 1,2. Finally, we denote the
set of feasible transmission probabilities p; for user i as the
set

{pi =V pP1T 0 <M pP <1 (7)

satisfying conditions (5) and (6)}.

Notice that the set of feasible transmission policies for a
given transmitter depends on the strategy selected by the other
through constraint (6). Finally, the set of all the feasible vectors
p is defined as

P={p=1[p,P3]": p1 € Pi(p2) and p € Pa(p1)}. (8)
B. Optimizing the transmission probabilities

The goal of this work is to discuss decentralized optimiza-
tion strategies for the transmission probabilities in the random
access scheme illustrated in fig. 1. Following [9] [13] [11]
[10], the optimization criterion used in this work assumes that
the cost of each transmission for any source is given by a
parameter ¢ € (0, 1). This parameter is in general related to the
energy spent at each transmission, which is in turn a function
of the transmitted power P and may include (if relevant) the
contribution of circuitry consumption. It represents essentially
the cost of transmitting a packet relative to the value of a
successful transmission, which is normalized to 1. In other
words, at each slot ¢, the immediate payoff obtained by
the ¢th source (: = 1,2) reads —c in case of unsuccessful
transmission, 1 — ¢ in case of successful transmission and 0
in case no transmission takes place.

From the discussion above, the immediate payoff
r;(S(t),a(t)) experienced by the 4th user in any tth slot is
a function of the set of actions a(t)€.A selected at time ¢ and
of the state S(¢)€S. In particular, we consider as immediate
payoff the average reward obtained with respect to fading,
which reads

oV = _—c.pl)

out

Pi(pj) =

+(1-o(1-P)y=1-c—PL), (9)

out

) =1

when only the :th transmitter is using the channel (i.e.,
71(Sk, [T W]) =p) for k& = 2,4 and ro(Sy, [W T]) =p™)
for k£ = 3,4) and

+(1—e)(1— P2 ~ P2, (10)

out

p? = —c. PQ)

out

)=1-

when the two users are transmitting simultaneously (i.e.,
1(S4, [T T]) =ra(Sy, [T T]) =p®). For reference, the im-
mediate payoffs r;(S%, a) of the two transmitters for different
states S,€S and actions a €4 are shown in fig. 2 (crossed
boxes correspond to non-feasible alternatives, i.e., to transmis-
sions of packets from non-backlogged users). Notice that both
expressions (9) and (10) easily follow from the law of total
probability. Moreover, since P > P we have

out out?

—c<p® <p<1—c (11)

From (9)-(10), in order to ensure that transmission leads to
positive payoff (so that waiting all the time is not the most
advantageous strategy), we need to guarantee p(!) > 0, which
implies

c<1— rPY

out*

(12)

Each user is interested in choosing its transmission prob-
abilities p;, ¢ = 1,2, in such a way to maximize its own
payoff over time. Notice that the transmission probabilities
determine both the sequence of actions a(t), ¢ = 1,2 and
sequence of states S(¢). Actions and state sequence are then
random process whose joint distribution depends on p= [plT
pQT]T. Two optimization criteria are usually considered. The
first is the average discounted payoff [21] [18]*

T;(p;S°) = Jim Fy, S(0) =S5,
13)
where 0 < 6 < 1 is the discount factor; Ep[] denotes the
ensemble expectation with respect to the distribution of the
random process S(t) and a(t); S° € S is the initial state®.

An alternative criterion is based on the observation that
the state process S(¢) is a homogeneous finite Markov chain
because of the Markovian transmission policy and the channel
model employed. Accordingly, if the Markov chain S(t) is
irreducible for any choice of probabilities p €P, it admits
steady state probabilities 7w (p) = P[S(t) = S|, k =
1,2, 3, 4. We can then focus on the steady-state behavior, omit
dependence on time ¢, and employ as performance criterion

T
S8 r(S(t),alt)
t=0

4In [18] it is shown that, under appropriate conditions that are satisfied in
our scenario, the solution with respect to the alternative criterion based on a
time-average of the expected payoffs:

T
Tips%) = Jim By | 23" ri(S(0),a(9)
t=0

S(t) = 50}

can be obtained as a limit case of the problem of maximizing (13) for ¢ that
tends to 1.

5Notice that the limit in (13) is always finite since the absolute value of the
immediate payoff satisfies |r;(Sk,a)| < 1. In fact, this entails that (13) is a
sum of terms that are bounded in absolute value by the decreasing geometric
progression {5¢}.
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Fig. 2. Immediate payoffs r; (S, a) for the two transmitters (rows indicate
the payoff of transmitter = 1 and columns of transmitter ¢ = 2). Definitions
of p(X) and p(2) are given in (9)-(10).

the ensemble average payoff with respect to the steady state
probabilities [11] [13]

Ri(p) = Ep[ri(S,a)] = Y _ m(p)Ep[ri(S,a)| S = Si).

k=1 (14)
Differently from (13), criterion (14) does not depend on the
initial state and applies only when the Markov chain S(t) is
ergodic (therefore, it admits steady state probabilities). As it
will be shown in the following, this condition is satisfied under
the assumptions (5) and (6).

The problem of maximizing payoffs (13) or (14) amounts
to the optimal control of a Markov process, where the control
policy (transmission probabilities) is independent of ¢ (sta-
tionary policy) [20] [25]. However, in the considered scenario,
optimal control has to be carried out in a decentralized fashion,
whereby each transmitter of the interference channel strives to
maximize its own utility (13) or (14). In this case, the system
can be analyzed using tools from game theory [17] [18], as
further discussed in the Sec. IV.

As discussed in [11] [13], criterion (14), because of its
independence of the initial state, is a choice well suited for the
case where there is imperfect knowledge of the state (see also
footnote 3). Therefore, in order to allow comparison between
the two scenarios of perfect and partial information, in the
following we will focus on criterion (14). The problem of
optimizing with respect to (13) is treated in Sec. V.

C. Efficiency of decentralized optimization (Nash equilibrium
and Pareto optimality)

The scenario illustrated above prescribes a decentralized
optimization problem, where each transmitter’s goal is the

optimization of its own utility. Towards this goal, each trans-
mitters, say the ith, is assumed to decide its transmission
policy p; rationally and based on the knowledge of utilities
and available strategies of the other transmitter. With such a
model, an appropriate solution concept is that of Nash Equi-
librium (NE) from game theory (see [16] for an introduction
tailored to wireless engineers). A NE can be interpreted as
the prediction of a likely outcome for a strategic scenario
such as the one described above, characterized by selfishness
and rationality of the participating agents (or players, in the
game-theoretic language) [15]. More formally, a NE is given
by a strategy vector p* = [pi? p3?]T (and corresponding
payoffs {R;(p*)}2_,) such that no transmitter can profitably
deviate from it through unilateral choice, i.e., such that there
does not exist an alternative strategy p} such that Rl([p’lT
p;T1") > Ri(p*), and similarly for the second player®. A
strategic scenario (i.e., a non-cooperative game) can admit one,
multiple or no NE. In cases where multiple NEs exist, it is of
interest to select the most reasonable ones (according to some
criterion), as predictions of the outcome of the game. This
further specializations of NEs are referred to as refinements,
and the Markov Perfect Equilibrium (MPE) discussed in Sec.
V is an example.

Since NEs predict the outcome of a competitive (decentral-
ized) optimization process, a natural question to ask is: how
far is a NE from the best achievable performance through
centralized optimization? In other terms, we are interested in
quantifying the performance loss that arises because of the
distributed (and selfish) nature of the considered transmission
scheme. In a multiobjective optimization, as the one tackled
here, there is generally no single optimal point p,,: that
maximizes the utility for both agents simultaneously, i.e., for
which R;(pope) > Ri(p’) for every p’ € P and i = 1,2.
Instead, optimality is attributed to a set of policies P,,; so that
for each point p,,: € Pope, there is no other policy p’ € P for
which R;(p’) > R;(popt), ¢ = 1,2, and at least one inequality
is strict [24]. The set of points P,,; is referred to as Pareto-
efficient. In words, a strategy p.,: is Pareto-efficient if, with
respect to R;(popt ), is not possible to improve the performance
of a given link without degrading the performance of the other.
Examples in the next section (see fig. 3) should clarify these
concepts to a reader not familiar with them.

The question anticipated in the previous paragraph can now
be rephrased as follows: how far is the performance of a NE
from the Pareto-efficient strategies P,,:? In short, and with
the definitions above, the goal of the rest of the paper is
to investigate the (Pareto) efficiency of decentralized random
access policies through the analysis of the corresponding NEs.
An interesting account on efficiency and fairness of distributed
techniques in a related problem can be found in [5].

6For generalizations and details, the reader is referred to textbooks [15]
[16].



I1l. THE INTERFERENCE CHANNEL WITH BACKLOGGED
USERS AS A GAME

As a reference case, this section considers a simple scenario
that deviates from the model in Sec. Il in that users are
assumed to be always backlogged. The motivation for this
temporary detour from the general framework is that it will
allows, by comparison, to assess the impact of traffic dynamic
(random packet arrival) on the efficiency of decentralized
random access.

When the users are backlogged, the system can be thought
of being in state Sy = (1,1) all the time. In this case, the
problem can be formulated as a standard two-player non-
cooperative strategic game (N, A, {r;(Ss,a)}i=12), where
N ={1,2} is the set of players (links) and the payoff r;(Sy, a)
is shown in fig. 2. The transmission strategy employed cor-
responds to mixed strategies in the jargon of game theory,
meaning that each user chooses a random action in A; with
given probabilities [15]. To simplify the notation in this
section, we redefine the transmission probabilities of interest

(%) and p$?) for the two transmitters as p; and ps, and the
transmission probability vector as p = [p; pQ}T.

The average payoff (14) obtained by transmitter ¢ when
strategy p = [p1 pg]T is played can be written as

Ri(p) = Ep[ri(Ss,a)l =
= piRi(T,p;) + (1 —pi) Ri(W,p;) =
= pilRi(T,p;),

where R;(T,p;) = Ep[ri(Ss,a)l|a; = T] denotes, with a
slight abuse of notation, the average payoff of transmitter ¢
when transmitting:

Ri(T,p;) = p;p® + (1 —p;)p',

and R;(W,p;) = Ep[ri(Ss,a)|a; = W] = 0 is the average
payoff corresponding to waiting. Notice that (16) follows from
the observation that the payoff of user i is p) if it is the only
one transmitting and p(®) if both transmitters are active.

If p® > 0 (which implies p™) > 0), it is easy to see that
each transmitter maximizes its own payoff (15) by selecting
p; = 1, irrespective of the choice of the other transmitter.
Therefore, there exists a unique NE equilibrium corresponding
to p} = p3 = 17. In other words, if the payoff is positive even
in presence of collision, the two players decide to transmit
in each slot. This is a very aggressive strategy, which is a
result of the decentralized (competitive) mechanism employed
for optimization. Such a solution is easily expected to be
inefficient, as shown in the example in fig. 3. Here, we
consider the following parameters: SNR = 10dB, 8 = 5dB,
42 = 0dB and ¢ = 0.05 that entail p® > 0. Fig. 3 shows
the region of achievable payoffs {R;(p)}?_, with p €P and
the NE (circle). The Pareto-efficient set P, is given by the
boundary of the achievable region. As it can be seen, the NE
is quite far from the optimal set.

(15)

(16)

A degenerate mixed strategy like the one at hand is referred to as pure in
game theory.

0.7
0.6 . .
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Fig. 3. Achievable utility region and NE for backlogged users and different
transmission costs ¢ = 0.1 and ¢ = 0.3 (SNR = 10dB, 8 = 5dB,
2 = 0dB).

On the other hand, if p® < 0, there exist a unique NE
equilibrium that is obtained by imposing that the payoffs
corresponding to the available actions (T and W) are the same
[15]: Ri(T,p;) = Ri(W,p;) = 0. Therefore, the NE reads

(1)
R A 17

Pi =0 = 50— @
Following the example above, fig. 3 shows the achievable
region and the corresponding NE for ¢ = 0.3 (p® < 0).
Notice that in this case, utilities can be negative. Again, it can
be seen that the decentralized solution (NE, cross) is quite
inefficient.

IV. THE INTERFERENCE CHANNEL WITH RANDOM ACCESS
AS A GAME

In this section, we consider the original problem discussed
in Sec. Il that includes traffic dynamics. In this case, the
transmitters interact in a dynamic fashion adjusting their
decision to their (either perfect or partial) knowledge of the
current state of the system. Under the optimization criterion
(13), the model lends itself to be cast into the framework
of stochastic (or Markov) games [17] [18], as discussed in
Sec. V. However, when considering the merit function (14),
the problem can be equivalently seen as a non-cooperative
strategic game, similar to the previous section. Notice that, as
explained in Sec. 11-B, in order to be able to apply criterion
(13), we need to verify that the Markov chain S(t) is ergodic
for every strategy p €P. This issue is dealt with in Appendix-
A, where it is shown that, under assumptions (5)-(6), the state
sequence S(t) is indeed ergodic. Moreover, the steady state
probabilities {74 (p)}i_, are evaluated as a function of the
probabilities p and the arrival rates {\;}?_; (see (27)).

The problem formulated in Sec. 11-B with merit func-
tion (13) can be studied as a non-cooperative game
(N, P,{R;(p)}i=1,2) , with strategy space P in (8) and payoff



function

Ri(p) = mam®) P pM + (18)

+ma(p) - [t (1= p{)pV) + p{Pp p?),

where ¢(1) = 2 and ¢(2) = 3. Equation (18) is easily obtained
from the law of total probabilities. In fact, the first term
accounts for the state where only user i has a backlogged
packet (the payoff is then p(1) if the user transmits), whereas
the second corresponds to the state where both have a packet
to transmit (the payoff is p(*) if only user i transmits, p(!) if
both users transmit). Recalling (9) and (10), it is apparent that
condition (12) is necessary in order to guarantee a positive
utility R;(p) > 0 for non-null transmission probabilities.

In the following, we consider the case of perfect and partial
information separately.

A. The case of perfect information

In the case of perfect information, each player maximizes
its own utility (18) by always transmitting if it is the only one
to have a packet in queue, i.e., by setting p{") = p{" = 1,
irrespective of the strategy played by the other transmitter.
Therefore, we are left with the problem of obtaining the
transmission probabilities p{* and p{* that correspond to a
NE equilibrium. This can be done numerically by evaluating
the fixed point of the best responses of the two players [17]
[18]. As an example, fig. 4 considers the same scenario as
fig. 3 with cost ¢ = 0.3 (only the positive part of the
achievable region is shown). Moreover, the arrival rates are set
as \; = Ao = 0.8. The achievable region clearly shows that,
with random access, obtaining utilities with large and similar
values for both users is not feasible. Moreover, it should be
noticed that there are two Pareto-efficient points corresponding
to the corner points in the U-shaped part of the achievable
region. The NE is found to correspond to p'® = p{® = 0.6,
and provides utilities that are close to the boundary of the
achievable region. Efficiency of the NE is expected to improve
in an asymmetric case. This is confirmed by fig. 5, where the
first transmitter has a smaller packet arrival rate A; = 0.2 (the
other parameters are selected as in fig. 4). In this scenario,
the NE predicts transmission probabilities p{* = 0.6 and
p§2) = 0.47. The NE is qualitatively more efficient than in the
backlogged case. As shown below, this effect is even more
pronounced in the case of partial information.

B. The case of partial information

With partial information, only one transmission probability
has to be selected per user and the problem is a special case
of the game described above with p§1> = p§2) = p;. NEs can
be found numerically as the fixed point of the best responses
of the two players [17] [18]. The effect of partial information
is shown by comparison with the results discussed above for
the case of perfect information in fig. 4 and 5. As it can be
seen, partial information entails a smaller achievable region
and a NE with smaller utilities. However, efficiency of the NE
is enhanced, most notably in the asymmetric case. Notice that
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Fig. 4. Achievable utility region and NE with random packet arrivals and

perfect/ partial information (SNR = 10dB, § = 5dB, v2 = 0dB, \1 =
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the NE in fig. 4 corresponds to p; = p3 = 0.88 and the one
in fig. 5 to p; = 1, p5 = 0.55.

From the discussion above, random packet arrival has a
beneficial effect on the efficiency of decentralized random
access, especially in the case of partial information and in
an asymmetric scenario. In a way, the selfishness of different
transmitters is moderated by the fact that different links do not
always have packets to transmit. Random packet arrivals then
act as a sort of random scheduler that alleviate the inefficiency
of purely competitive random access.

V. OPTIMIZING THE AVERAGE DISCOUNTED PAYOFF

In this section, we tackle the problem of decentralized opti-
mization of the transmission probabilities for perfect informa-
tion and optimization criterion (13). This scenario can be mod-
elled as a stochastic game [19] < S, A, G, {r;(Sk,a)}i=1.2 >,
where we recall that S is the set of states, .4 the set of actions



and r; (S, a) is the immediate payoff of user ¢ in state S, € S
for action a €.A as defined in fig. 2. Moreover, G(Sy,|a, Sy,) is
the transition probability of the Markov chain S(¢) from state
Sy 10 S, given that actions a €A are selected (see Appendix-
A). Notice that at each state Sy, the actions a selected by the
two transmitters determine: (i) the immediate payoff r; (S, a);
(i) the transition of the state from S,, to a state S,, with
probability G(S,,|a,S,).

In a general stochastic game, players can select a different
strategy at each time according to the whole history of its own
and other players’ previous choices. Among all the NEs that
can be established in this general framework, of particular
interest is a refinement of the concept of NE referred to as
perfect equilibrium. A strategy is a perfect equilibrium if it
is a NE for every possible initial state S° in (13) [15]5.
The transmission policies discussed in Sec. Il are behavior
strategies in the jargon of stochastic game theory, since they
randomize between possible actions (transmit and wait) at
each time [15]°. In particular, the transmission policy at hand
is a Markov (or stationary) behavior strategy since it only
depends on the past through the current state S(¢). For a
stochastic game with a finite number of states and actions
as the one of interest here, a Markov Perfect Equilibrium
(MPE) is guaranteed to exist [18]. This section elaborates on
the evaluation of the MPE.

To start with, we note again that each transmitter maximizes
its own utility at each time by selecting p{" = p{ = 1,
irrespective of the strategy played by the other transmitter.
Therefore, the problem amounts to obtaining the transmission
probabilities p{* and p{® that correspond to a MPE equilib-
rium. This can be done by imposing that the selected strategy
is a NE for the game irrespective of the initial state S°. In our
case, this condition corresponds to ensuring that the payoff
obtained when transmitting equals the payoff of waiting if
starting in state Sy (see Sec. Il and [15] [16]):

T,(T,p{"); S4) = T(W, pl?; Sy), (19)

where, with reference to equation (13),

T;(p; Sa) = pEQ)Tz‘(Tm;Q); Sg) +(1— P§2))Ti(W>p;2); S4).

(20)
Notice that if the discount factor § is zero, the problem
boils down to the backlogged case treated in Sec. Il (see
also Appendix-B, equations (28) and (29)). In particular, the
equilibrium probability pl(»Z) equals (17). In this latter case, if
the cost of transmission c is high (within the limits (12)) and/or
the interference factor ~ is sufficiently large (i.e., p™) ~ 0
andior |p?| > p(1)), the transmission probability p!* (17)
at the equilibrium becomes small. This is easily explained
by noticing that, since § = 0, transmitters do not have the

8In the case of centralized optimization, this condition corresponds to the
principle of optimality in dynamic programming, that leads to the Bellman’s
equations [25].

9Behavior strategy are strictly related to mixed strategies in non-cooperative
strategic games, see [15] for details.

perspective of future payoffs to compensate for the present
loss due to the large transmission cost and/or interference.

In the more general case with § > 0, payoffs Ti(T,pf); S4)
and Ti(W,p§-2); S4) in (19) depend on the immediate payoffs
pM and p® for k = 1,2,3,4 through the discount factor
0 (see Appendix-B, equations (28) and (29)). In fact, the
payoff at each state depends also on the future payoffs that are
conditioned on the current choice. As shown in Appendix-B,
obtaining the probability p§-2) that satisfies (19) then requires
to solve a system of four non-linear equations

vi=fi(v;), (21)
where v;= [T;(p; S1) Ti(p; S2) Ti(p; S3) Ti(p; S4)]" 0. Ex-
istence of a solution (i.e., fixed point) for equation (21) is
guaranteed by the existence of a Markov perfect equilibrium
for the stochastic game at hand [18]. Iterative algorithms
can be devised that aim at evaluating the fixed point in
(21) as explained in [23]. Convergence of these algorithms
in dependent on the choice of system parameters and not
easily determined for our problem. In the next section, Jacobi
iterations [23] are used to evaluate the solution to (21) showing
fast convergence for the selected parameters.

A. Numerical results

Here we present some numerical results to corroborate the
analysis above. Parameters are selected as in the examples in
the previous section (symmetric case) with different costs ¢
and discount factors §, as detailed in the following. Fig. 6 and
fig. 7 show the probability p§2) as it evolves during the Jacobi
iterations! used to solve the non-linear system (21). Initial-
ization is random. The two figures refer to scenarios where the
discount factor ¢ has opposite effects of the probability at the
MPE pl(»2). In particular, in the first, the cost of transmission
is ¢ = 0.7, which is large enough to entail p® < 0 and
a small (positive) p™)(= 0.03). In this case, as discussed
in Sec. IV-A, decreasing the memory ¢ renders the prospect
of future revenues negligible and causes the transmitter to
choose a decreasing pl@). On the other hand, in fig. 7 the
dual case is depicted, which occurs when the cost is not large
enough to "discourage™ players to access the channel even in
presence of interference (c = 0.3 in the example, which entails
p) = 0.43). In this latter scenario, decreasing & increases p§2>
at the MPE.

V1. CONCLUDING REMARKS

In this work, a two-by-two interference channel with ran-
dom packet arrival and random access has been studied under
the assumption that transmission probabilities are concurrently
and selfishly selected at the two transmitters. Using solution
concepts from game theory (and in particular stochastic game

10The system (21) has a correspondent in the Bellman’s equations, that
provide the solution to the centralized control problem [25].

" penoting by & the iteration number and v; (k) the corresponding solution
to (21), the Jacobi iterations amount to v;(k) = f;(v;(k — 1)), and the
corresponding pobability pEQ) is obtained from (30).
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theory), efficiency of such a decentralized communication
scenario has been investigated. The main conclusion is that
random packet arrival alleviates the inherent drawbacks of
purely competitive random access, especially in the case
of partial information and in an asymmetric scenario. This
result confirms traffic dynamics as an essential element to be
accounted for in the analysis of secondary spectrum access
solutions.

VII. APPENDIX

A. Analysis of the state sequence S(¢)

Here we first show that for every strategy p €P the Markov
chain S(t) is ergodic and then evaluate the steady state
probabilities 7(p) = [r1(p) m2(p) ms(p) ma(p)]”. Let us
denote the transition probability function from state S,, to S,
given that the action a €A is played as G(S,,|a, S, ). Defining

the 4 x 4 matrix [G(a)]mn = G(Sw|a, Sy), we easily get
[ (1= X)(1—N2) 0 0 0]
_ )\1<1 — )\2) 1— X 0 0
G(WW]) = o1 —Ay) 0 1-X\ 0
i A1 A2 A2 A 1|
[ x (1-PUY(1—2) x 0 ]
(1)
X P - A X 0
G(TW])) = out(1 (1) 2) (1)
X (1 - ‘Pout))‘2 X 11— Pout
| % Pl x PG
[ x x (1-Pya—x) 0
x x  (1-Pohn 1-PY)
G(WT]) = 1)
X X P (1—A1) 0
[ % x PiM P
[ x x x (1-— P(EZ%)
(2) (2)
X x x P (1-P
a(rT) = (L~ Pt
X X X Pout(l - Pout)
L x x ox o (PE)?

where the symbol indicates that the given set of actions
is not allowed in the state corresponding to the selected
column®?,

Being a function of the action vector a, the probability
G(Sm|a, Sy,) is a random variable under the randomized strat-
egy prescribed by the transmission policy. The unconditional
transition probability function G(S,,|S,) is then obtained
by averaging with respect to the distribution of the actions
a, according to the law of total probability. The resulting
transition probabilities G(S,,|Sy) can be conveniently accom-
modated in a 4 x 4 transition matrix G(p) ((G(p)l,,, =
G(S;|Sn)), where we have made explicit the dependence on
the transmission probabilities p in (23). This can be easily
calculated as

M X oy oPel
A o oM @
G(p) = 142 Xd) 2 2 M 24(P) . (23)
XA 77 A2 xoA Gsa(p)
AtAa x1A2 xeA1 Ga(p)
with & = 1-\;, x; = [V Po) + (1 —pi)], Y = pl? (1 -
Po(ut) and
Ga(p) = (1- <2>>p§2< - PL) +pP0 P
Ga(p) = (1—-p& (- PO+ %
Gu®) = (1-pP)1—pP)+ 1 —pP)p ”P,Sii
+<1 <2>) P PS + P8 (P2 (24)

Based on the expression of the transition matrix G(p), it is
easy to show that S(t) is guaranteed to be ergodic for each
p €P. Infact, by building the graph associated to the transition
matrix G(p) in (23), it is clear that as long as (5) and (6) are
satisfied, the chain is irreducible and aperiodic.

12Notice that in order for state Sy to be non-absorbing, we need the
condition Pgil < 1, which is satisfied by (4).



The steady state probability 7 (p) of the Markov chain are
defined by the fixed point of the transition matrix as:

m(p) = G(p)7(p)-

Recalling that 7(p) has to lie in the probability simplex, we
have 177 (p) =1, which added to (25) leads to

(25)

(I-G(p))m(p) + 1177 (p) = 1, (26)
from which (27) we have:
m(p)=(1-G(p)+11")7"1L. 27)

B. Derivation of (21)

Let us consider the first user and drop the user index for
simplicity of notation by defining the vector v = [T (p; S1)
To(p; S2) Ts(p;Ss) Tu(p;Ss)]”. The second link can be
treated in exactly the same way. As explained in Sec. V, in
order to obtain the MPE for the stochastic game at hand, we
need to impose condition (19). The discounted payoffs when
transmitting and waiting can be written as

(TP 8) = e+ (1-p)pW+ (29)

4
8- p& 3" G(SK|[T T, Sa)wr

k=1
and

4
T(W,p758) = op? D G(SillW T], )+ (29)
k=1
K
3(1—p&) " G(SKIW W1, Sa)vr,
k=1

respectively. Probability p!?
recalling (22) as

can then obtained using (19) and

() _ —0(1— PLvs +0(1— PLhvs

2 2 1 ) (30)
(P — pM)) + Zk:l Or vk
where 6, = d(1— P\2))%, 6 = 6[(1— P2 P — (1- PO,

by = a((1 — PP — (1~ P) ‘mna 6, = (PRS-
P — P2 11 Since the probability pi? in (30) depends on
the unknown v, k= 1,2,3,4, in order to be able to evaluate
it, we need to solve the following system of equalities. These

conditions easily follow from the definition (13) by recalling

that p(l) pél) =1
4
U1 = 52G(Sl|[W W],Sl)vi
=1
4
va = pM 48 G(SI[T W], Sa)v;
i=1
4
vs = 6 G(Si|[W T], Ss)o,
=1
v = 0y (1= PGNva +6[ps? (P — 1) + v,

where the last equation is a consequence of (20) and (19).
Substituting (30) in (31), we have defined the system of
equality (21).
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