
Optimal Design of a Multi-Antenna Access Point
with Decentralized Power Control Using Game

Theory
I. Stanojev, O. Simeone and Y. Bar-Ness

Center for Wireless Communications and Signal Processing
New Jersey Institute of Technology, Newark, New Jersey 07102-1982, USA

e-mail: {iss2, osvaldo.simeone, yeheskel.barness}@njit.edu

Abstract— Power control for uplink channels with non-
cooperative and rational mobile stations (MS) can be studied
in the framework of game theory. In this paper, we investigate
the optimal design of a multi-antenna access point (AP) in such a
scenario by modelling the interaction between the AP on one side,
and the distributed set of MSs on the other, as a Stackelberg game.
As a game leader, the AP determines the network parameters
(bandwidth and the number of receiving antennas) for the
power control game played between the MSs (follower), so as
to maximize the network utility per system resource (bandwidth
and antennas). Two game models are considered, whereby the
network utility is measured either in terms of power minimization
or power efficiency maximization. Extensive numerical results
provide insights into the properties of the optimal design.

I. INTRODUCTION

Power control is typically employed in uplink wireless
channels in order to guarantee a sufficient strength of the user’s
signal while limiting its interfering effect on signals belonging
to other users [1]. Optimal power control mechanisms require
the access point (AP) to be able to control directly the power
transmitted by mobile stations (MSs). This cannot be guaran-
teed in some wireless networks, such as in systems complying
with the cognitive radio principle, where competitive behavior
is expected to be predominant [2].

Game theory, a mathematical framework thoroughly inves-
tigated and employed in economic field [3], is a promising
paradigm for modelling the performance of wireless networks
that involve multiple nodes (i.e., MSs) not controlled by some
central authority [4]. As these independent nodes (players
in the game-theoretic jargon) have goals that are usually in
conflict with each other, their selfish behavior might lead to
extremely poor network performance. Game theory allows to
predict the possible outcomes of interaction (game) between
the competitive MSs, in terms of Nash Equilibria (NE).
Therefore, it is a powerful tool for defining a set of rules to
be enforced on the players that would lead to more desirable
outcome.

In this paper, we consider a system with decentralized
power control (see, e.g., [5]). Moreover, we use the fact
that, although the MSs are not directly controlled by the
AP, the game they participate in, along with its NE, is
strongly dependent on the network parameters set by the

AP (for example, available bandwidth and number of AP
antennas). Therefore, the optimal system design requires the
AP to set those parameters in a manner that provokes the
most desirable power allocation (NE) from the MSs [6]. This
framework where one agent (set of MSs) acts subject to the
strategy that the other agent (AP) chose (with the latter aware
that his action is observed), is referred to as a Stackelberg
game [3]. Moreover, the corresponding optimal pair of system
parameters and power allocation is referred to as a Stackelberg
Equilibrium (SE). A related work is in [6], where the provider
(AP) acts as a Stackelberg leader whose goal is to encourage
the cooperative transmission between terminals (follower), by
optimizing the service prices and possible reimbursements.

In this work, we consider two network models. The first
assumes that the MSs’ actions are dictated by the transmission
power minimization under minimum capacity (transmission
rate) constraints, while the second model is concerned with
maximizing the power efficiency of the MSs. The service
provider (AP) is consumer-oriented, and it aims at maximizing
the users’ preferences, while saving on investments such as
bandwidth and network infrastructure (namely, AP antennas).

II. SYSTEM SETUP AND PROBLEM DEFINITION

A. System Setup
Consider a set K of K single-antenna MSs that are trans-

mitting in the same time-frequency resource towards an AP
with transmission powers Pi, i = 1, ..,K, using asynchronous
code-division access with processing gain G ≥ 1. The set of
all transmission powers is P =(P1, P2.., PK)T ∈ P , where
P is the set of allowed MSs’ powers, and the maximum
transmission power per user is denoted as Pmax. The AP is
equipped with N (receiving) antennas, and the independent
identically distributed (iid) complex Gaussian channel gains
between ith MS and jth AP antenna are denoted as hij . Using
a vector notation, the set of channels between user i and N
antennas is hi = (hi1, .., hiN )T , while the set of all channel
gains is given by N × K matrix H = (h1,h2, ...,hK). We
assume matched filtering (MF) at the AP with no interference
cancellation. White Gaussian noise at any of the AP antennas
is independent, with single-sided power spectral density No.
Interference coming from other users’ signals is modelled



as Gaussian noise. Assuming that the station are sending
"Gaussian codewords" and, without loss of generality, that the
used bandwidth is G Hz, the maximum achievable rate for the
ith MS, Ci (in bit/sec), can be written as:

Ci(P,H,N,G) = log2(1 + SINRi), (1)

where the Signal to Noise plus Interference Ratio for the ith
MS, SINRi, at the output of the MF is easily shown to be:

SINRi =
Pi ||hi||2

N0 +
1
G

PK
k=1
k 6=i

|hHi hk|2
||hi||2 Pk

. (2)

In (1) we emphasized the dependence of the achievable rate
Ci on the set of transmission powers P, channel gain matrix
H and the parameters set by the AP, N and G.

B. Problem Definition
We distinguish between two system entities, namely the set

of MSs on one side and the AP on the other. The goal of
the AP is the maximization of a long-term revenue function
ρ(N,G) that depends on both the network parameters (number
of antennas N and processing gain G), that are under the direct
control of the AP, and the behavior of the MSs that cannot be
directly controlled by the AP. The revenue function ρ(N,G)
is defined as an average over the statistics of channel gains H
in order to account for different (fading) scenarios.

The goal of each MS is to maximize its own (instanta-
neous) utility function ui(P;N,G,H), i = 1, ..,K, defined
as to reflect MS’s preferences, usually in terms of achiev-
able transmission rate and/or consumed power. The degree
of freedom of each MS, say ith, is its transmission power
Pi, while the parameters N and G, and the channel matrix
H, are given. To emphasize this point, we will equivalently
use the notation ui(Pi,P−i;N,G,H), where P−i stands for
the vector containing all but the ith element of P (i.e., it
denotes the set of other MSs’ strategies). Furthermore, the
MSs are independent and behave in a selfish and rational1
manner, with goals typically in direct conflict. The whole
set of MSs can be presented as one entity that receives as
input the network parameters set by the AP (N and G),
and produces an output defined by a Nash Equilibrium (NE),
P̂ (N,G,H)=

³
P̂1, P̂2.., P̂K

´T
, of the non-cooperative game

hK,P, {ui (·)}i played by MSs (see fig. 1).
The interaction between AP and the set of MSs described

above can be studied in the framework of Stackelberg games.
The AP represents the authority of the game (Stackelberg
leader), playing the first move by setting the network para-
meters (N and G) towards the aim of increasing its revenue
function ρ(N,G). The MSs on the other side (Stackelberg
follower) respond with the NE P̂(N,G,H) of their non-
cooperative game. In principle, this interchange of parame-
ters and MS game outcomes continues until the Stackelberg

1The selfish player is interested solely in maximizing its own benefit,
without concern for the collective good; the rational player chooses only those
strategies that are best responses to his opponents’ strategies.
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Fig. 1. Overview of Stackelberg game between the AP and the MSs.

Equilibrium (SE) is reached, i.e., until the AP finds the set of
parameters (N and G) that, together with the corresponding
NEs of the MS game, maximize its long-term (i.e., average
over channel fading H) revenue function ρ(N,G).

III. GAME MODELS

In the following, two game models are presented. In the first
game, the MSs (follower) tackle the problem of minimizing
the transmission power under minimum transmission rate
constraint, while in the second they aim at the (unconstrained)
maximization of power efficiency (bit/sec/W). For each game,
the AP optimizes the network utility (in terms of collective
MSs’ preferences) per invested system resource, i.e., per
antenna and bandwidth. Performance of the considered distrib-
uted models is assessed by comparison with the corresponding
centralized scenarios.

A. Minimizing the Power under Capacity Constraints

1) MS Game: For given network parameters N and G, the
goal of the MS i is to minimize its own transmission power
Pi under minimum transmission rate constraint, Ci,min:

minimize Pi, i = 1, ..,K,
subject to Ci(P,H,N,G) ≥ Ci,min,

Pi ∈ [0, Pmax],
(3)

This problem can be formulated as the non-cooperative power
control game (NPG) hK,P, {ui (Pi,P−i)}i, where we recall
that K = {1, 2, ..,K} denotes the set of K players (MSs), the
players’ set of strategies P reads

P = {P|Pi ∈ [0, Pmax] , Ci(P,H,N,G) ≥ Ci,min, ∀i ∈ K} ,
(4)

and the ith player’s utility function is defined as

ui (Pi,P−i) = −Pi, i ∈ K. (5)

Notice that the strategy sets for different users are coupled
according to (4). Furthermore, the parameters set by the AP,
i.e., N and G, and the channel gains H, influence the game
through its constraints and not through its utility ui (Pi,P−i).
To conclude on the game setup, we note that in a game theory



framework a strictly concave utility function is preferred, so
we equivalently replace (5) with

ui (Pi,P−i) = − log2 Pi, i ∈ K, (6)

where the base 2 of the log function is chosen purely for the
sake of consistency with the definition of capacity (1).

The NPG hK,P, {ui (·)}i , is easily shown to be an (ex-
act) potential game2, hK,P, Ui , with the following potential
function:

U(P) = −
KX
i=1

log2 Pi. (7)

Assuming the optimization problem (3) is feasible, the set of
strategies P is compact. Furthermore, U(P) is a continuous
and strictly concave function on the interior of P . It follows
that a strategy Popt that maximizes the potential U(P), Popt =
argmaxP U(P), is also a NE of the NPG hK,P, {ui (·)}i [9].
Furthermore, since the set P is also convex (in fact, it is a
cone), following [9] the optimal Popt, and therefore the NE,
P̂(N,G,H) = Popt, is unique.

Both Gauss-Seidel and Jacobi algorithms, implementing
best response, better response or the gradient projection rule,
are guaranteed to reach the NE of the potential game at hand
[9], [7]-[8]. Here we detail the Gauss-Seidel algorithm with
the best response rule. The MSs play sequentially, and at the
(t+ 1)th iteration the ith MS updates its transmission power
following:

P t+1
i = min (P ∗i , Pmax) , (8)

where P ∗i is the minimum power satisfying the constraint Ci =
Ci,min (recall (1) and (2)):

P ∗i =

¡
2Ci,min − 1

¢
||hi||2

×
¡
N0 + (9)

+
1

G

Xi−1

k=1

¯̄
hHi hk

¯̄2
||hi||2

P t+1
k +

1

G

XK

k=i+1

¯̄
hHi hk

¯̄2
||hi||2

P t
k

!
.

The converging point of the algorithm is the NE strategy set
P̂(N,G,H), where P̂(N,G,H) = Popt.

2) AP Revenue Function: The revenue function accounts
for the preferences of the service provider, e.g., profit (if
it is charging the users for the service while investing in
equipment) or quality of service (measured in SINR ratios,
achievable rates, the probability of error, etc.). Here we assume
a service provider that, following the users’ interest, strives
to minimize the total power expenditure. However, it is also
interested in reducing the cost of the two primary resources:
number of antennas and bandwidth. We propose the following

2Analysis of the game, namely the assessment, existence and uniqueness of
NEs, is significantly simplified for the class of potential games [4], [9]. For a
strategic game, say
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U 0(·) is called a potential function.

revenue function that measures the overall average network
utility per system resource:

ρ(N,G) =
−
PK

i=1EH

h
log2

³
P̂i (N,G,H)

´i
NG

. (10)

The expectation EH[·] is taken with respect to fading, since
decentralized power control by the MSs is operated according
to the instantaneous channel realization, while the system
optimization is based on (long-term) channel statistics. Note
that the revenue function in (10) depends on the NE of the
MS game P̂i, which in turn is a function of parameters N
and G, set by the AP.

3) Centralized Scenario: For reference, we also consider
the case where the AP is able to control optimally not only
the network parameters N and G, but also the MS transmission
power, P(N,G,H), toward the goal of maximizing (10)
(where the NE P̂(N,G,H) is substituted with the variable
P(N,G,H)). From the discussion above, the decentralized
solution of the power control (NE) for given N and G is
the one that maximizes the potential (7). Comparing (7) with
(10), it is easy to see that decentralized and centralized solution
coincide in this case (see also [9]). Section III-B.3 will discuss
a scenario where this does not hold true.

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

N

R
ev

en
ue

 fu
nc

tio
n 

ρ

G=2

G=4
G=3

G=1

G=5

Fig. 2. Revenue function of the AP, ρ, versus number of AP antennas N
for different values of processing gain (bandwidth) G.

4) System Performance: The results in this section are ob-
tained for the following parameters: E

h
|hij |2

i
= 1, Ci,min =

1 bit/sec, Pmax = 2 W and the average Signal to Noise
Ratio (defined as SINR for N = 1, K = 1 and P = Pmax) is
SNR = 13 dB. Figure 2 shows the revenue function ρ(G,N)
in (10) versus the number of antennas N for K = 10 MSs
and different values of processing gain G. It can be observed
that, for fixed G, the revenue increases with N up to a certain
(optimal) point, after which the collective MS utility (7) (i.e.,
the numerator in (10)) becomes less then linearly proportional
to N . In other words, ρ has a unique maximum, that is a SE,
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Fig. 3. Revenue function of the AP, ρ, versus number of AP antennas N
for different number of users K.
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Fig. 4. Stackelberg Equilibrium: dependence between number of antennas
N and processing gain (bandwidth) G, with one parameter fixed and another
optimally chosen by the AP, for different number of users K.

over N for fixed G. Moreover, increasing the processing gain
G decreases the optimal value of N . While the reverse also
holds, i.e., there is a unique maximum of revenue over G for
fixed N, it is interesting to note that investing in antennas
N has better effect on revenue function than buying more
bandwidth (increasing G). The reason behind this can be
explained by pointing out that the number of antennas has
a two-fold effect on the SINR (2), i.e., power gain (in the
numerator) and interference mitigation (in the denominator);
on the other side, G results in interference mitigation only.

The revenue function versus the number of antennas N
for G = 2 and different number of users K is presented
in fig. 3. It is interesting to see that a larger number of
users, though increasing the required network resources (i.e.,

antennas and, not shown here, bandwidth) at the optimal
points, also increases the network revenue and is therefore
desirable from the collective point of view. However, for large
values of K, allowing additional users into the system has
a negligible effect on the relative increase of the revenue
function ρ(G,N).

The optimal network parameter N (or G) set by the AP in
the SE for fixed G (or N ), is presented in fig. 4, for different
number of users, K. The well known trade-off between
bandwidth and spectral dimension is confirmed. Moreover, it
is confirmed that increasing the number of user requires more
resources.

B. Maximizing the Power Efficiency

1) MS Game: Instead of minimizing the power under the
minimum transmission rate constraint as in Sec. III-A, here
we consider as MSs’ preference the maximization of power
efficiency:

maximize Ci(P,H,N,G)
Pi

, i = 1, ..,K,

subject to Pi ∈ [0, Pmax].
(11)

Under the assumption of selfish and rational MSs, problem
(11) can be cast as a non-cooperative power control game
(NPG) hK,P, {ui (·)}i, where K = {1, 2, ..,K} denotes the
set of K players (MSs), the players’ set of strategies P reads

P = {P | Pi ∈ [0, Pmax] , ∀i ∈ K} ,

and the ith player’s utility function is defined as

ui (Pi,P−i;N,G,H) =
Ci (P,H,N,G)

Pi
, i ∈ K. (12)

While this utility function strongly reflects the pragmatic
preferences of the MSs, it needs a slight modification in
order to avoid singularity at Pi = 0, while preserving quasi-
concavity on P:

ui (Pi,P−i;N,G,H) =
Ci (P,H,N,G)

Pi + Pc
, i ∈ K, (13)

where Pc could be any conveniently chosen constant (for in-
stance, it could account for the power consumed by electronic
circuitry of MS [11]). Notice that the utility defined in (13)
depends on AP parameters N and G, as well as the channel
gains H. A NPG with utility function as the one defined in
(13) was investigated in [10].

In order to reach the NE, we can use the Jacobi algorithm,
where all the users update their strategy in a parallel fashion
using the Newton’s method:

Pt+1 = Pt + α

µ
dt1

∂u1
∂P t

1

, .., dt2
∂uK
∂P t

K

¶T
, (14)

where α is some conveniently chosen small number and dti is

chosen as dti =

µ
∂2ui

(∂P t
i )

2

¶−1
[7]. The convergence point of

the algorithm is the NE of the game, P̂(N,G,H).



2) AP Revenue Function: As in Sec. III-A, we assume that
the AP has preferences compatible with the MSs. Therefore,
it aims at maximizing the (overall) power efficiency, averaged
over fading, while accounting for the resource expenditure:

ρ(N,G) =
1

GN

KX
i=1

EH

⎡⎣Ci

³
P̂i (N,G,H) , N,G,H

´
P̂i + Pc

⎤⎦ .
(15)

3) Centralized Scenario: For the centrally optimal solution,
the problem boils down to maximizing the revenue function
(15), by assuming that the AP can also control the set of
the MSs’ powers P(N,G,H). Therefore, the maximization
is carried out with respect to G, N and P(N,G,H). This
task can be performed numerically. As shown below, in this
case the decentralized solution has degraded performance as
compared to the centralized scenario.

4) System Performance: Figure 5 shows the revenue func-
tion ρ(G,N) versus the number of antennas N for different
values of processing gain G, and parameters E

h
|hij |2

i
= 1,

Pc = 0.1 W, Pmax = 2 W and SNR = 13 dB. The con-
clusions are very similar to those for the power minimization
problem. Furthermore, the dependence among N , G and K
for the optimal (SE) solution is shown in fig. 6, revealing the
similar system behavior to that of fig. 4.

Figure 7 shows the optimal revenue function ρ versus
number of antennas N , for different number of users K and
for both the distributed and centralized scenarios. As expected,
centralized control allows to harness a larger revenue. How-
ever, as the number of antennas increase, the difference in
performance between centralized and decentralized scheme
reduces. This shows that with enough interference mitigation
options, decentralized power control is not as harmful for the
system performance. Moreover, it is clear from fig. 7 that, by
increasing the number of users, the efficiency of the distributed
scheme falls behind that of the optimal (centralized) scenario,
thus confirming that large distributed systems pose the major
challenge. Furthermore, it is very interesting to observe that,
while the increased number of users is again desirable for the
network (at least in centralized scenario), the relevant lack of
efficiency for large K can diminish this gain in decentralized
scenario.

IV. CONCLUSIONS

In this paper, we analyzed the design of a multi-antenna
access point with decentralized power control in the uplink
channel. The optimal solution, in terms of number of antennas
and bandwidth, has been studied by modelling the problem as
a Stackelberg game between the access point and competitive
mobile stations. In this framework, it has been shown that
a larger number of users motivates the provider (i.e., access
point) to invest, as the overall performance enhancement
well balances the costs. It was discussed, however, that in
certain decentralized scenarios the system cannot efficiently
cope with large amount of user. Furthermore, the well-known
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tradeoff between system resources, bandwidth and antennas,
was confirmed.

We believe that this work can be expanded in any of the fol-
lowing directions: firstly, one can investigate the performance
degradation due to incomplete knowledge of the environment
by the mobile stations (e.g., the knowledge limited to other
players’ average channel gains); secondly, system fairness can
be assessed and optimized for systems with heterogeneous
average channel conditions. Finally, if receiving antennas are
thought of as different access points, this work could be
extended and applied to systems employing macrodiversity.
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