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Abstract— The impact of multiuser diversity on MIMO down-
link is generally measured in terms of two asymptotic quantities
derived from the sum-rate, namely the scaling law of the sum-rate
versus the number of users n (for a fixed signal-to-noise ratio,
SNR) and the multiplexing gain (i.e., asymptotic growth of the
sum-rate versus SNR). Designing optimal strategies with respect
to these two criteria requires the availability of Channel State
Information (CSI) at the transmitter, which in turn demands
feedback of information from receivers to the transmitter. An
open question is: how many bits of feedback are really necessary
to achieve optimality of these criteria, i.e., to fully exploit
multiuser diversity?

In this paper, the optimal scaling law of the sum-rate with
respect to n, for fixed SNR, fixed number of transmit antennas
M and any number of receiving antennas N (i.e., M log log nN),
is proved to be achievable with a deterministic feedback of
only one bit per user. The impact of adding feedback bits is
also investigated. Furthermore, it is shown that the optimal
multiplexing gain of M is guaranteed if the total feedback per
cell is proportional to the SNR (in dB). The proofs build on
opportunistic beamforming and binary quantization of the signal-
to-noise-plus-interference ratio.

I. INTRODUCTION

The optimal transmission scheme for a multi-antenna
(MIMO) downlink channel, that is able to achieve the corre-
sponding capacity region [1], is known to be the Dirty Paper
Coding (DPC) technique proposed in [2]. The method is based
on interference pre-subtraction at the transmitter and requires
full channel state information (CSI) at the base station (BS).
Based on this side information, the BS can maximize the
sum-rate by appropriately ordering the data streams to be
transmitted before pre-subtraction and by power allocation.
This strategy amounts to privileging users that experience the
best fading channel at each time-instant, a property usually
defined as multiuser diversity [3].

Multiuser diversity broadly refers to the benefits of exploit-
ing the instantaneous CSI available at the BS in order to
properly design the transmission strategy. From a mathemat-
ical standpoint, multiuser diversity is generally measured in
terms of two asymptotic quantities derived from the sum-rate,
namely the scaling law of the sum-rate versus the number
of users n (for a fixed signal-to-noise ratio, SNR) and the
multiplexing gain (i.e., growth of the sum-rate versus SNR).

As explained above, the optimal transmission scheme (DPC)
requires full CSI, which in turns calls for a high rate feedback

channel from the receivers (that measure their own CSI)
to the BS. Therefore, the challenge for the designer of a
MIMO downlink is to devise (suboptimal) schemes that reduce
the amount of feedback with negligible loss in terms of
multiuser diversity. Unlike single-user MIMO systems, where
optimal singular-value decomposition and water-filling power
allocation based on full CSI is known to provide marginal
gains over CSI-unaware transmission schemes [4], multi-user
MIMO broadcast channels are known to be very sensitive to
the availability of CSI [5].

For fixed signal-to-noise ratio (SNR), fixed number of
transmit antennas M and any number of receiving antennas
(per user) N, the asymptotic measure of interest is the scaling
law of the sum-rate. In [6] it was shown that zero-forcing
beamforming coupled with an ad-hoc scheduling strategy is
able to attain the optimal scaling law M log log nN with
less complexity than DPC, but with no reduction in terms
of feedback load. Moreover, [7] proved that the asymptotic
optimality of zero-forcing beamforming can be preserved even
if the transmitter only knows the singular vectors correspond-
ing to the largest singular value of the channel matrices for
each user. The scaling law is also considered in [8], where
an opportunistic scheme that prescribes transmission on a
random set of M orthogonal beams to M users is investigated.
Each user measures the signal-to-noise-plus-interference ratio
(SINR) on the M beams and feeds back only the best SINR
and the corresponding beam index (total feedback of N reals
and N integer numbers). In spite of the significant reduction
of feedback, the scheme in [8] is proved to achieve the optimal
scaling law of M log log nN .

The multiplexing gain (i.e., growth of sum-rate with respect
to the SNR, fixing the other parameters) of limited feedback
techniques for the multi-antenna Gaussian broadcast channel
has been addressed in [9]. Focusing the analysis on zero-
forcing beamforming techniques, it was shown that the number
of feedback bits per user has to grow linearly with the number
of transmit antennas M and logarithmically with the SNR, in
order to retain the optimal multiplexing gain of M . If the
condition on the feedback bits is not satisfied, the system
shows to be interference-limited and the multiplexing can be
as low as 1, reducing the sum-capacity up to a factor of M .
Here, it is shown that the same conclusion is valid in the
framework of orthogonal random beamforming [8].
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A. Main Contributions

In this paper, we first show that the optimal scaling law
of the sum-rate of a MIMO Gaussian broadcast channel
M log log nN , can be achieved with only one bit of feedback
per user (Sec. III, Theorem 1).The transmission scheme used
to prove this result is similar to [8] in that it applies the op-
portunistic beamforming principle [10] to a set of orthogonal
beams. However, each user, instead of feeding back the SINR
for the best beam for each receive antenna (N real plus N
integer numbers), only transmits one bit to the BS, indicating
whether or not the SINR on a pre-selected beam for any
receive antenna is above a given threshold.

Finally, in Sec. V the multiplexing gain is considered. It
is proved that in order for the one-bit feedback scheme to
be non-interference limited (i.e., to guarantee the optimal
scaling law of M), the average number of feedback bits
has to scale logarithmically with the SNR. The latter result
confirms the outcome of the analysis in [9] where zero-forcing
beamforming was studied.

II. MULTI-BEAM TRANSMISSION WITH ONE-BIT

FEEDBACK PER USER

We consider a multi-antenna downlink system where the
BS employs a set of M random orthonormal beams U =
{u1, . . . ,uM}, generated from an isotropic distribution [11],
and constructs the transmitted signal x as

x =

M∑
m=1

umsm, (1)

where x ∈ CM×1 has a power constraint E[‖x‖2
] = M and

we assume that sm’s are letters from a Gaussian codebook.
The signal received at the jth antenna of the ith user is given
by

yi,j =
√

ρhT
i,jx + wi,j . (2)

The AWGN wi,j has unit variance CN (0, 1). The channel
hi,j is a M × 1 dimensional vector of independent identically
distributed zero mean circularly symmetric complex Gaussian
random variables with unit variance CN (0, 1), independent
among different users and receive antennas. It is assumed
that the channel is perfectly known at the receiver and that
communication spans a large number of channel coherence
periods (ergodic model).

Let us assume that the rth beam is intended for user i. The
received signal in (2) may now be restated as

yi,j =
√

ρhT
i,jursr +

√
ρ

M∑
m�=r

h
T
i,jumsm + wi,j . (3)

Treating each antenna independently, the SINR from beam r
at the jth antenna of user i is given by,

Si,r,j =
|hT

i,jur|2

1/ρ +
M∑

m=1
m�=r

|hT
i,jum|2

. (4)

A. Scheduling

The scheduling of transmission onto the M beams is carried
out at the BS aided by one bit of feedback per user. Each
user, say the ith, measures the SINR only on one beam, say
the rth, previously assigned to it by the BS in a pseudo-
random fashion. The same beam is measured for all the receive
antennas of a given user.

The maximum SINR among the receive antennas, i.e S̃i,r =
maxj Si,r,j , is compared to a given threshold α, which is a
network parameter known by the BS and all users. One bit of
feedback from user i informs the BS on whether or not S̃i,r is
above the threshold (S̃i,r > α). After receiving feedback from
all users, the BS schedules for each beam one user picked
randomly among those who have signaled the SINR on the
corresponding beam to be above the threshold. The scheme is
similar to the one proposed in [12], but the latter only employs
one beam at each time, proving to be unable to attain the
optimal scaling law.

Notice that there is a small probability that a certain beam
is not requested by any user, i.e., that no user measures a
strong enough SINR on the beam. In this event, we assume
that the BS communicates through the unrequested beam to
a user picked randomly from the entire set of users. This
assumption ensures that equation (4) holds at all times, which
is mathematically convenient for our analysis.

B. Sum-rate

Let Pm be the probability that beam m is requested, i.e.,
the probability that at least one user measures a SINR above
the threshold on that beam. Because of the symmetry of the
setup Pm is equal for all beams and henceforth the index is
dropped. The sum-rate of the multi-beam scheme with one bit
feedback described above satisfies the following.

Lemma 1: Let P be the probability of any beam to be
requested (by at least one user) and α be the pre-determined
threshold. Then, the achievable sum-rate of the multi-beam
transmission scheme with one-bit feedback is lower bounded
by

R1 ≥ MP · E[log(1 + S̃)|S̃ > α], (5)

where
P =

(
1 − (F (α))

nN
M

)
, (6)

and F (x) is the cumulative distribution function of the SINR
(4) [8]

F (x) = 1 − e−x/ρ

(1 + x)M−1
. (7)

Proof of Lemma 1 is provided in Appendix-A. For the
case of M = 1 and N = 1, (5) reduces to the expression
obtained in [13]. As elaborated in the following sections,
the key parameter in (5) is the threshold α: fixing the other
parameters, increasing the threshold is expected to decrease
the probability P of the beam being requested (that represents
the pre-log term in (5)), and, on the other hand, increase the
rate E[log(1 + S̃)|S̃ > α]. Therefore, an appropriate selection
of the threshold α is of crucial importance in order to obtain
the optimum performance.
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III. SCALING LAW OF THE SUM-RATE WITH ONE-BIT

FEEDBACK AND FIXED M

In this section we show that the optimal scaling law of the
sum-rate achieved by DPC with full CSI is also attainable
by the multi-beam transmission scheme with only one bit of
feedback per user described in section II.

Theorem 1: Let M and ρ be fixed. The sum-rate R1 of the
multi-beam transmission scheme with one bit feedback per
user, satisfies for any N

lim
n→∞

R1

M log log nN
= 1. (8)

Proof: According to Lemma 1, the sum-rate is bounded
by (5), which can be further lower bounded by substituting
S̃ by its minimum value α, i.e., exploiting the inequality
E

[
log

(
1 + S̃

)
|S̃ > α

]
≥ log(1 + α):

R1 ≥ M
(
1 − (F (α))

nN
M

)
log (1 + α) = Rlb. (9)

If we choose the threshold α as follows

α = ρ log nN − ρM log log nN, (10)

then it is easy to verify that

lim
n→∞

(
1 − e−α/ρ

(1 + α)M−1

)nN
M

= lim
n→∞

(
1 − log n

nρ(M−1)

)nN
M

= 0.

(11)
As a result, the pre-log term of Rlb tends to M when n goes
to infinity. Therefore, the asymptotic behavior (with respect to
n) of the lower bound in (9) coincides with the upper bound
set by the performance of DPC with full CSI:

lim
n→∞

Rlb

M log log nN
= lim

n→∞

R1

M log log nN
= 1, (12)

thus concluding the proof.
The amount of feedback that guarantees the optimal scaling

law of the sum-rate can be reduced even further applying
the selective feedback principle [14] [15]. Selective feedback
prescribes that each user feeds back information to the BS
only when the measured SINR is above the threshold. The
resulting average feedback rate for this opportunistic scheme,
derived in [16], is later used for the multiplexing gain analysis
in section V.

Next section shows that, even though the first bit of feedback
captures most of the multiuser diversity, additional bits of
feedback are very valuable because they yield significant gains
in sum-rate for the regime of ”not so large” number of users. In
the following sections, we focus on the case N = 1 with the
understanding that extension to the MIMO scenario follows
the guidelines explained in this section. Hence, the SINR of
the scheduled user S̃i,r = maxj Si,r,j , is simply referred as
S.

IV. IMPACT OF INCREASING FEEDBACK BITS ON SUM-RATE

As discussed in the previous sections, one bit of feedback
is enough to guarantee the optimal scaling law of the sum-rate
for large n. Here we want to quantify the impact of increasing
the feedback to b > 1 bits. A way to increase the number of
bits is to modify the transmission scheme described in Sec. II-
A by allowing each user to measure the SINR on more than
one pre-determined beam. In particular, if b = log2(K + 1)
bits are granted for any user in the uplink channel, the SINRs
on K beams can be measured by each user. Then, the index
of the beam with the maximum SINR, provided that it crosses
the threshold, is fed back to the BS (the all-zero string is sent
if no beam crosses the threshold). Scheduling on each beam
is carried out at the BS by selecting randomly a user among
the ones that signaled the corresponding index.

As shown in Appendix-C, if α > 1, the result in Lemma 1
can be generalized to this scenario, leading to the following
lower bound on the rate of the proposed scheme with b bits
of feedback (b = log2(K + 1)):

RK ≥ M
(
1 − (F (α))

nK
M

)
E[log(1 + S)|S > α] α > 1.

(13)
Since RK with K > 1 is lower bounded by the sum-rate with
one-bit feedback R1 (5), the optimal scaling law M log log n
clearly holds also for RK . In [16], this result was proved for
the case of K = M , showing that the constraint α > 1 in the
sum rate expression (13) does not constitute an impediment
for the proof.

The impact of increasing number of feedback bits is de-
picted in fig. 1, where the lower bound on the sum-rate (13)
is evaluated versus the number of users n for a threshold α
obtained through numerical maximization of (13). Moreover,
as a performance reference, the sum-rate of the scheme
proposed in [8] is plotted as well. It is seen that the first bit
of feedback captures most of the multiuser diversity because
the growth of the sum-rate with one-bit feedback resembles
that of the scheme proposed in [8]. However, a significant
gap in sum-rate exists between the two schemes. This gap is
partially bridged by the second and the third bit of feedback,
with decreasing gain for each extra bit.

V. MULTIPLEXING GAIN

Subject of the previous sections has been the asymptotic
behavior of the sum-rate of limited feedback transmission
schemes for increasing number of users n and fixed SNR.
Here, we focus on the asymptotic performance of such
schemes with respect to the SNR (i.e., on the multiplexing
gain). It is known that, for fixed M and n, opportunistic
transmission techniques are interference-limited, that is the
rate R satisfies R/ log2 (ρ) → 0 for ρ → ∞ [5]. Notice
that, fixing M and n, the amount of feedback per cell for
the opportunistic schemes proposed in both [8] and in this
paper is independent of the SNR.

It has been recently shown in [9], that in order to avoid
interference-limited behavior of a MIMO broadcast channel
with limited feedback, the feedback load must approximately
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scale linearly with M and the SNR (in dB). Therein, the
argument is based on the performance of a zero-forcing
beamforming precoder. Each user feeds back the index of
the best channel quantization point, selected from a set of 2b

vectors of a random vector quantizer, where b is the number
of bits of feedback per user. Clearly, increasing the feedback
load improves the quality of the channel estimate available at
the transmitter and the ability of zero-forcing beamforming to
invert the channel.

In this section we show that a similar feedback rate can
prevent interference-limited behavior of the considered oppor-
tunistic scheme with binary feedback as well. However, since
in our scheme the feedback load per user is fixed, here the
feedback rate is increased by increasing the number of users
n with the SNR. In the following theorem we find a sufficient
condition for the growth rate of n with SNR that allows to
guarantee the optimal multiplexing gain.

Theorem 2: Consider the multi-beam transmission scheme
described in Sec. IV, where M is fixed and K = M . If the
number of users is n = ρM , then

lim
ρ→∞

RM

log (ρ)
= M. (14)

This implies that the optimal multiplexing gain of M is
guaranteed and that the system is not interference limited.

Proof: The sum-rate is lower bounded for α > 1 by (13),
which is further lower bounded substituting S by its lowest
possible value α . Now, choosing α = ρ log ρ−Mρ log log ρ,
which implies α > 1 for ρ large enough, we have

lim
ρ→∞

log(1 + α)

log (ρ)
= lim

ρ→∞
1 +

log log
(

ρ
(log ρ)M

)
log ρ

= 1 (15)

and for the pre-log term of (13)

lim
ρ→∞

(
1 − e−α/ρ

(1 + α)M−1

)nK
M

=

lim
ρ→∞

⎛
⎜⎝1 − (log ρ)M

ρ

1

ρM−1
(
log

(
ρ

(log ρ)M

))M−1

⎞
⎟⎠

KρM

M

=

lim
ρ→∞

(
1 − log ρ

ρM

)KρM

M

= 0,

(16)

thus concluding the proof.
Corollary 1: The multi-beam scheme with selective feed-

back [16] preserves the optimal multiplexing gain (14) with
an average number of feedback bits per cell that satisfies

lim
ρ→∞

b̄n

log(ρ)
= M log2(M). (17)

Proof: According to [16], the average number of feed-
back bits per cell of the selective feedback scheme reads

b̄n = nM(1 − F (α)) log2 M (18)

From Theorem 2, a number of users n = ρM guarantees the
optimal scaling law. Moreover, from equation (16) we have
that limρ→∞(1 − F (α)) = (log ρ)/ρM . Substituting these
results into (18) concludes the proof.

The total feedback required in (17) is proportional to
M log2 M and the logarithm of the SNR. This result is
similar to the one proved in [9] in the context of zero-forcing
beamforming. In fig. 2, the sum-rate of the selective feedback
scheme with K = M is plotted versus the SNR for number
of antennas M = {2, 3} and users n = {100, 1000}. It can
be seen that for the same number of users, deploying more
transmit antennas is advantageous at low SNR but causes a
more pronounced performance floor due to interference at high
SNR.

VI. CONCLUSION

In this paper, we tackled the problem of quantifying the
amount of feedback that guarantees the fulfillment of the
asymptotic criteria usually associated with the concept of
multiuser diversity, namely scaling law of the sum-rate with
respect to the number of users and multiplexing gain. It has
been proved that a feedback as small as one bit per user is
enough to obtain the optimal scaling law. Moreover, in accor-
dance with what has been recently reported in the context of
zero-forcing beamforming [9], the optimal multiplexing gain
of orthogonal opportunistic beamforming requires a number
of feedback bits that scales with the SNR (in dB).

VII. APPENDIX

A. Proof of Lemma 1

The achievable sum-rate of the multi-beam scheme with one
bit feedback described in Sec. II is

R1 ≥
M∑

m=1

n∑
i=1

Ri,m (19)

where Ri,m is the rate to user i through beam m that is
achievable by coding only during the scheduling intervals
where the ith user has actually requested the beam (i.e., when
S̃i.m > α). Expression (19) is only a lower bound on the actual
achievable rate since it neglects the time instants where user i
is scheduled on a beam that no user has requested (recall the
description of the scheduling process in Sec. II-A). Notice that
the probability that no user measures a strong enough SINR
on a given beam (for an appropriately selected threshold α) is
expected to be small for a large number of users n.

The rate Ri,m reads

Ri,m = Φm,iE[log(1 + S̃i,m)|S̃i,m > α], (20)

where Φm,i is the percentage of time in which the BS sched-
ules user i to beam m (provided that the user has requested
the beam). The SINR Si,m is identically distributed for all
users and beams, henceforth the indexes are dropped. Then,
(19) becomes

R1 ≥ E[log(1 + S̃)|S̃ > α]

M∑
m=1

n∑
i=1

Φm,i, (21)
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Fig. 1. Sum-rate with b = 1, 2, 3 bits of feedback per user and sum-rate of
the opportunistic scheme in [8] (M = 7, N = 5, ρ = 10dB).

where the inner sum term is clearly the probability that a given
beam m is requested (by at least one user):

n∑
i=1

Φm,i = Pm. (22)

By symmetry Pm = P , thus substituting (22) in (21) leads to
the sum-rate expression in (5). Moreover, the probability that
any given beam is requested reads

P =
(
1 − (P1)

L
)
, (23)

where L is the number of users measuring the SINR on the
beam, and P1 is the probability that a user does not request
transmission after measuring the beam (i.e., the probability of
the event S̃ < α): P1 = F (α)N . Assuming that the number of
users measuring each beam is the same, we have L = n/M
and (6), thus completing the proof.

B. Proof of (13)

According to the scheme described in Sec. IV, the number
of users measuring a certain beam is nK/M . Therefore, the
probability P of a beam being used follows (23), whereas P1

is given by

P1 = P{S < α} + P{(S > α) ∩ (S is not the maximum)}.
(24)

For α > 1, P{(S > α) ∩ (S is not the maximum)} = 0,
because the SINR can not be greater than one in more than
one beam [8]. Therefore, P1 = F (α) and

P = 1 − (F (α))
nK
M α > 1. (25)

Therefore, following the same reasoning as in the previous
sections, we finally get (13).
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