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Abstract—Consider a single-hop wireless sensor network,
where a central node (or fusion center, FC) collects data from a
set of M energy harvesting (EH)-capable sensors (or nodes). In
each time-slot only a subset of K ≤ M nodes can be scheduled
by the FC for transmission over K orthogonal communication
resources (e.g., frequencies). The scheduling problem is tackled
by assuming that the FC has no direct access to the instantaneous
states of the nodes’ batteries, but it only knows the outcomes of
previous transmissions attempts and the statistical properties of
the energy harvesting/discharging processes. Based on a simple
Markovian modeling of the EH and battery leakage processes,
the FC’s scheduling problem is formulated as partially observable
Markov decision processes (POMDPs) and then cast into a
restless multi-armed bandit (RMAB) framework. It is shown that
in some special cases, a myopic (or greedy) scheduling policy
is optimal, and that such a policy coincides with the so called
Whittle index policy.

I. INTRODUCTION AND SYSTEM MODEL

Energy harvesting (EH) technologies not only provide a
means to mitigate the energy footprint of wireless communica-
tions, but also enable new applications, such as the deployment
of wireless sensor networks (WSNs), in environments where
maintenance is impractical or too costly [1]. EH-capable wire-
less sensors can collect the energy needed to operate from the
surrounding environment (e.g., from solar power). However,
unlike battery-powered sensors, EH-devices generally depend
on unreliable energy sources, which call for the design of
robust and adaptive energy management strategies [2].

In this paper, we consider a single-hop WSN, where a
central node, referred to as fusion center (FC), collects data
from a set of n EH-capable sensors (or nodes), labeled as
U1, ..., Un, and deployed in its surrounding as shown in Fig.
1. Time is slotted with slots indexed as t = 1, 2, .... In
each slot t, the FC schedules a subset U(t) ⊆ {U1, ..., Un}
of |U(t)| = K nodes for transmission, where each of the
K scheduled nodes is allocated an orthogonal transmission
resource, e.g., a frequency. Each node has always data to
transmit (i.e., it is backlogged) and, when it is scheduled by the
FC, it can transmit a packet within the allocated resource only
if it has enough energy for transmission as detailed in Sec.
I-A. We assume that communications between the scheduled
nodes and the FC are free of errors.

The scheduling policies’ design is tackled by assuming that
the FC has no direct access to the nodes’ instantaneous energy
availability. Instead, the FC can take scheduling decisions only
based on the outcomes of previous transmissions attempts,

and on the known statistical properties of the EH and battery
leakage processes at each node (see Sec. I-A). The design goal
is the maximization of the average number of packets collected
in a given time of interest, i.e., the throughput.

U1B1(t)

EH

FC Un
Bn(t)

EH

Figure 1. A WSN where a fusion center (FC) collects data from energy-
harvesting (EH) sensors.

A. Markov Formulation

An elementary model that describes the evolution of a
node’s battery over slots and that accounts for EH and leakage
processes, is depicted in Fig. 2. The battery of node Ui is
discrete and of capacity one (C = 1): at time-slot t it contains
an energy Bi(t) ∈ {0, ε}, where ε represents the unit of energy
consumed by a node for transmitting a packet in a slot, which
is normalized to one for simplicity, i.e., ε = 1.

At each slot, node Ui can be either scheduled (Ui ∈ U(t))
or not (Ui /∈ U(t)). If it is not scheduled (Ui /∈ U(t)), and
the battery is full (i.e., Bi(t) = 1), the battery gets discharged
in the next slot with probability p

(0)
10 , while it remains full

with probability p
(0)
11 = 1− p

(0)
10 (see Fig. 2-a)). If node Ui is

scheduled (Ui ∈ U(t)) instead, and Bi(t) = 1, it transmits
successfully to the FC and its battery in the next slot is
either empty or full with probability p

(1)
10 and p

(1)
11 = 1− p

(1)
10

respectively (see Fig. 2-b)). If Bi(t) = 0 the probabilities
of harvesting one energy unit when Ui is not scheduled and
scheduled are p

(0)
01 and p

(1)
01 respectively, while the probabilities

of remaining empty are p
(0)
00 = 1−p

(0)
01 and p

(1)
00 = 1−p

(1)
01 . The

FC knows p
(u)
xy , for x, y, u ∈ {0, 1}. We assume that the FC

has no direct access to the batteries’ states at each slot t, i.e.,
B1(t), ..., Bn(t). The FC’s scheduling decision problem can
thus be formalized as a partially observable Markov decision
processes (POMDP) [3] and, more specifically, as a restless
multiarmed bandit problem (RMAB) [4].

B. Related Work and Contributions

In this work, we address the FC’s scheduling problem, by
assuming that: i) nodes are symmetric and evolve according
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Figure 2. The considered Markov model for the evolution of the battery
Bi(t), of capacity C = 1, when the node Ui: a) is not scheduled in slot t
(i.e., Ui /∈ U(t)); b) is scheduled in slot t (i.e., Ui ∈ U(t)).

to the Markov models of Fig. 2, independently of one another
given the scheduling command U(·); ii) the transition proba-
bilities for the Markov chains in Fig. 2 satisfy the inequalities

p
(1)
11 ≤ p

(1)
01 ≤ p

(0)
01 ≤ p

(0)
11 ; (1)

and iii) the number of nodes in the system is proportional to
the transmission resources available, i.e.,

n = Km, for m integer. (2)

The conditions in (1) are inspired by physical considerations
as follows. The inequality p

(0)
01 ≤ p

(0)
11 , or equivalently p

(0)
01 ≤

1− p
(0)
10 , implies the assumption that the probability p

(0)
10 that

the battery loses one energy unit due to self-discharge only
is smaller than the probability p

(0)
01 of harvesting one energy

unit. The second inequality p
(1)
01 ≤ p

(0)
01 indicates that the

probability p
(1)
01 of harvesting one energy unit when the battery

is empty and the node is scheduled is no larger than when it is
not scheduled (i.e., p(0)01 ). In the relevant setting in which the
energy harvesting process is independent of the scheduling
decision we have p

(1)
01 = p

(0)
01 . The inequality p

(1)
11 ≤ p

(1)
01

follows immediately since the battery is of capacity one.
Our main contributions are as follows. For the scheduling

problem at hand, we show the optimality of a myopic (or
greedy) policy (MP). We then show that for the special case
in which p

(0)
01 = p

(1)
01 and p

(0)
10 = p

(1)
11 = 0, this optimal MP

coincides with the Whittle index policy, which is a generally
suboptimal policy for RMAB problems [4]. We remark that
the characterizations of optimal policies are usually hard to
obtain for general RMABs problems and even the numerical
computation is highly complex [5]. Therefore, this paper
represents a rare example [4] in which a RMAB is indexable
and the generally suboptimal Whittle index policy is optimal.

Our derivations are related to, and inspired by, the works
[6], [7], [8], in which a RMAB problem similar to the one
considered in this paper, was motivated by cognitive radio
applications. In the RMAB in [6], [7], [8], however, the
scheduling decision was assumed not to affect the transition
probabilities in the Markov chains in Fig. 2 (so that p(0)01 = p

(1)
01

and p
(0)
11 = p

(1)
11 ). However, accounting for the effects of

the scheduling decisions on battery’s evolution is of critical
importance in EH applications, thus motivating our work.

II. PROBLEM FORMULATION

We now formalize the scheduling problem at the FC when
the goal is the maximization of the average throughput in a
finite number of slots T (i.e., in a finite horizon scenario).

Extension to infinite horizon scenarios will be briefly discussed
in Sec. IV. Let B(t) = [B1(t), ..., Bn(t)] be the vector
collecting the states of the batteries at slot t. At slot t = 1,
the FC is only aware of the initial probability distribution
ω(1) = [ω1(1), ..., ωn(1)] of B(1), whose ith entry is ωi(1) =
Pr[Bi(1) = 1]. The scheduling decision (or action) U(1) is
thus a function of the initial distribution ω(1) only.

Note that, for any set U(t) of scheduled nodes at slot t, a set
of observations are made available to the FC at the end of the
slot. Specifically, if Bi(t) = 1 and Ui ∈ U(t), the packet of
the scheduled node Ui is received correctly by the FC within
slot t, and thus the FC learns that Bi(t) = 1. Conversely,
if Bi(t) = 0 and Ui ∈ U(t), the packet is not transmitted
and the FC realizes that Bi(t) = 0. No observations are
available for non-scheduled nodes Ui /∈ U(t). Accordingly,
we define the observations available for the FC’s decision
at slot t + 1 as O(t) = {Bi(t) : Ui ∈ U(t)}. At time t,
the FC thus knows the history of all actions and previous
observations along with the initial distribution ω(1), namely
H(t) = {U(1), ...,U(t− 1),O(1), ...,O(t− 1),ω(1)}, with
H(1) , {ω(1)}. The scheduling decision U(t) for t = 1, 2, ...
is a function of the history H(t).

A policy π= [Uπ(1), ...,Uπ(T )] is defined as a collection
of functions Uπ(t), t = 1, ..., T , where each Uπ(t) maps the
history H(t) to a subset U(t) of K nodes. Note that we will
refer to Uπ(t) as the subset of scheduled nodes, even though,
strictly speaking, it is the mapping function defined above.

Let us define the immediate reward R(B,U) as the number
of packets correctly received by the FC in a slot where the
battery states are B and the scheduled set is U :

R(B,U) =
n∑

i=1

1(Bi = 1)1(Ui ∈ U), (3)

where 1(A) is the indicator function of event A, with 1(A) = 1
if event A is true and zero otherwise. The performance of a
policy π is measured by the (possibly discounted) throughput
V π
1 (ω(1)) over the horizon t = 1, ..., T , which is given by

V π
1 (ω(1)) =

T∑
t=1

βt−1Eπ [R(B(t),Uπ (t))|ω(1)] , (4)

where 0 ≤ β ≤ 1 is a discount factor, and the expected value
Eπ [·|ω(1)] is with respect to the probability distribution of the
Markov process B(t) as determined by the Markov chains in
Fig. 2 and by policy π, when the initial distribution is ω(1).

The optimization goal is to find a policy π∗ =
[U∗(1), ...,U∗(T )] that maximizes the throughput (4) so that

π∗ = argmax
π

V π
1 (ω(1)) , (5)

and V ∗
1 (ω(1)) = V π∗

1 (ω(1)) = max
π

V π
1 (ω(1)) (6)

A. Formulation as Belief MDP and RMAB

Problem (5)-(6) is a POMDP since the controller (i.e.,
the FC) has only partial information about the current state
of the system B(t) through the observations O(t). We now
reformulate (5)-(6), without loss of optimality, in an equivalent



MDP with full state knowledge, referred to as belief MDP. To
this end, we start by noting that, while decision Uπ(t) at time
t depends in general on the entire past history H(t), it is well-
known that a sufficient statistics for the optimization problem
(5)-(6) is given by the conditional probability distribution ω(t)
of B(t) conditioned on the history H(t) [9]. This conditional
probability is referred to as belief and it is given by vector ω(t)
with ith entry ωi(t) = Pr [Bi(t) = 1|H(t)], for i = 1, ..., n.
An optimal decision U∗(t) at each tth slot can thus be found
as function of the belief ω(t) only. Note that, the belief vector
ω(t) is known by the FC. Therefore, a policy π can be
equivalently defined by a collection of functions Uπ(t) that
map the current state ω(t) (instead of the whole history H(t))
into the set of the K scheduled nodes.

For the belief MDP at hand we need to find the transition
probabilities over the belief state ω(t) and the expression of
the throughput (4) as a function of ω(t) instead of B(t).

Transition probabilities: Since node batteries evolve in-
dependently given the scheduling decision, also the beliefs
ωi(t+1) do. The probability that the next slot’s belief (or state)
is ω(t+1) = ω′ = [ω′

1, ..., ω
′
n], given decision U(t) = U and

belief ω(t) = ω = [ω1, ..., ωn] is

p
(U)

ωω′ = Pr [ω(t+ 1) = ω′|ω(t) = ω,U(t) = U ]

=

n∏
i=1

Pr[ωi(t+ 1) = ω′
i|ωi(t) = ωi,U(t) = U ],(7)

while the transition probabilities Pr[ωi(t + 1) = ω′
i|ωi(t) =

ωi,U(t) = U ] of the belief ωi(t) of node Ui are given by

ωi(t+1) =


p
(1)
11 w.p. ωi(t) if Ui ∈ U(t)

p
(1)
01 w.p. (1− ωi(t)) if Ui ∈ U(t)

τ
(1)
0 (ωi(t)) w.p. 1 if Ui /∈ U(t)

.

(8)
In (8), the first two lines reflect the fact that, when node Ui

is scheduled (Ui ∈ U(t)) it has enough energy to transmit
with probability (w.p.) ωi(t), and thus, from Fig. 2-b), the
probability that its battery is full in the next slot, i.e., the
belief ωi(t+1), is p(1)11 ; similarly, with probability (1− ωi(t))
the scheduled node Ui does not have energy and hence, from
Fig. 2-a), the new belief is p(1)01 . The last line in (8) states that,
if node Ui is not scheduled (i.e., Ui /∈ U(t)), then its belief in
the next slot can be calculated through a function

τ
(1)
0 (ω) = Pr[Bi(t+ 1) = 1|ωi(t) = ω,Ui /∈ U(t)]

= ωp
(0)
11 + (1− ω)p

(0)
01 = ωδ0 + p

(0)
01 , (9)

where δ0 = p
(0)
11 − p

(0)
01 ≥ 0 due to inequalities (1). Eq. (9)

follows from Fig. 2-a), since the next slot’s belief is p
(0)
11 if

Bi(t) = 1 (w.p. ω) or p
(0)
01 if Bi(t) = 0 (w.p. (1− ω)). For

convenience of notation, we also define the vector

τ
(1)
0 (ω1, ..., ωK) = [τ

(1)
0 (ω1), ..., τ

(1)
0 (ωK)]. (10)

If conditions (1) hold, function (9) has the following properties

p
(1)
11 ≤ p

(1)
01 ≤ τ

(1)
0 (ω), for all ω ∈ [0, 1]; (11)

τ
(1)
0 (ω) ≤ τ

(1)
0 (ω′), for all ω ≤ ω′ with ω, ω′ ∈ [0, 1]. (12)

Inequalities (11) guarantee that the belief of a non-scheduled
node is always larger than that of a scheduled node. Inequality
(12) says that the belief ordering of two non-scheduled nodes
is maintained across a slot. Inequalities (11)-(12) play a crucial
role in the analysis below.

Throughput: We now observe that the throughput (4) can
be written in terms of an immediate reward

R(ω,U) =
n∑

i=1

ωi1(Ui ∈ U), (13)

which depends only on the belief ω and the scheduling
decision U . A scheduled node Ui thus provides the FC with
an immediate reward equal to its belief ωi. From (13) and (3),
the throughput (4) can be written as

V π
1 (ω(1)) =

T∑
t=1

βt−1Eπ [R (ω(t),Uπ(t)) |ω(1)] . (14)

In (14), expectation Eπ[·|ω(1)] is with respect to the distribu-
tion of the Markov process ω(t) determined by probabilities
(8) and by policy π, given the initial belief ω(1). The optimal
policy and the optimal throughput are defined as in (5)-(6).

B. Optimality Equations

In this section, we introduce the standard dynamic program-
ming (DP) optimality conditions that characterize an optimal
policy π∗ in (5). To start with, let the probability that the K
scheduled nodes have energies b1, ..., bK ∈ {0, 1} be

q(b1, ..., bK , ω1, .., ωK) =
K∏
i=1

ωbi
i (1− ωi)

1−bi . (15)

Let V π
t (ω) be the throughput in the horizon {t, ..., T}, then

by exploiting (7), (8), (10), (13) and (15), the throughput (14)
can be written through the following recursion (see e.g., [10])

V π
T (ω) = R(ω,Uπ(T )) =

∑
i∈Uπ(T )

ωi (16)

V π
t (ω) = R(ω,Uπ(t)) + β

∑
ω′

V π
t+1 (ω

′) p
(Uπ(t))

ωω′ (17)∑
i∈Uπ(t)

ωi + β
∑

b1,...,bK∈{0,1}

q(b1, ..., bK ,ωUπ(t))·

V π
t+1

(
γ(b1), ..., γ(bK), τ

(1)
0 (ω(Uπ(t))c)

)
, for t ∈ {1, ..., T},

where the notation ωS indicates a vector that contains the
belief of the nodes in set S, (Uπ(t))

c
= {U1, ..., Un} \ Uπ(t)

and γ(b) = p
(1)
01 (1− b) + p

(1)
11 b, with γ(b) = p

(1)
01 if b = 0 and

γ(b) = p
(1)
11 if b = 1. The optimality conditions can then be

expressed through functions (16)-(17) as (see [10])

V ∗
t (ω) = max

Uπ(t)
{V π

t (ω)} , for t ∈ {1, ..., T}, (18)

while an optimal policy π∗ = [U∗(1), ...,U∗(T )] (5) is such
that U∗(t) attains the maximum in (18) for all t ∈ {1, ..., T}.

Note that (16)-(17) are the conventional recursive DP equa-
tions for a policy π, in which one averages over the distribution
p
(U)
ωω′ (7) of the next-slot’s belief given the current belief



and scheduling decision U . Lastly, recall that due to (8),
in (17) the beliefs of all the nodes not in U , i.e., in Uc,
evolve deterministically as τ

(1)
0 (ωUc). Instead, the beliefs of

scheduled nodes in U can be either equal to p
(1)
11 or p(1)01 with

probability ωi and (1− ωi) respectively.

III. MYOPIC SCHEDULING POLICY

Here, we first define the myopic policy (MP) and show that,
under conditions (1)-(2) it is a round-robin (RR) strategy. Then
we prove its optimality for problem (5).

The MP πMP = {UMP (1), ...,UMP (T )} is a greedy policy
that in each tth slot schedules the K nodes with the largest
beliefs so as to maximize the immediate reward (13) as

UMP (t) = argmax
U

R(ω(t),U) = argmax
U

∑
i∈U

ωi(t). (19)

Proposition 1. If conditions (1)-(2) hold, the MP πMP (19),
given initial belief ω′(1), is a RR policy that operates as
follows: 1) sort vector ω′(1) in a decreasing order to obtain
ω(1) = [ω1(1), ..., ωn(1)] such that ω1(1) ≥ ... ≥ ωn(1).
Renumber the nodes so that Ui has belief ωi(1); 2) divide the
nodes into m groups of K nodes each, so that the gth group Gg ,
g = 1, ...,m, contains all nodes Ui such that g =

⌊
i−1
K

⌋
+ 1,

i.e., G1 = {U1, ..., UK}, G2 = {UK+1, ..., U2K}, and so on;
3) schedule the groups in a RR (periodic) fashion with period
m slots, so that groups G1, ...,Gm,G1, ... are respectively
scheduled at slot t = 1, ...,m,m+ 1, ... and so on.

Proof: According to (19), the first scheduled set of nodes
is UπMP

(1) = G1 = {U1, U2, ..., UK}. Nodes’ beliefs are then
updated through (8). Recalling (11), scheduled nodes in G1

have their belief updated to either p
(1)
11 or p

(1)
01 , which are

both smaller than the belief of any non-scheduled node in
{U1, ..., Un} \ G1. Moreover, the ordering of non-scheduled
nodes’ beliefs is preserved due to (12). Consequently, the
second scheduled group is UπMP

(2) = G2, the third is
UπMP

(3) = G3, and so on. This proves that the MP, upon
an initial ordering of the beliefs, is RR.

The throughput (16)-(17) of a RR policy πRR that operates
according to steps 2) and 3) of Proposition 1, can be expressed
recursively through functions Vt(ω) as

ṼT (ω) =

K∑
i=1

ωi (20)

Ṽt(ω) =
K∑
i=1

ωi + β
∑

b1,...,bK∈{0,1}

q(b1, ..., bK , ω1, ..., ωK)·

(21)

Ṽt+1

(
τ
(1)
0 (ω(Uπ(t))c), p

(1)
01 1K−

∑K
i=1 bi

, p
(1)
11 1K−

∑K
i=1 bi

)
,

for t ∈ {1, ..., T − 1} ,

in which, the policy πRR in each slot: i) schedules the
K nodes whose beliefs are in the first K positions of the
argument ω of ṼT (ω); ii) the argument ω′ for the next slot
is updated (through (8)) so that the beliefs of the scheduled
nodes are (i.e., in the set Uπ(t)) decreasingly ordered and put

at the K rightmost positions of ω′, while the ordering the
other beliefs (i.e., in the set (Uπ(t))

c) are preserved so that
ω′ = [τ

(1)
0 (ω(Uπ(t))c), p

(1)
01 1K−

∑K
i=1 bi

, p
(1)
11 1K−

∑K
i=1 bi

].
Note that, when the initial belief ω is ordered so that ω1 ≥
... ≥ ωn, then ṼT (ω) = V MP

t (ω).

A. Optimality of the Myopic Policy

Here, we prove the optimality of the MP πMP in (19).

Theorem 2. If conditions (1) and (2) hold, then the MP πMP

is optimal for problem (6) in the sense that πMP = π∗ (with
π∗ in (5)) and V MP

1 (ω) = V ∗
1 (ω).

Sketch of the Proof : We show that the MP policy πMP

satisfies the DP optimality conditions (18) by backward in-
duction, similar to the approach in [6]. Specifically, the basis
of the induction is the last slot T . In fact, from (19), UMP (T )
clearly attains the maximum in (18). Now, suppose that the
MP is optimal at slot t+1, ..., T (i.e., it satisfies (18)). Then,
to prove that the MP is optimal at all slots t ∈ {1, ..., T}, it
is sufficient to show that Ṽt(ωS ,ωSc) ≤ V MP

t (ωS ,ωSc) =
Ṽt(ω1, ω2, ..., ωn), for all ω1 ≥ ω2 ≥ ... ≥ ωn and all sets
S ⊆ {1, ..., n} of K elements, with the n − K elements in
ωSc decreasingly ordered. In fact, since the MP is optimal
from t + 1 on, it is sufficient to show that scheduling K
nodes with arbitrary beliefs at slot t and then following the
MP from slot t + 1 onward, is no better than following the
MP immediately at slot t. The performance of the former
policy is given by Ṽt(ωS ,ωSc), since for any set S, it
represents the throughput of a policy that schedules the K
nodes with beliefs ωS at slot t, and then operates as the
MP from t + 1 onward, since beliefs ωSc are decreasingly
ordered (see (20)-(21)). The MP’s performance is instead
given by the V MP

t (ωS ,ωSc) = Ṽt(ω1, ω2, ..., ωn). Inequality
Ṽt(ωS ,ωSc) ≤ V MP

t (ωS ,ωSc) can be shown to hold under
conditions (1)-(2), thanks to the RR structure of the MP policy.
The derivations are omitted and can be found in [11].

IV. INFINITE HORIZON SCENARIO AND OPTIMALITY OF
THE WHITTLE INDEX POLICY

We now discuss the extension of problem (14) to the
infinite-horizon case and present the Whittle index policy [4].

Infinite Horizon Scenario. The throughput in the infinite-
horizon case under policy π and discount factor 0 ≤ β < 1,
and its optimal value, are given by

V π (ω(1)) =
∞∑
t=1

βt−1Eπ [R (ω(t),Uπ(t)) |ω(1)] , and (22)

V ∗ (ω(1)) = max
π

V π (ω(1)) , (23)

where the optimal policy is π∗ = argmaxπ V
π (ω(1)). From

standard DP theory, the optimal policy π∗ is stationary, so
that π∗ is such that the optimal scheduling decision Uπ∗

(t) is
a function of the current state ω(t) only independently of slot
t [10]. Following the same reasoning as in [6, Theorem 3],



it is easy to show that the optimality of MP for the finite-
horizon setting implies the optimality also for the infinite-
horizon scenario. Moreover, it can be proved that V ∗ (ω(1)) =
limT→∞ V ∗

1 (ω(1)), where V ∗
1 (ω(1)) is (18).

Whittle Index Policy. The Whittle index policy assigns a
numerical value W (ωi) (the Whittle index) to each state ωi

of node Ui to measure how rewarding it is to schedule Ui in
the current slot. The Whittle index is calculated independently
for each node and the K nodes with the largest index are
scheduled in each slot. The Whittle index policy is thus
not generally optimal for RMAB problems. However, the
following results hold for the RMAB at hand.

Proposition 3. The Whittle index policy is optimal for prob-
lem (23) under the special case of conditions (1) given by

0 = p
(1)
11 ≤ p

(1)
01 = p

(0)
01 = p01 ≤ p

(0)
11 = 1. (24)

We emphasize that, our results provide a rare example [4] in
which, as in [8], not only indexability is established, but also
the Whittle index is obtained in closed form and the Whittle
policy proved to be optimal. Below, we provide a sketch of the
proof of Proposition 3 by studying the corresponding restless
single-armed bandit (RSAB) model [4]. We show that the
latter is indexable and that the corresponding Whittle index
is increasing in ω. Therefore, since the Whittle index policy
selects the K arms with the largest index at each slot, the
Whittle policy coincides with the MP, and thus it is optimal
for the RMAB at hand.

A. Proof of Proposition 3

To prove Proposition 3, we start by introducing the RSAB
model at hand and then study its indexability [4].

The Whittle index is based on the concept of subsidy for
passivity, whereby the FC is given a subsidy m ∈ R when the
arm is not scheduled. At each slot t, the FC, based on the state
ω(t) of the arm, can decide to activate (or schedule) it, i.e., to
set u(t) = 1, obtaining an immediate reward Rm(ω(t), 1) =
ω(t). If, instead, the arm is kept passive, i.e., u(t) = 0, a
reward Rm(ω(t), 0) = m equal to the subsidy is accrued. The
state ω(t) evolves through (8), which under (24) and adapted
to the simplified notation used here becomes

ω(t+ 1) =


0 w.p. ω(t) if u(t) = 1
p01 w.p. (1− ω(t)) if u(t) = 1

τ
(1)
0 (ω(t)) w.p. 1 if u(t) = 0

.

(25)
The throughput, given policy π = {uπ(1), uπ(2), ...} and
initial belief ω(1), is

V π
m (ω(1)) =

∞∑
t=1

βt−1Eπ [Rm(ω(t), uπ(t))|ω(1)] . (26)

The optimal throughput is V ∗
m (ω(1)) = maxπ V

π
m (ω(1)),

while the optimal policy π∗ = argmaxπ V
π
m (ω(1)) is station-

ary in the sense that the optimal decisions u∗
m(ω) ∈ {0, 1}

are functions of the belief ω only, independently of slot t [8].
Removing the slot index from the initial belief, the optimal

throughput V ∗
m (ω) and the optimal decision u∗

m(ω) satisfy
the following DP optimality equations for the infinite-horizon
scenario (see [8])

V ∗
m(ω) = max

u∈{0,1}
{Vm(ω|u)} , (27)

and u∗
m(ω) = arg max

u∈{0,1}
{Vm(ω|u)} . (28)

In (27)-(28) we defined Vm(ω|u), u ∈ {0, 1}, as the through-
put (26) of a policy that takes action u at the current slot and
then uses the optimal policy u∗

m (ω) onward, we have

Vm(ω|0) = m+ βV ∗
m(τ

(1)
0 (ω)), and (29)

Vm(ω|1) = ω + β [ωV ∗
m(0) + (1− ω)V ∗

m(p01)] . (30)

1) Indexability and Whittle Index: We use the notation of
[8] to define indexability and Whittle index for the RSAB at
hand. We first define the so called passive set

P(m) = {ω: 0 ≤ ω ≤ 1 and u∗
m(ω) = 0} , (31)

as the set that contains all the beliefs ω for which the
passive action is optimal (i.e., all 0 ≤ ω ≤ 1 such that
Vm(ω|0) ≥ Vm(ω|1), see (29)-(30)) under the given subsidy
for passivity m ∈ R. The RMAB at hand is said to be
indexable if the passive set P(m), for the associated RSAB
problem, is monotonically increasing as m increases within
the interval (−∞,+∞), in the sense that P(m′) ⊆ P(m) if
m′ ≤ m and P(−∞) = ∅ and P(+∞) = [0, 1].

If the RMAB is indexable, the Whittle index W (ω) for
each arm with state ω is the infimum subsidy m such that it
is optimal to make the arm passive. Equivalently, the Whittle
index W (ω) is the infimum subsidy m that makes passive and
active actions equally rewarding, i.e.,

W (ω) = inf {m: Vm (ω|0) = Vm (ω|1)} . (32)

2) Optimality of the Threshold Policy for the RSAB:
We now show that the RSAB’s optimal policy u∗

m(ω) is a
threshold policy over the belief ω. This is a crucial step in our
proof of indexability given in Sec. IV-A3.

Proposition 4. The optimal policy u∗
m(ω) in (28) is given by

u∗
m(ω) =

{
1, if ω > ω∗(m)
0, if ω ≤ ω∗(m)

, (33)

where ω∗(m) ∈ R is the optimal threshold for a given subsidy
m ∈ R. Clearly u∗

m(ω) = 1 if m < 0 and u∗
m(ω) = 0 if

m ≥ 1. The optimal threshold ω∗(m) is 0 ≤ ω∗(m) ≤ 1 if
0 ≤ m < 1.

Sketch of the proof : The proof is based on the following
properties: i) function Vm(ω|1) in (30) is linear over the belief
ω; ii) function Vm(ω|0) = m + βV ∗

m(τ
(1)
0 (ω)) in (29) is

convex over ω. The convexity of V ∗
m(ω) is a general property

of POMDPs (see [8], [9]). Moreover, a set of inequalities
among functions Vm(0|1), Vm(1|1), Vm(0|0) and Vm(1|0),
can be derived for different values of the subsidy m as
graphically shown in Fig. 3. From Fig. 3 and the properties i)
and ii) above the optimality of the threshold policy in (33) can
be easily inferred. The full derivations can be found in [11].
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Figure 3. Illustration of the optimality of a threshold policy for different
values of the subsidy for passivity m: a) 0 ≤ m < 1; b) m < 0; c) m ≥ 1.

3) Proof of Indexability and Whittle Index: Similarly to [8],
a crucial step in our proof of indexability of the RMAB at
hand is the derivation of the closed-form expression of the
throughput V ∗

m(ω) in (27) (see Appendix A for a sketch of the
derivation and [11] for more details). This enables to prove that
the passive set P(m) (see (31)) is monotonically increasing
with the subsidy m as discussed in Sec. IV-A1.

Theorem 5. The RMAB at hand is indexable.

Sketch of the proof : . Following the discussion in Sec.
IV-A1, to prove indexability it is sufficient to show that the
threshold ω∗(m) is monotonically increasing with the subsidy
m, for 0 ≤ m < 1. In fact, from Proposition 4 the passive
set (31) for m < 0 is P(m) = ∅, while for m ≥ 1 is
P(m) = [0, 1]. We thus need to prove the monotonicity of
ω∗(m) for 0 ≤ m < 1, which has been shown to hold in [8,
Lemma 9] if dVm(ω|1)

dm

∣∣∣
ω=ω∗(m)

< dVm(ω|0)
dm

∣∣∣
ω=ω∗(m)

. From

(29)-(30) and by exploiting the closed-form expression of the
throughput V ∗

m(ω) (see Appendix A), it can be shown that the
latter inequality holds (see the full derivation in [11]).

Finally, the Whittle index (32) can be derived in closed-
form (see [11] for details), and also shown being an increasing
function of ω, thus concluding the proof of Proposition 3.

V. CONCLUSIONS

In this paper, we have considered a scheduling problem
with applications to energy harvesting (EH) networks, where
a fusion center (FC) schedules a set of wireless sensors to
acquire their measurements. By modeling the EH and battery
leakage processes through simple Markov models, the FC’s
scheduling problem is formulated as a partially observable
Markov decision process (POMDP), and cast into a restless
multi-armed bandit (RMAB) problem. Under the assumption
that node batteries are of capacity one, a myopic (or greedy)
policy (MP) that operates in the space of the a posteriori
probabilities (beliefs) of the battery levels is proved to be
optimal for both finite horizon and infinite-horizon throughput
criteria. Finally, we have established that the RMAB problem
at hand is indexable and proved that the Whittle index policy
is equivalent to the MP and thus is optimal.
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APPENDIX A
CLOSED-FORM EXPRESSION OF THE THROUGHPUT V ∗

m(ω)

Since the threshold policy (33) is optimal, the expression
of the optimal throughput V ∗

m(ω) in (27) can be found in
closed-form following an approach similar to [8]. To start
with, let τ (k)0 (ω) be a function that gives the belief of a node
that is not scheduled for k consecutive slots when its initial
belief is ω. Function τ

(k)
0 (ω) can be obtained by applying

(9) recursively to itself as τ
(k)
0 (ω) = τ

(1)
0 (τ

(k−1)
0 (ω)), for all

k ≥ 1, with τ
(0)
0 (ω) = ω. Under conditions (24) we have

τ
(k)
0 (ω) = 1 − (1 − p01)

k(1 − ω), which is a monotonically
increasing function of k, so that τ

(k)
0 (ω) ≥ τ

(i)
0 (ω) for

any k ≥ i. Based on such monotonicity, we can define
the average number L(ω, ω′) of slots it takes for the belief
to become larger than ω′ when starting from ω while the
arm is kept passive, as L(ω, ω′) = min

{
k: τ (k)0 (ω) > ω′

}
.

According to Proposition 4, the optimal policy u∗
m(ω) keeps

the arm passive for L(ω, ω∗(m)) slots (i.e., as long as
the current belief is ω ≤ ω∗(m)) during which a reward
Rm(ω, 0) = m is accrued in each slot. This leads to a
total reward within the passivity time given by the follow-
ing geometric series

∑L(ω,ω∗(m))−1
k=0 βkm = 1−βL(ω,ω∗(m))

1−β m.
After L(ω, ω∗(m)) slots of passivity, the belief becomes
larger than the threshold ω∗(m) and the arm is activated and
the contribution becomes βL(ω,ω∗(m))Vm(τ

(L(ω,ω∗(m)))
0 (ω)|1)

since V ∗(ω) = V (ω|1) when ω > ω∗(m). Therefore, the
throughput can be written as V ∗

m(ω) = 1−βL(ω,ω∗(m))

1−β m +

βL(ω,ω∗(m))Vm(τ
(L(ω,ω∗(m)))
0 (ω)|1). The last step to obtain

V ∗
m(ω), is to explicitly calculate Vm(ω|1). However, from (30),

evaluating Vm(ω|1) only requires V ∗
m(0) and V ∗

m(p01), which
can be promptly calculated by plugging (30) into V ∗

m(ω) given
above, and evaluating V ∗

m(ω) for ω = 0 and ω = p01. We thus
get a linear system of two equations in the two unknowns
V ∗
m(0) and V ∗

m(p01), which can be easily solved (see [11] ).


