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Abstract—A three-user Gaussian multiple access channel
(MAC) with encoders partially cooperating over a ring of
finite-capacity uni-directional links is studied. The model is a
simple extension of the classical two-user MAC with conferencing
encoders. Upper and lower bounds on the maximum achievable
common rate are derived. The lower bound is attained via a
novel multi-layer cooperative strategy. The bounds are tight for
a certain range of values of the inter-user link capacity. Numerical
results are provided to corroborate the analysis.

I. INTRODUCTION

Complex networks in which terminals are potentially con-
nected via a number of different radio interfaces or wired
links are becoming increasingly appropriate models for current
and future communication scenarios. In this paper, we focus
on one such model in which three users are endowed each
with two communication interfaces: (i) a radio transmitter to
communicate with an access point via a Gaussian Multiple
Access Channel (GMAC); and (ii) a radio or wired connection
to "neighboring" users. More precisely, as sketched in Fig. 1,
the users are connected to each other via a ring of finite-
capacity uni-directional links, which can model either wired
connections as in SONET/ SDH rings (see, e.g., [2]) or
orthogonal wireless interfaces operated below their capacity.
Each user is interested in transmitting data to an access point
via the GMAC. The aim is obtaining a characterization of the
maximum achievable equal rate per user.

A. Related work

The considered model is the simplest extension of the
two-user multiple access channel (MAC) with partially co-
operating, or conferencing, encoders introduced in [1], where
the two users are connected via finite-capacity uni-directional
links. Conferencing encoders have later been investigated in
[3] for a two-user interference channel. These works show
that conferencing encoders can exploit the inter-user links to
create dependence between the signals transmitted on the main
channels, thus leveraging multiple access "interference" for the
purpose of "coherent combining". Conferencing encoders have
also been studied in the context of source coding problems,
namely for direct [4] [5], remote [6] and universal source
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Fig. 1. Three users communicate with an access point over a GMAC, while
being connected with each other via a ring of finite-capacity uni-directional
links.

coding in [7] [8]1, all for a two-to-one scenario. Finally,
conferencing decoders have also been considered, see, e.g.,
[9] [10] [11].

While previous work focused on two-user systems, here we
consider a MAC with three users, which are connected via
a ring of finite-capacity links (see Fig. 1). The problem of
communicating over a ring of finite-capacity links has recently
received attention per se in [12] [13], where sufficiency of
routing (rather than network coding) to achieve capacity was
proved for a class of multiple multicast sessions on undirected2

rings [12] and for multiple unicast sessions with bi-directional
links in [13]. It is noted that here the goal is different from
[12] [13] in that the value of inter-user links is in enabling co-
operation over the GMAC rather than communicating among
the users.

B. Main contributions
In this work, we focus on the system in Fig. 1 and consider

as a performance criterion of interest the maximum equal rate
achievable on the GMAC. It is noted that, while uni-directional

1In [4] [7], the signal over the finite-capacity links are also observed by
the destination so that the model can also be interpreted in terms of feedback
[7].

2With undirected links the sum of the traffic carried along both directions
of a link is bounded by the capacity of the link.



links are assumed throughout the text, some remarks on the
scenario with undirected links are provided as well. We derive
an upper bound on the equal rate and compare it with an
achievable rate based on a novel multi-layer communication
strategy. In this transmission scheme, the message of each user
is split into different layers, some of which are then exchanged
over the ring with a subset of the other users, thus creating
common messages and the opportunity for cooperation. The
strategy is an extension of the capacity-achieving scheme of
[1] for the two-user case, and exploits the general capacity
region for the MAC with common messages of [14]. We
emphasize that, while for the two-user case optimality of this
strategy was shown by [1], no extension of this result has been
yet provided for a scenario with many users. Here we show
that the strategy is capacity-achieving for large enough ring
capacity C, and numerical results are provided to corroborate
the analysis.

Notation: We write [x] = [x − 1]3 + 1, where [·]3 repre-
sents the mod-3 operation; XS represents the collection of
variables Xj indexed by j ∈ S (i.e., XS = {Xj}j∈S) and,
similarly, XS,i = {Xj,i}j∈S ; Xn

j is the collection of variables
{Xj,i}ni=1; δ (x) is the Kronecker delta function; probability
density functions (pdfs) are generally identified, except when
explicitly stated otherwise, by their arguments, e.g., p(x|y)
is the conditional pdf of random variable X given another
random variable Y .

II. SYSTEM MODEL

We focus on the three-user GMAC in Fig. 1 where uni-
directional (clockwise) links of finite-capacity C (bit/ channel
use) exist between adjacent users. On the GMAC, the received
signal is given at the ith symbol of a given encoding block
(i = 1, 2, ..., n) by

Yi = X1,i +X2,i +X3.i +Ni, (1)

where the inputs have the same power constraintPn
i=1E[X

2
j,i] ≤ nP, j = 1, 2, 3, and the Gaussian

noise power is E[N2] = 1. Each jth user generates a rate-R
message as Wj ∈ {1, 2, ..., 2nR} per coding block intended
for the destination. Coding over the ring of conferencing
channels and the GMAC is modelled similarly to [1].
Specifically, we consider k rounds of conferencing for each
coding block. In every ith round, a symbol Vj,i ∈ Vj,i is
transmitted by the jth user towards the [j + 1]th over the
ring, which is a function fj,i(·) of the local message Wj and
the symbols received during the previous rounds, i.e.,

Vj,i = fj,i

³
Wj , V

i−1
[j−1]

´
. (2)

Due to the capacity constraint, we also have the following
cardinality bound:

Pk
i=1 log2 |Vj,i| ≤ nC. Encoding on the

GMAC takes place after the k conferencing rounds as

Xn
j = gj

³
Wj , V

k
[j−1]

´
, (3)

that is, the transmitted codeword is a function gj(·) of both
the local message and the symbols V k

[j−1] received during

the k conferencing rounds. It is noted that R is the equal
rate (in bit/channel use) and that definition of achievability
is standard and based on the average probability of error
Pe = Pr[Ŵ{1,2,3} 6= W{1,2,3}], where Ŵ{1,2,3} = φ(Y n)
denotes the estimated messages at the receiver via the decoding
function φ(·) (see, e.g., [15]). The term capacity hereafter
refers to the maximum achievable equal rate.

III. AN UPPER BOUND

An upper bound on the capacity of the system at hand is
given by the following proposition.

Proposition 1: An upper bound on the capacity of the system
in Fig. 1 is given by

Rupper = min{R0upper, R00upper}, (4)

with

R0upper = max
0≤P 0≤P

min

½
C + 1

6 log (1 + 3P
0) ,

1
6 log (1 + 9P − 6P 0)

¾
(5)

and

R00upper = max
0≤P1≤4P,
0≤P2≤P

min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
4 log(1 + P1) +

C
2 ,

1
2 log(1 + P2) + C,
1
6 log(1 + P1 + P2) +

2
3C,

1
6 log(1 + 5P

+2
p
(4P − P1)(P − P2))

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

(6)
Remark 1 (Sketch of proof of Proposition 1): The upper

bound R0upper (5) states that, having fixed power P 0 for non-
cooperative transmission, the capacity is upper bounded by
the maximum sum-rate of a non-cooperative GMAC with an
extra path of capacity C from each source to the receiver (first
term), and by the sum-rate achievable with full cooperation
with the remain power P = P 0. Details of the proof can be
found in Appendix-A. The second upper bound R00upper (6) is
derived by considering a two-user GMAC with conferencing
obtained as follows: enhance the original system in Fig. 1 by
(i) assuming that one of the conferencing links, say between
users 1 and 2, has unlimited capacity; and (ii) providing the
message of user 2 to user 1. As a result of these enhancements
(which can only increase the capacity), we can see the system
as made up of two users, one “regular” with power constraint
P and rate R (user 3) and a “compound” user made up of the
two fully cooperating sources (1 and 2) with power constraint
4P and rate 2R. Since the two equivalent users in the new
system are connected via finite-capacity links C, the capacity
region of [1] can be adapted using standard arguments to a
GMAC (see also [16]) to obtain the following upper bound:

R00upper = sup
f(u)f(x̃1|u)f(x̃2|u):

E[X̃2
1 ]≤4P,

E[X̃2
2 ]≤P

min

⎧⎪⎪⎨⎪⎪⎩
1
2I(X̃1;Y |X̃2U) +

C
2 ,

I(X̃2;Y |X̃1U) + C,
1
3I(X̃1, X̃2;Y |U) + 2

3C,
1
3I(X̃1, X̃2;Y )

⎫⎪⎪⎬⎪⎪⎭ ,

(7)
where variables X̃1 and X̃2 represent the inputs of
the “compound” and “regular” users, respectively, and



f(u)f(x̃1|u)f(x̃2|u) factorizes the corresponding joint proba-
bility density function f(u, x̃1, x̃2). This latter constraint is
equivalent to the Markov chain condition X̃1 − U − X̃2.
What is now left to prove is that a joint Gaussian distribution
f(u)f(x̃1|u)f(x̃2|u) is optimal for (7), from which (6) would
follow easily. This has been shown in [16].

Remark 2: It is easy to see that the upper bound (5)
would hold also in the presence of undirected links with
overall capacity C, whereas (6) would need to be modified by
adding an optimization over the allocation of the conferencing
capacity on the links between the “regular” and “compound”
users (see Remark 1).

IV. AN ACHIEVABLE RATE

In this section we derive an achievable equal rate and
prove its optimality for large enough ring capacity C, thus
establishing the capacity of the channel in Fig. 1 in such
regime. Numerical results are then provided in Sec. V to get
further insight into the properties of the derived achievable
rate.

Proposition 2: The following equal rate is achievable for
the system in Fig. 1:

R = min

½
1

6
log (1 + 3Pp + 6Pc + 9Pa) ,

C

2
+ r

¾
(8)

with

r =
1

2
min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
6 log ((1 + 3Pp + 6Pc) (1 + 3Pp)) ,
1
4 log

³
(1 + 3Pp + 6Pc)

1/3 (1 + 3Pp + 2Pc)
´
,

1
4 log

³
(1 + 3Pp + 4Pc) (1 + 3Pp)

1/3
´
,

1
6 log ((1 + 3Pp + 4Pc) (1 + 3Pp + 2Pc)) ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(9)

and with the power constraint P = Pa + Pc + Pp.
Remark 3 (Sketch of proof of Proposition 2): We use a three-

layer transmission scheme whereby each jth user splits its
local message as Wj = [Wp,j Wc,j Wa,j ] with corresponding
rates R = Rp + Rc + Ra (Wb,j ∈ {1, 2, ..., 2nRb} for
b = p, c, a). The private message Wp,j is to be kept locally
at the jth user, whereas the two common messages Wc,j and
Wa,j are exchanged over the ring as follows: The common
message Wc,j is intended only for the adjacent user [j + 1],
whereas Wa,j is destined to all the other two users. The
common messages are sent over the ring in k = 2 conferencing
rounds so that, at the end of the conferencing phase, each
user has available its common message Wp,j , the “pair-wise”
common messages Wc,j and Wc,[j−1] and the “network-wise”
common messages Wa,1, Wa,2 and Wa,3. In the transmission
phase, the users exploit the availability of common messages
by creating correlated inputs, following the strategy of [14].
The powers Pp, Pc and Pa in (8) are used by each user to
transmit the private part, the pair-wise common parts and the
network-wise common parts, respectively. The details of the
proof are worked out in Appendix-B.

By comparing the achievable rate (8) with the upper bound
of Proposition 1, we get the following result.
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Fig. 2. Achievable rate R ( 8) and upper bound (5), along with the non-
cooperative rate Rlower = 1/6 · log(1 + 3P ), for P = 3 and 10dB with
optimal power allocation (evaluated numerically).

Proposition 3: If
C

2
≥ 1
6
log(1 + 9P ), (10)

than the achievable rate derived in Proposition 2 is the capacity
of the system in Fig. 1 and is equal to R = 1/6 · log(1+9P ).

Proof : The result follows by setting the power allocation to
Pa = P in (8) and comparing the corresponding achievable
rate with the upper bound (5).

Remark 4: From standard results on the (non-cooperative)
GMAC, for C = 0, the capacity of the system is 1/6 · log(1+
3P ), which is attained by using the strategy described above
with power allocation Pp = P (and it coincides with the upper
bound (5)).

Remark 5: The rate (8) is clearly achievable also in the
presence of undirected links by simply allocating all the ring
capacity C in the clockwise direction as in Fig. 1. However, it
is not clear whether in general a multi-layer strategy similar to
the one investigated here could be devised that effectively ex-
ploits possible bi-directionality of the ring links to improve the
achievable rate. In the regime (10), identified by Proposition
3, this is not the case due to Remark 2.

V. NUMERICAL RESULTS

In this section, we discuss a numerical example to get fur-
ther insight into the performance of the proposed multi-layer
strategy. Of particular interest is to understand how the optimal
power allocation among private and common messages in (8)
depends on the operating point, and specifically on the ring
capacity C. Fig. 2 shows the achievable rate R (8) with optimal
power allocation (evaluated numerically), the upper bound (5)
and a lower bound Rlower = 1/6 · log(1+3P ) corresponding
to the non-cooperative case (i.e., C = 0) for per-user power
constraints P = 3 and 10dB. The corresponding optimal
power allocation is shown in Fig. 3 for P = 3dB. It is
interesting to notice that transmission of the first common
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Fig. 3. Optimal power allocation between private message (Pp), pair-
wise common messages (Pc) and network-wise common messages (Pa) that
maximizes the achievable rate (8) for P = 3dB.

layer (Rc), corresponding to pair-wise common messages, is
useful for small-to-moderate values of C, while for larger
values of C, as predicted by Proposition 3, transmitting only
the network-wise common layer (Ra) is the optimal strategy.

VI. CONCLUDING REMARKS

This paper has studied an extension of the two-user MAC
with conferencing encoders of [1] to the case of three users
“conferencing” over a ring of uni-directional links. The anal-
ysis has focused on a Gaussian scenario and we have derived
upper and lower bounds on the equal achievable rate, which
meet whenever the ring capacity is large enough. The consid-
ered transmission strategy naturally extends the approach in
[1] by considering a multi-layered transmission scheme based
on the results in [14]. Optimality of the considered strategy
for low-to-intermediate values of the ring capacity remains
an open problem due to the difficulty in devising converse
arguments that account for the nature of communications over
the ring.

VII. APPENDIX

A. Appendix-A: Proof of Proposition 1

We consider the derivation of the upper bound (5). Using
Fano’s inequality, imposing Pe ≤ δn with δn → 0 for n→∞
leads to nεn ≥ H(W{1,2,3}|Y n) ≥ H(W{1,2,3}|Y n, V k

{1,2,3}),
where εn → 0 for n → ∞ and the last inequality follows
from the fact that conditioning reduces entropy. Therefore, we
have

3nR = H(W{1,2,3})

= H(W{1,2,3}|Y n, V k
{1,2,3}) + I(W{1,2,3};Y

n, V k
{1,2,3})

≤ nεn + I(W{1,2,3};V
k
{1,2,3})

+I(W{1,2,3};Y
n|V k

{1,2,3}), (11)

For the second term above, we can bound

I(W{1,2,3};V
k
{1,2,3}) ≤ H(V k

{1,2,3}) ≤
P3

i=1H(V
k
i )

(b)

≤ 3nC,
from the definition of the constraints on the conferencing
links (see Sec. II). As far as the third term is
concerned, we can write, following standard arguments
I(W{1,2,3};Y

n|V k
{1,2,3}) ≤

nP
i=1

I(X{1,2,3},i;Yi|V k
{1,2,3}). We

can then conclude that

3nR ≤ 3nC +
1

n

nX
i=1

I(X{1,2,3},i;Yi|V k
{1,2,3}) + nεn

3nR ≤
nX
i=1

I(X{1,2,3},i;Yi) + nεn,

where the second inequality follows by similar arguments.
From the above inequalities, we get, respectively (dropping
the nεn terms for simplicity):

3R ≤ 3C + 1

2n

nX
i=1

log
³
1 + 3var(Xj,i|V k

{1,2,3})
´

(12)

and

3R ≤ 1

2n

nX
i=1

log

⎛⎜⎝1 +E

⎡⎢⎣
⎛⎝ 3X

j=1

Xj,i

⎞⎠2
⎤⎥⎦
⎞⎟⎠ , (13)

where in (12) we have used the fact that, conditioned on the
conferencing messages V k

{1,2,3}, the input signals X{1,2,3},i are
independent since Xn

j = gj

³
Wj , V

k
[j−1]

´
and the maximum

entropy theorem (along with the concavity of the log function),
while (12) follows from the maximum entropy theorem. We
then have by symmetry

E

⎡⎢⎣
⎛⎝ 3X

j=1

Xj,i

⎞⎠2
⎤⎥⎦ = 3E[X2

j,i] + 6E[Xj,iXj0,i],

with j0 6= j. Moreover, we can write (see [17])

E[Xj,iXj0,i] = EV k
{1,2,3}

[E[Xj,iXj0,i|V k
{1,2,3}]]

= EV k
{1,2,3}

[E[Xj,i|V k
{1,2,3}]E[Xj0,i|V k

{1,2,3}]]

≤
r
EV k

{1,2,3}

h
E[Xj,i|V k

{1,2,3}]
2
i

·
r
EV k

{1,2,3}

h
E[Xj,i|V k

{1,2,3}]
2
i

= E[X2
j,i]− var(Xj,i|V k

{1,2,3}),

where in the last equality we have used the fact that
var(A|B) = E[A2]−EB

£
E[A|B]2

¤
and the symmetry of the

model. Finally, defining E[X2
j,i] = Pi, var(Xj,i|V k

{1,2,3}) =

P 0i and 1/n
Xn

i=1
P 0i = P 0 (dependence on j is again dropped

by symmetry), we have from (12):

R ≤ C +
1

6n

nX
i=1

log (1 + 3P 0i )

≤ C +
1

6
log (1 + 3P 0) , (14)



by the concavity of the log function, and similarly R ≤
1
6 log (1 + 9P − 6P 0) . This concludes the proof.

B. Appendix-B: Proof of Proposition 2
In the conferencing phase, by using routing over the

conferencing links, from flow considerations, the following
condition is sufficient for exchanging pair-wise and network-
wise common messages:

C ≥ Rc + 2Ra. (15)

Turning to the transmission phase, we exploit the rate region
in Sec. VII of [14]. To do so, let us introduce four auxiliary
random variables Zc,{1,2,3}, Za, accounting respectively for
the three pair-wise common messages Wc,j and the network-
wise common message Wa = [Wa,{1,2,3}]. Now, fix a joint
pdf of the involved variables that factorizes as

pa(za)pc(zc,1)pc(zc,2)pc(zc,3)px|z(x1|za, zc,1, zc,3)
px|z(x2|za, zc,2, zc,1)px|z(x3|za, zc,3, zc,2)p(y|x1, x2, x3)

where it is noted that we have introduced only three
pdfs describing the input, namely pa(za), pc(zc) and
px|z(x|za, zc, z0c). With this symmetric choice, the inequalities
of the rate region of [14] reduce to

Rp ≤ min

⎧⎨⎩ I(X1;Y |Za, Zc,{1,2,3}),
1
2I(X{1,2};Y |Za, Zc,{1,2,3}),
1
3I(X{1,2,3};Y |Za, Zc,{1,2,3})

⎫⎬⎭
(a)
=
1

3
I(X{1,2,3};Y |Za, Zc,{1,2,3})

3Rp +Rc ≤ I(X{1,2,3};Y |Za, Zc,{1,2})
3Rp + 2Rc ≤ I(X{1,2,3};Y |Za, Zc,1)
3Rp + 3Rc ≤ I(X{1,2,3};Y |Za)

3Rp + 3Rc + 3Ra ≤ I(X{1,2,3};Y )

where (a) can be proved by exploiting the submodularity
property of the set function I(XS ;Y |Za, Zc,{1,2,3}). Now,
using Fourier-Motzkin elimination recalling (15) and R ≤
Rp +Rc +Ra, we have

R ≤ C

2
+
1

6
I(X{1,2,3};Y |Za)

+
1

6
I(X{1,2,3};Y |Za, Zc,{1,2,3})

R ≤ C

2
+
1

12
I(X{1,2,3};Y |Za)

+
1

4
I(X{1,2,3};Y |Za, Zc,{1,2})

R ≤ C

2
+
1

4
I(X{1,2,3};Y |Za, Zc,1)

+
1

12
I(X{1,2,3};Y |Za, Zc,{1,2,3})

R ≤ C

2
+
1

6
I(X{1,2,3};Y |Za, Zc,1)

+
1

6
I(X{1,2,3};Y |Za, Zc,{1,2})

R ≤ 1

3
I(X{1,2,3};Y ).

Finally, we set Gaussian pdfs for the auxiliary random
variables and codebook: pa(za) ∼ N (0, Pa), pc(zc) ∼
N (0, Pc/2) and px|z(x|za, zc, z0c) ∼ N (za + zc + z0c, Pp)),
obtaining (8).
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