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Abstract—The overall energy required to digitize a given
physical source can be comparable to the energy required for
communication of the produced information bits, especially in
cyber-physical sensing systems where radio links are short. When
energy is at a premium, this fact calls for energy management
solutions that are able to properly allocate the available energy
over time between source and channel coding tasks. Energy
management is particularly challenging for devices that operate
via energy-harvesting, since the controller has to operate without
full knowledge of the energy availability in the future. This
work addresses the problem of energy allocation over source
digitization and communication for a single energy-harvesting
sensor. First, optimal policies that minimize the average distortion
under constraints on the stability of the data queue connecting
source and channel encoders are derived. It is shown that
such policies perform independent resource optimizations for the
source and channel encoders. The drawback of these policies is
that they require an arbitrarily large battery to counteract the
variability of the harvesting process and an infinite data queue
to mitigate temporal variations in source and channel qualities.
Suboptimal policies that do not have such drawbacks are then
investigated as well, along with the optimal trade-off distortion
vs. delay, which is addressed via dynamic programming tools.

I. INTRODUCTION

Cyber-physical systems (CPS), broadly speaking, enable the
combination and coordination of computational and physical
components of the “smart world”. A major bottleneck in
the development of CPSs is well-recognized to be energy
consumption and storage, due to the difficulty to provide a
continuous or sporadic energy source in situ for the operation
of devices, especially wireless nodes. A natural component
of any comprehensive solution to the bottleneck problem
identified above is to leverage energy-harvesting technologies,
whereby the energy necessary for the operation of the devices
is collected from the environment by converting different
forms of energy, such as solar, elastic or radio frequency,
into electrical power. The regime where a device is solely
powered by the energy that is able to scavenge from the
environment is typically referred to as energy neutral (EN).
With energy harvesting, one can generally only guarantee
energy availability in a statistical sense, apart from very
special cases where the energy harvested can be accurately
predicted. As also demonstrated by a number of recent works
(see, e.g., [1][2] and references therein), the main challenges
in the design of EN systems is hence the need to balance
the use of the available energy so as to attain the desired
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Figure 1. An energy-harvesting device encompassing an Energy Management
Unit (EMU) that performs energy allocation between source encoder and
channel encoder.

trade-off between short-term performance guarantees, such
as maximum delay constraints, with long-term requirements,
such as throughput or average distortion.

While the previous work mentioned above on EN systems
focuses solely on the energy required for transmission, here
we observe that, as reported in [3], the energy spent for source
digitization can out-weight that used for communication. This
was shown in [3] via measurements, by accounting only for
the energy needed for compression of simple web files and
using a Wireless Local Area Network (WLAN) interface for
transmission. The energy allocation problem between source
and channel coding components identified above is even more
pronounced in EN-CPS, where communication distances are
often such that the energy needed for communication can
be one or two orders of magnitude less than in a WLAN.
The issue of energy allocation between source digitization
and transmission for power-limited networks has received
some attention [3]-[6]. However, EN-CPS pose new research
challenges due to the randomness of energy harvesting.

In this paper, we tackle some of these research challenges by
focusing on a single-link EN-CPS, where a single transmitter,
illustrated in Fig. 1, communicates to a single receiver. We
focus first on the long-term performance of the system in terms
of average distortion, assuming that delay is not an issue and
that there is enough energy storage as required in Sec. III, and
then introduce short-term limitations in terms of finite battery
and/or delay in Sec. III-A and Sec. IV.

II. SYSTEM MODEL

We consider a system in which a single sensor shown in
Fig. 1 communicates with a single receiver. Time is slotted.



The energy Eh,k ∈ R+ harvested in time-slot k is stored in
an Energy Storage System (ESS), which is assumed at first to
be of infinite size. For convenience, all energy measures are
normalized to the number N of channel discrete-time symbols
available for communication in each time slot, also referred to
as channel uses (c.u.). The energy arrival Eh,k is a assumed to
be a stationary ergodic process with known probability density
function (pdf) pEh

(e). The energy Ek+1 available for use at
slot k + 1 is the residual energy from the previous slot plus
the energy arrival at time-slot k + 1. This evolves as

Ek+1 = [Ek − (Es,k + Et,k)]+ + Eh,k+1, (1)

where Es,k and Et,k account for the energy spent in slot k per
channel use for source digitization (i.e., by the source encoder)
and data transmission (i.e., by the channel encoder), respec-
tively, as discussed below. Notice that the energy arriving at
time slot k + 1 is immediately available for use in that slot.

The sensor measures M samples of a given source during
each slot. The quality of such observation in slot k depends on
a parameter Hs,k ∈ Hs, where Hs is assumed to be discrete
and finite, which is a stationary ergodic process over the time
slots k with known probability mass function (pmf) pHs (hs).
For instance, the sensor may observe the phenomenon of
interest with some additive noise whose variance Hs,k changes
across blocks k due to source movement or environmental
factors affecting the measure quality. The source encoder at
the sensor acquires the source in a lossy fashion. The loss, due
to sampling, analog-to-digital compression and compression,
is characterized by distortion Dk ∈ R+, as measured with
respect to some distortion metric such as the mean square
error (MSE).

The number of bits generated by the source encoder at
the sensor at slot k is f(Dk, Es,k,Hs,k), where f is a
given function of the distortion level Dk, of the energy per
channel use allocated to the source encoder Es,k and on the
observation state Hs,k. The resulting bit stream is buffered
in a first-input-first-output (FIFO) data queue with queue
length Xk. The function f(Dk, Es,k,Hs,k) is assumed to be
separately continuous convex and non-increasing in Dk and
Es,k. For simplicity, we will denote such functions also as
fhs(Dk, Es,k) = f(Dk, Es,k,Hs,k = hs). Some examples
for function f can be found in [4][5] (see also [7]) and will
be further discussed in Sec. V.

The fading channel between sensor and destination is char-
acterized by a process Ht,k, assumed to be stationary ergodic,
where Ht,k ∈ Ht, with set Ht being for simplicity discrete
and finite, and pmf of Hk is given by pHt(ht). The channel
encoder uses energy per channel use Et,k and transmits over
N channel uses per slot. A maximum number g(Ht,k, Et,k)
of bits per slot can be delivered successfully to the desti-
nation. The channel rate function g(Ht,k, Et,k) is assumed
to be continuous, concave and non-decreasing in Et,k. We
also use the notation ght(Et,k) = g(Ht,k = ht, Et,k). The
channel encoder takes min [Xk, g(Ht,k, Et,k)] bits from the
data buffer, according to the selected transmission energy Et,k.
Based on this discussion, the data queue evolves as

Xk+1 = [Xk − g (Ht,k, Et,k)]+ + f (Dk, Es,k,Hs,k) . (2)

A. Problem Definition

At each time slot k, the energy management unit (EMU), see
Fig. 1, must determine the distortion Dk and the energies Es,k

and Et,k to be allocated to the source and channel encoder,
respectively. The decision is taken according to a policy π :=
{πk}k≥1, where πk :=

{
Dk

(
Sk

)
, Es,k

(
Sk

)
, Et,k

(
Sk

)}
determines parameters (Dk, Es,k, Et,k) as a function of the
present and past states Sk = {S1, . . . , Sk} of the system,
where the Si = {Ei, Xi,Hs,i,Ht,i} accounts for the state
of the available energy Ei , for the data buffer Xi , for the
the source observation state Hs,i and the channel state Ht,i.
Policies can be optimized according to different criteria, as
discussed below.

III. MINIMUM DISTORTION UNDER STABILITY
CONSTRAINT

In this section, we adopt as performance criterion the
minimization of the long-term average distortion1

D̄ = lim
n→∞

1
n

n∑

k=1

E[Dk] (3)

under the constraint that the data queue is stable, that is, that
the distribution of Xk is asymptotically stationary and proper
(so that Pr (Xk = ∞) → 0) (see, e.g., [1]). We have the
following result.

Proposition 1: The minimum distortion D̄ under stability
constraints is lower bounded by the solution of the convex
problem

D̄ ≥ D̄∗ = arg min
∑

hs

pHs(hs)Dhs (4)

s.t.

∑
hs

pHs(hs)fhs
(
Dhs , Ehs

s

) ≤ ∑
ht

pHt(ht)ght

(
Eht

t

)
,∑

hs
pHs(hs)Ehs

s ≤ (1− α)E [Eh,k] ,∑
ht

pHt(ht)Eht
t ≤ αE [Eh,k] ,

(5)

where minimization is done over the parameters Dhs ≥ 0,
Ehs

s ≥ 0 for hs ∈ Hs, Eht
t ≥ 0 for ht ∈ Ht, and 0 < α < 1.

Moreover, a policy π that achieves a distortion arbitrarily close
to optimal is given by





Dk = Dhs for Hs,k = hs

Es,k = min
[
(1− α)Ek, Ehs

s

]
for Hs,k = hs

Et,k = min
[
αEk, Eht

t

]
for Ht,k = ht

, (6)

where parameters Dhs , Ehs
s , Eht

t and 0 < α < 1 are
obtained by solving (4)-(5) with the three constraints modified
by subtracting a parameter ε > 0 arbitrarily small to the right-
hand sides.

Proof : Follows from [7], to which we refer for further
details.

1It can be shown that the initial condition is immaterial for our results.



Parameters Dhs , Ehs
s , Eht

t and 0 < α < 1 in Proposition
1 have a simple interpretation in terms of the close-to-optimal
policy (6). In particular, Ehs

s ,Dhs are respectively the energy
and the distortion that the EMU selects for the source encoder
at the times k when the observation state is Hs,k = hs,
whereas Eht

t is the energy selected for the channel encoder
when the channel state is Ht,k = ht. Note that the source
encoder parameters Dhs , Ehs

s are adapted only to the source
quality Hs,k, while the channel encoder parameter Eht

t is
adapted only the channel quality Ht,k.

Regarding the constraints in (5), the first ensures stability
of the data queue following Loynes theorem. The second
and third constraints in (5) instead impose that the average
energy used for the source encoder,

∑
hs

pHs
(hs)Ehs

s , is no
larger than a fraction 1 − α the average harvested energy
E [Eh,k], and that the average energy used by the channel
encoder,

∑
ht

pHt
(ht)Eht

t , is no larger than αE [Eh,k]. In
practice, the optimal policy (6) may not be able to use always
energies Ehs

s , Eht
t obtained from the optimization (4) due

to ESS energy shortages. However, a strictly positive ε in (6)
guarantees, as k gets large, the energy in the ESS will grow
unbounded, thus allowing the EMU to use the optimal energy
allocation dictated by Ehs

s , Eht
t from (4)-(5) (with the last

two constraints modified as per Proposition 1). This shows the
critical importance of leveraging an ESS in order to mitigate
the random variations in energy availability due to harvesting,
as already shown by previous work [1] by accounting only for
transmission energy.

A. Suboptimal Policies

We have seen above that the optimal policy, in the sense
of minimizing the long-term distortion D̄ under data queue
stability constraints makes a heavy use of the ESS, which is
allowed to grow unbounded so as to provide an unlimited
reservoir of energy and thus smooth out the variations in
energy availability. It is thus interesting, for performance
comparison, to consider policies that do not use the ESS, or use
it only partially. The first suboptimal policy we consider does
not use the energy buffer but allocates all the energy arrival
Eh,k to source and channel coding according to an optimized
fraction 0 ≤ αhs,ht ≤ 1 that depends jointly on both source
and channel states, Hs,k = hs and Ht,k = ht, as:





Dk = Dhs,ht

Es,k = αhs,htEh,k for Hs,k = hs and Ht,k = ht

Et,k = (1− αhs,ht)Eh,k

.

(7)
We refer to this policy as no ESS with adaptation (to both
source and channel states). A special case whereby adaptation
is not enabled (no ESS with no adaptation) is obtained by
setting αhs,ht = α. Alternatively, one could use the ESS
only for source or only for channel coding (source-only ESS
and channel-only ESS). For instance, for the source-only ESS
strategy, a fraction of the incoming energy Eh,k is used
directly for channel coding, while the remaining part of the

incoming energy is stored in the battery for possible use by the
source encoder. This fraction is adapted to the state of channel
Ht,k (no gains are possible by adapting also to the state of the
source Hs,k). Definition of these policies and analysis of all
suboptimal policies mentioned above follow from [7], similar
to Proposition 1 and will not be reported here.

IV. DELAY-DISTORTION OPTIMIZATION

In Sec. III, we have discussed the optimization of the
policies π, as defined in Sec. II-A, with the objective of
minimizing the long-term distortion D̄, under the constraint of
stabilizing the data queue. This criterion does not provide any
guarantee on the delay experienced by the reconstruction of the
source in a certain time-slot. In fact, in general, at the stability
limit, the delay becomes arbitrarily large. This, along with the
use of the ESS, allows the system to mitigate the variations in
source and channel states and in the harvested energy. In this
section, we briefly address a scenario with finite ESS and data
queue and look for policies that minimize a weighted sum of
distortion and delay. In particular, we propose to minimize the
expected total discounted cost

lim
n→∞

1
n

n∑

k=0

λk [γE[Dk] + (1− γ)E[Xk]] , (8)

where 0 ≤ λ < 1 is the discount factor and 0 ≤ γ ≤ 1. The
latter parameter weights the importance of distortion versus
delay in the optimization criterion. Notice that with γ = 0
one minimizes the average length of the data queue, which, by
Little’s theorem, is the same as minimizing the average delay.
We tackle the minimization of (8) over the policies π defined
in Sec. II-A using dynamic programming tools assuming a
finite ESS and data queue. Notice that, due to the finiteness
of the ESS, buffer overflow may happen, in which case the
compression bits are lost and a maximum distortion Dmax is
accrued for the current slot. Numerical results are discussed
in the next section.

V. NUMERICAL RESULTS

At each block k, the transmitter observes M samples of
an i.i.d. source Uk,i ∼ N (0, Dmax) with i = 1, ...,M over
Gaussian noise with (source) Signal-to-Noise Ratio (SNR)
Hs,k as

√
Hs,kUk,i + Zk,i where Zk,i ∼ N (0, 1) is an i.i.d.

sequence. Using the model in [4], the rate-distortion-energy
function is given by

fhs(Dk, Es,k) =
1
b

log2

(
Dmax −Dmmse

Dk −Dmmse

)
ξ(Es,k), (9)

where the first term is the (indirect) rate-distortion function for
this source in bit/c.u. with Dmmse = (hs + 1/Dmax)−1, while
function ξ(Ts,k) = ζ max

[
(bEs,k/Es,max)−1/η, 1

]
accounts

for the loss due to energy limitations, with ζ > 1, η > 1 and
Es,max being design parameters. Communication takes place
over an AWGN with channel SNR Ht,k so that the number of
transmitted bits is ght (Et) = log(1 + htEt). The SNRs Hs,k

and Ht,k can take two possible values in Hs = Ht = {1, 10}
independently and with equal probability.
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Figure 2. Long-term average distortion versus the variance of the harvesting
process.

To assess the role of the ESS management, Fig. 2 shows
the minimum distortion attained by the optimal policy and the
suboptimal policies with no adaptation for increasing variance
of the distribution pEh

(e) of the harvested energy, which is
assumed to be Beta distributed with mean E[Eh,k] = 0.5.
We have parameters Es,max = 1, b = 1 and η = 3/2 in
Fig. 2-(a) and η = 3 in Fig. 2-(b). The advantages of the
optimal policies with respect to the strategies that do not fully
leverage the ESS are clear. Moreover, it is seen that, even
using the ESS for either source or channel encoder leads to
relevant gains. With η = 3/2 as in Fig. 2-(a), function (9) has
a more pronounced convexity as a function of Es,k than in
Fig. 2-(b). By Jensen’s inequality, a more convex function (9)
implies a larger performance loss in case the encoder is not
able to operate at the average energy level. This can be seen
by observing that performance loss of the channel-only ESS
policy in Fig. 2-(a).

Another interesting aspect is the relative performance of
joint or separate adaptation to source and channel SNRs. As
seen, with full use of the ESS, a separate approach is optimal.
Fig. 2 shows instead that the distortion achieved with no ESS
but with adaptation to the joint state of both source and channel
SNRs has relevant performance gains with respect to the policy
with no adaptation, especially in the scenario of Fig. 2-(a) with
a function (9) with more pronounced convexity.

With delay and/or ESS constraints, even the optimal policy
needs to adapt to both source and channel SNRs. We study
this issue by comparing the optimal result obtained from (8)
with a separate policy that uses two distinct ESSs, one for the
source encoder and one for the channel encoder, and designs
both encoders assuming that the other provides a constant and
optimized rate in each slot (see [7] for details). We assume data
buffer length equal to 6, unitary battery capacity, harvesting
distribution pEh

(e) with e = 0.5 or e = 1, λ = 0.5,
the distortion takes values Dk ∈ {0.55, 0.75, 1}, and other
parameters as in the example above. We show the the trade-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

average data queue length

av
er
ag
e 
d
is
to
rt
io
n

1.0=
w
p

9.0=
w
p

optimal

separate

Figure 3. Trade-off between average distortion and average delay for the
optimal policy and the policy that performs separate source-channel coding
optimization.

off between average distortion E[Dk] and average queue length
E[Xk], which accounts for delay, for two different values of
the probabilities of the worst harvesting, source and channel
states pEh

(0.5) = pHt (1) = pHs (1) = pw. The curve is
obtained by varying parameter γ in (8). We observe that the
joint source-channel optimal policy allows to obtain better
delay-distortion trade-off compared to the separate policy.

VI. CONCLUSIONS

Cyber-physical systems, such as sensor networks, and green
communications put a new emphasis on the task of energy
management for wireless communications and favor the use of
energy-harvesting technologies. In this paper, we have argued
that the energy allocation between source and channel coding
is a key aspect of the problem of energy management in
energy-harvesting sensor networks. Our analysis sheds light
on the optimal system design and on the impact of system
parameters such as energy buffer size and average delay.
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