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Abstract— In this paper, a single-input single-output (SISO)
downlink channel with K users is analyzed in the presence of
Rayleigh flat fading. A limited channel state information (CSI)
feedback scheme is considered, where only an outdated 1-bit
feedback per user is available at the base station for each fading
block. A closed-form expression for the achievable ergodic sum-
rate of the 1-bit feedback scheme is presented for any number of
users, as a function of the fading temporal correlation coefficient,
the threshold of the 1-bit CSI quantizer and the SNR. It is proved
that the sum-rate scales with increasing number of users as
log log K, which is the same scaling law achieved by the optimal
non-delayed full CSI feedback scheme. In addition, the sum-rate
degradation due to outdated CSI is evaluated in the asymptotic
regimes of either large K or low SNR.

I. INTRODUCTION

Multiuser diversity capitalizes on independent fading chan-
nels across different users in order to enhance the throughput
in the downlink/uplink of a cellular system. Serving the user
with the best instantaneous channel quality, has been proved
to be optimal in terms of ergodic sum-rate for both the uplink
[1] and for the downlink [2]. However, it requires all users to
feed back their instantaneous channel state information (CSI)
to the transmitter. In [3], it is shown that, given this optimal
scheduling, the ergodic sum-rate capacity of the downlink
Rayleigh fading channel scales as log log K with the number
of users K.

There are two problems inherent in the optimal scheduling
discussed above: 1) the large amount of required feedback, and
2) the feedback delay that may cause the CSI fed back to the
base station to be outdated. In order to reduce the feedback
load, various schemes have been proposed. A common ap-
proach prescribes feedback of a quantized version of the CSI
[4]. Recently, a 1-bit feedback scheme was proposed (without
considering feedback delay) in [5], and was further analyzed
in [6]. According to this scheme, for each fading block, users
with channel power exceeding a given predetermined threshold
feed back the bit “1”, otherwise they indicate “0” to the base
station. The base station randomly chooses one among the
users with feedback bit “1” for data transmission with power
P . When there is no user signaling a channel gain larger than
the threshold, the transmitter keeps silent for one block period.
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It has been proved that the 1-bit feedback scheme suffers from
a negligible loss of multiuser diversity gain as compared to the
full CSI feedback scheme. In particular, the optimal scaling
law of log log K is preserved [6].

In a realistic situation, it is impossible for the scheduler
at the base station to access the instantaneous (and possibly
quantized) CSI of each user. In fact, channel feedback infor-
mation may become outdated if the fading channel is changing
rapidly. This leads to a degradation of the system sum-rate. For
instance, in case of full CSI feedback, the “best” user may no
longer be the “best” after a feedback delay. In [7], the impact
of outdated CSI is studied for a selective feedback scheme
where only the users with the best channel conditions (i.e.
above a given threshold) feed back their full CSI. A closed-
form expression for the sum-rate as a function of the fading
temporal correlation ρ is therein derived.

In this paper, we focus on the study of the achievable
ergodic sum-rate of broadcast channels with outdated 1-bit
feedback per user per fading block. By outdated, we mean
that a delay occurs between the time of the measurement of
the channel at the user side and that of the scheduling at the
base station. The system setup is similar to [5] and [6], except
that we account for the CSI feedback delay. Previous results
of [5], [6] are obtained as a special case of the current work,
when the temporal channel correlation coefficient is ρ = 1.
We first derive the achievable ergodic sum-rate for the 1-bit
feedback scheme with delay (Sec. III). Next, by exploiting
a lower bound of the rate, we show that with outdated 1-bit
feedback per fading block for each user, the achievable sum-
rate demonstrates the same growth rate of log log K as the full
CSI feedback scheme, with a carefully selected threshold. We
also quantify the sum-rate degradation due to outdated CSI in
the asymptotic regimes of either large K or small SNR [8].

II. SYSTEM MODEL

We consider a single antenna base station that transmits
to K single-antenna receivers in a broadcast channel. Users
are assumed to be homogeneous and experience independent
“block” Rayleigh flat fading. Accordingly, the fading processes
are independent among different users, and the block duration
is sufficiently small so as to guarantee that the fading gains
remain constant during one block and change from block to



block. A discrete time baseband representation of the channel
is mathematically described as

yk(t) = hk(t)x(t) + nk(t), k = 1, . . . , K (1)

where hk(t) ∼ CN (0, 1) is the channel fading coefficient of
user k, nk(t) ∼ CN (0, 1) is complex Gaussian noise with
unit variance and assumed statistically independent among
different users.

We assume that each user is aware of its own fading power
level v2

k(t) = |hk(t)|2 based on a perfect channel estimation
at time t, and compares it with a prescribed threshold α. If
the received power v2

k(t) is larger than the threshold α, the
user feeds back a single bit of “1” through a reliable uplink
channel for the current fading block. Otherwise it feeds back
a single bit of “0” for the current fading block. At time t+ τ ,
the base station receives all the feedback bits and randomly
chooses one of the users with feedback bit “1” for transmission
with power P . In case no user has fed back a “1” bit, the
base station keeps silent for the current block. With the above
scheduling mechanism, the transmitted signal x is a zero mean
complex Gaussian random variable with power P (E[|x|2] =
P ), when at least one user has fading power level larger than
the threshold α; it reads x = 0 when all the feedback bits are
zeros.

During the delay τ between perfect channel estimation
and scheduling decision, the state of the channel chosen for
transmission is subject to change. We denote as ρ the temporal
channel correlation coefficient between the channels at time t
and t + τ . As an example, the temporal channel correlation
ρ can be related to the delay τ through Jake’s model [9] as
ρ = J0(2πfD|τ |), where J0 is the zero-order Bessel function
of the first kind, and fD is the Doppler Spread. In this
paper, we assume that the transmitter has knowledge about
ρ, through, e.g., estimation of the Doppler spread.

III. ACHIEVABLE SUM-RATE OF THE 1-BIT FEEDBACK
SCHEME

The main goal of this section is to derive the achievable
ergodic sum-rate of the 1-bit feedback scheme described in
Sec. II in presence of feedback delay.

Proposition 1 The achievable ergodic sum-rate of the
1-bit feedback scheme with power P , K users, temporal
channel correlation coefficient ρ, and arbitrary threshold α,
is given by1

R(α, ρ, P ) =
(
1− (

1− e−α
)K

) ∫ ∞

0

log(1 + z2P )2z

×e−z2+αQ1

( √
2ρ√

1− ρ2
z,

√
2α√

1− ρ2

)
dz,

(2)

where Q1(a, b) =
∫∞

b
x exp

(
−x2+a2

2

)
I0(ax)dx is the first-

order Marcum-Q function.

1A natural logarithmic base is used throughout this paper.

Proof: According to [6], at any fading block, either one
or no user is selected for transmission, and long codewords
(spanning multiple fading blocks) are chosen from a Gaussian
code book. The achievable ergodic sum-rate is the product
of two terms: (i) the probability that at least one user is
qualified to be chosen for transmission and (ii) the ergodic
sum-rate for the chosen users over the fading blocks selected
for transmission:

R(α, ρ, P ) = Pr(N > 0)E[log(1 + v2
τP )|v2 > α], (3)

where we have dropped the subscript k due to the statistical
equivalence of different users and denoted v = v(t) and vτ =
v(t + τ) (i.e., channel envelopes at the channel estimate and
scheduling decision time instants, respectively).

The probability that at least one user is qualified to be
chosen for transmission is

Pr(N > 0) = 1− Pr(N = 0) = 1− (
Pr

(
v2 < α

))K

= 1− (
1− e−α

)K
, (4)

where N is the number of users with channel power gain v2

above the threshold α.
In order to calculate the ergodic sum-rate for the chosen

user over the fading blocks, we need the probability density
function (pdf) of vτ given the condition v2 ≥ α. We start
from the cumulative distribution function (cdf) of vτ given
the condition v2 ≥ α,

Fvτ
(z|v2 ≥ α) =

Pr(vτ < z, v ≥ √
α)

Pr(v ≥ √
α)

=

∫ z

0
dvτ

∫∞√
α

f(vτ , v)dv
∫∞√

α
2ve−v2dv

, (5)

where f(vτ , v) = 4vτ v
1−ρ2 e−(v2

τ+v2)/(1−ρ2)I0( 2ρvτ v
1−ρ2 ) is the joint

pdf of two correlated Rayleigh random variables [10]. By
taking the derivative of (5) with respect to z, we achieve the
conditional pdf as

fvτ

(
z|v2 ≥ α

)
=

∫∞√
α

4zv
1−ρ2 e−(z2+v2)/(1−ρ2)I0( 2ρzv

1−ρ2 )dv

e−α

= 2ze−z2+αQ1

( √
2ρ√

1− ρ2
z,

√
2α√

1− ρ2

)
.

(6)

Substituting (4) and (6) into (2) completes the proof ¥

IV. ASYMPTOTIC ANALYSIS

To gain insight into the impact of delay on the achievable
ergodic sum-rate of the 1-bit feedback scheme, it is convenient
to derive upper and lower bounds on (2). An upper bound of
the rate is directly derived by using Jensen’s inequality on (2),

Rup(α, ρ, P ) =
(
1− (

1− e−α
)K

)
log

(
1 + P

(
1 + ρ2α

))
. (7)



On the other hand, a lower bound is obtained as (see Appendix
A for derivation)

Rlow(α, ρ, P ) =
(
1− (

1− e−α
)K

)
log (1 + αP )

{
1 + Q1

(
ρ
√

2α√
1− ρ2

,

√
2α√

1− ρ2

)

−Q1

( √
2α√

1− ρ2
,

ρ
√

2α√
1− ρ2

)}
. (8)

Exploiting the lower bound (8), the scaling law of the 1-bit
feedback scheme with respect to the number of users K can
be found as follows.

Proposition 2 For any finite power P and positive channel
correlation coefficient 0 < ρ ≤ 1, with increasing number of
users K, the 1-bit feedback scheme achieves the same growth
rate as the full CSI feedback scheme

lim
K→∞

R(αo(K), ρ, P )
log log K

= 1, (9)

where αo(K) is the optimal threshold that maximizes
R(α, ρ, P ) for given K.

Proof: The lower bound (8) suggests that, in order to get a
multiuser diversity gain of O(log K) and to make the pre-log
term close to 1, a “good” choice of the threshold is αso(K) =
log K − δ, where δ is a positive constant smaller than log K.
In fact, with this choice of threshold (we term it sub-optimal
threshold), we have

lim
K→∞

α=αso(K)

(
1− (

1− e−α
)K

)
= 1− e−eδ

, (10)

and, as proved in Appendix B,

lim
K→∞

α=αso(K)

1 + Q1

(
ρ
√

2α√
1− ρ2

,

√
2α√

1− ρ2

)

−Q1

( √
2α√

1− ρ2
,

ρ
√

2α√
1− ρ2

)
= 1. (11)

From (8), (10) and (11), it follows that

lim
K→∞

Rlow(αso(K), ρ, P )
log log K

= 1− e−eδ

. (12)

Since δ can be chosen any arbitrary large number (after taking
K to infinity), the ratio in (12) goes to 1. Therefore, since a
sub-optimal threshold preserves the scaling law of log log K,
the 1-bit feedback scheme guarantees the same growth rate
as the full CSI feedback scheme with an optimal threshold
αo(K), thus completing the proof. ¥

Another interesting asymptotic result comes from the upper
bound on the achievable ergodic sum-rate of the 1-bit feedback
scheme (7). With large number of users K and optimal

threshold αo(K), we have

lim
K→∞

Rup(αo(K), ρ, P ) = lim
K→∞

(
1−

(
1− e−αo(K)

)K
)

× log
(
1 + P

(
1 + ρ2αo(K)

))
.

(13)

Since it has been shown in the proof of Proposition 1
that there exists a suboptimal threshold αso(K) such that
limK→∞

(
1− (

1− e−αso(K)
)K

)
= 1, it is apparent that

the same condition holds with an optimal threshold αo(K).
Therefore,

lim
K→∞

Rup(αo(K), ρ, P ) ≈ log Pαo(K) + 2 log ρ. (14)

The approximation comes from the fact that in order to get a
multiuser diversity of log log K, the optimal threshold αo(K)
is of O(log K), and log(1 + x) ≈ log x, for x À 1.

The first term in (14), log Pαo(K), is the optimized asymp-
totic rate with large number of users for the 1-bit feedback
scheme without delay [6]. Therefore, the second term 2 log ρ
provides a bound on the sum-rate degradation due to feedback
delay in the asymptotic regime of large K. In Sec. VI, it
will be shown via numerical results that this bound is in fact
an accurate prediction of the real sum-rate degradation for
K À 1.

V. LOW-SNR CHARACTERIZATION

In this section we study the sum-rate of broadcast channels
with outdated 1-bit feedback and operating in a power-limited
(or wideband) regime. This regime is characterized by low
SNR and low spectral efficiency. In [8] it is shown that
in order to characterize the spectral efficiency in the low
SNR regime, two parameters should be considered: (i) the
minimum signal energy-per-information bit Eb

N0 min
required for

reliable communication; (ii) the spectral efficiency slope S0,
also referred to as wideband slope, as a function of Eb

N0
, at

Eb

N0 min
. Thus a linear approximation of the spectral efficiency

versus Eb

N0
in this regime is2

R(α, ρ,
Eb

N0
) ∼= S0

3dB

(
Eb

N0

∣∣∣∣
dB
− Eb

N0 min

∣∣∣∣
dB

)
. (15)

In this section, we study the performance of the 1-bit
feedback scheme in the wideband limit by deriving closed-
form expressions for both Eb

N0 min
and S0. An asymptotic

analysis of the two parameters with large number of users
K and a sub-optimal threshold αso is also presented.

From [8], the minimum energy per bit required for reliable
communication Eb

N0 min
depends on the first order derivative

of the sum-rate with respect to the SNR P , evaluated at

2Following [8], the notation R is introduced so as to denote the sum-rate
as a function of Eb

N0
. This notion is related to the sum-rate of R as a function

of the SNR P , through R( Eb
N0

) = R(P ) and P = R(P ) Eb
N0

.



P = 0. Using (2), and with the help of integration from [10,
Eq.(B.28)], we have

Eb

N0 min

=
log 2

∂R(α,ρ,P )
∂P

∣∣∣∣∣
P=0

=
log 2

(1− (1− e−α)K) (1 + ρ2α)
. (16)

The spectral efficiency slope S0 is a function of both the first
order and the second order derivatives of the sum-rate:

S0 =
2

(
∂R(α,ρ,P )

∂P

)2

−∂2R(α,ρ,P )
∂P 2

∣∣∣∣∣∣∣
P=0

=

(
1− (1− e−α)K

)
(1 + ρ2α)2

1 + 2αρ2 − αρ4 + 1
2α2ρ4

. (17)

Using the results in (16) (17), we can quantify the sum-rate
degradation due to the feedback delay in the asymptotic regime
of low SNR for any number of users by means of (15).

To further analyze the above results (16) (17), we consider
the asymptotic scenario with large number of users K and a
sub-optimal threshold αso(K) = log K − δ (this sub-optimal
threshold guarantees the asymptotic optimality of the scaling
law, as proved in Proposition 2). From (16) and (17), we have
for ρ > 0 and K À 1

Eb

N0 min

→ log 2
ρ2 log K

, (18)

and

S0 → 2. (19)

Substituting these results in (15), we obtain a linear approxi-
mation of the sum-rate versus Eb

N0
in the wideband regime with

large number of users

R(α, ρ,
Eb

N0
) ∼= 2

3dB

(
Eb

N0

∣∣∣∣
dB
− 10 log10

log 2
ρ2 log K

)
. (20)

It is known that Eb

N0 min
for reliable communication over a

fading channel with no CSI at the transmit side is log 2 =
−1.59dB. With 1-bit CSI feedback, a large number of users
K and a temporal channel correlation coefficient ρ > 0,
the denominator in (18) shows a multiuser diversity gain of
ρ2 log K. With increasing ρ, this leads to a decreasing required
Eb

N0 min
for reliable communication. Regarding the spectral

efficiency slope S0, it can be obtained from (17) that it equals
1 when the temporal channel correlation coefficient is ρ = 0.
This result coincides with the case of perfect receiver side
information but with no CSI at the transmitter described in
[8]. When ρ > 0, the asymptotic spectral efficiency slope (19)
equals 2 as for an AWGN channel [8].
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Fig. 1. Sum-rate R versus the number of users K for the 1-bit feedback
scheme with different channel temporal correlation ρ and optimal threshold
αo(K). Sum-rate with non-delayed full CSI, no CSI, and 1-bit feedback
without delay, are also shown for reference (P = 20dB).

VI. NUMERICAL RESULTS

Figure 1 shows the achievable ergodic sum-rate of the
1-bit feedback scheme versus the number of users K for
different values of the channel temporal correlation coefficient
ρ, with optimal threshold αo(K) and SNR P = 20 dB. The
ergodic sum-rate with non-delayed full CSI, no CSI, and 1-bit
feedback without delay, are also shown for reference. It can be
seen that the 1-bit feedback scheme shows the same scaling
law of the sum-rate with large number of users, for different
channel correlation coefficients, but suffers a rate degradation
that is well quantified by 2 log ρ as derived in Sec. IV.
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1-bit feedback without delay, are also shown for reference (K = 100).

Figure 2 shows the sum-rate of the 1-bit feedback scheme
as a function of Eb/N0, and its wideband approximation (15)



according to (16) and (17), for different channel temporal
correlation coefficients ρ, with optimal threshold αo(K) and
finite number of users K = 100. Spectral efficiencies and
their linear approximations with non-delayed full CSI, no CSI,
and 1-bit feedback without delay at low SNR regime, are also
shown for reference. It is seen that there is a multiuser diversity
gain in terms of Eb/N0min between the 1-bit feedback scheme
with different temporal channel correlation coefficients and
the no CSI feedback scheme. This can be quantified as
10 log10(ρ2 log K)dB when the number of users K is large
(see (18)). The spectral efficiency slope increases from 1,
which corresponds to the no CSI feedback case, to S0 = 2,
which equals to the spectral efficiency slope of a Gaussian
channel [8].

VII. CONCLUDING REMARKS

In this work we have investigated the sum-rate of a SISO
broadcast channel with 1-bit feedback in presence of feedback
delays. A closed-form expression of the achievable ergodic
sum-rate, which holds for any number of users, temporal
channel correlation coefficient and threshold, has been derived,
along with simple upper and lower bounds. We have also
shown that, not only reducing the CSI feedback to 1 bit, but
also considering the feedback delay, does not affect the scaling
law of the sum-rate. Finally, the feedback delay yields a sum-
rate degradation which has been quantified for both cases of
large number of users and low SNR.

APPENDIX

A. Derivation of (8):
Starting from (2), since the integrand is positive, we replace

the lower limit of integration with
√

α, obtaining the following
lower bound

R(α, ρ, P ) ≥ (
1− (1− e−α)K

) ∫ ∞

√
α

log(1 + z2P )2z

×e−z2+αQ1

( √
2ρ√

1− ρ2
z,

√
2α√

1− ρ2

)
dz.

(21)

Then, the integration variable z in the increasing function of
log is replaced by the lower limit of the integration in (21),
yielding the strict lower bound

R(α, ρ, P ) >
(
1− (1− e−α)K

)
log(1 + αP )

∫ ∞

√
α

2z

×e−z2+αQ1

( √
2ρ√

1− ρ2
z,

√
2α√

1− ρ2

)
dz

=
(
1− (

1− e−α
)K

)
log (1 + αP )

{
1 + Q1

(
ρ
√

2α√
1− ρ2

,

√
2α√

1− ρ2

)

−Q1

( √
2α√

1− ρ2
,

ρ
√

2α√
1− ρ2

)}

= Rlow(α, ρ, P ). (22)

The first equality in (22) follows from Eq.(B.18) of [10].

B. Proof of (11):

As b → ∞, using the asymptotic form of the zero-order
modified Bessel function of the first kind, Q1(a, b) can be
approximated as [11, Eq.(A-27)]

Q1(a, b) ∼=
∫ ∞

b

x exp
(
−x2 + a2

2

)
exp(ax)√

2πax
dx

∼=
√

b

a

1√
2π

∫ ∞

b

exp
(
− (x− a)2

2

)
dx

=

√
b

a
Φ(b− a)

∼= (2πab)−1/2 exp
(
− (b− a)2

2

)
, (23)

where Φ(t) ≡ ∫ t

−∞ dx(2π)−1/2 exp(−x2/2).
Therefore, plugging (23) in (11), we easily obtain the limit

we set out to prove.
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