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Abstract—In this work, we address the problem of the
coexistence of Primary and Secondary Users (PU and SU,
respectively) in a wireless network, where the PU employs
a retransmission based error control technique (ARQ).
This mechanism offers the SU a non trivial opportunity:
by decoding the Primary Message (PM), the Secondary
Receiver (SR) can perform interference cancellation during
the whole primary ARQ window, thus enhancing its own
outage performance. In particular, we investigate aBack-
ward Interference Cancellation (BIC) mechanism: the SR
buffers the secondary transmissions that underwent outage
due to primary interference, and attempts to recover them
once the knowledge about the PM becomes available due
to decoding operation in a future instant. We present
analytical results for the scenario where the primary ARQ
process is limited to one retransmission, and show by
numerical results the throughput benefit of BIC, over other
techniques investigated in the literature.

Index Terms—Cognitive radios, dynamic resource allo-
cation, Markov decision processes, ARQ, backward inter-
ference cancellation

I. INTRODUCTION

Cognitive Radio (CR) [1] is emerging as a compelling
technology for next generation wireless networks. By
sensing the environment and collecting side-information
about the activity of existing users in the network, CRs
are able to adapt their operation to the current state of the
system. In particular, this feature makes CR a promising
technology for Primary (PU, licensed) and Secondary
Users (SU, unlicensed with CR capabilities) coexistence.
In fact, by sensing PUs’ activity, SUs are able to adapt
their operation, so as to limit harmful interference which
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would excessively impair PUs’ performance. This makes
it possible to significantly improve the spectral efficiency
of today’s wireless networks [2]–[4].

The potential of CRs to improve network performance
has been extensively researched in the literature. For a
survey on cognitive networks, dynamic spectrum access
and the related research challenges, we refer the inter-
ested reader to [5]–[7].

In this work, we consider a scenario where the PU uses
ARQ to improve system performance. In [8], a cognitive
spectrum access scheme based on spectrum sensing and
overhearing the acknowledgement information from the
PU was designed. Herein, as in [9], [10], we follow a
different approach and investigate techniques for exploit-
ing the structure of the primary transmission process,
as induced by the use of ARQ. In particular, the ARQ
mechanism introduces redundancy in the system, in the
form of copies of the same message transmitted in subse-
quent time slots. The idea of exploiting this redundancy
was first investigated in [11], [12], for a scenario where
the ARQ mechanism is limited to one retransmission. In
[11], several protocols are proposed, where the secondary
transmitter collects side-information about the Primary
Message (PM) in the first primary transmission, which
is exploited to relay the PM, if a retransmission occurs.

In [10], we investigated a scenario where, once the
knowledge about the PM becomes available at the
Secondary Receiver (SR), it is exploited in the next
ARQ rounds to perform interference cancellation, and
we characterized the optimal access strategy of the SU
under a constraint on the performance loss induced at the
PU. In this paper, we use a similar setting. However, we
introduce an important new mechanism: the SR buffers
the secondary transmissions that underwent outage due
to primary interference, and attempts to recover them
once the knowledge about the PM becomes available
due to decoding operation in a future instant. This
new mechanism is termedBackward Interference Can-
cellation (BIC). Moreover, we characterize the optimal
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Figure 1: System model

secondary access strategy for the case where the primary
ARQ mechanism is limited to one retransmission. This
simple case gives us some fundamental insight on the
general solution, which is confirmed by simulation.

The paper is organized as follows. Section II presents
the system model. Section III introduces the performance
metrics and the problem statement. Section IV presents
the main results, for the case where the primary ARQ
scheme is limited to one retransmission. Section V
presents the numerical results. Section VI discusses some
future work, and Section VII concludes the paper.

II. SYSTEM MODEL

As in [10], we consider a two-user interference net-
work, depicted in Fig. 1. A Primary and a Secondary
Transmitters (PT and ST, respectively) communicate to
their respective Receivers (PR and SR) over the channels
with instantaneous gainsγp andγs, and generate mutual
interference over the channels with gainsγps and γsp,
respectively. The channel gains are modeled as quasi-
static, i.i.d. processes over time. No Channel State Infor-
mation (CSI) is available at the transmitter sides, hence
transmissions may suffer from outage when the selected
rate is not supported by the current channel quality.

A. PU operation

In order to improve reliability, the PU uses a
retransmission-based error control technique (ARQ),
with a maximum number of transmissions of the same
packet equal toT ≥ 1. We define theARQ state
t ∈ N(1, T )1 as the number of ARQ transmissions
performed on the current PM (e.g., t=1 for a new PU
transmission,t=2 for the first retransmission, and so on).

The SU activity affects the PU outage performance by
interfering over the channelγsp. When the ST is silent,
the PU outage probability is given by

ρp0(Rp) = Pr

(

Rp > C (γpPp)

)

, (1)

1We defineN(n0, n1) = {t ∈ N, n0 ≤ t ≤ n1} for n0 ≤ n1 ∈ N

whereRp denotes the primary transmission rate, mea-
sured in bits/s/Hz,C(x) = log2(1 + x) represents the
capacity of the Gaussian channel with SNRx at the
receiver,Pp is the primary transmission power, and we
assume unit variance Gaussian noise at the receivers.

On the other hand, when the ST transmits, the outage
probability is given by

ρp1(Rp)=Pr

(

Rp>C

(

γpPp

1 + γspPs

))

>ρp0(Rp), (2)

wherePs is the secondary transmission power, and we
assume that the PU is oblivious to the SU and treats
secondary transmissions as noise.

B. SU operation

As in [10], we assume that the SU does not employ
ARQ to recover from transmission failure. However, the
SR, which is assumed to have perfect knowledge of the
PU parameters, e.g.,T and the codebook used, attempts
to decode the PM. Diverse opportunities to exploit this
knowledge arise. In fact, due to the inherent redundancy
in the primary ARQ process, knowledge of the PM can
be exploited in the subsequent primary ARQ rounds
to achieve a larger secondary throughput via primary
interference cancellation, as in [10]. Moreover, unlike
[10] where the Secondary Message (SM) is dropped in
case of transmission failure, we explore a mechanism
where the SR buffers the secondary transmissions that
underwent outage due to primary interference. These
may then be recovered via BIC, should the PM become
available at the SR in the following ARQ rounds.

In the following, we letφ ∈ {0, 1} be theSR state
variable, where φ = 1 if the SR knows the PM,
and φ = 0 otherwise, andb ∈ N(0, t − 1) be the
buffer state variable, which represents the number of
secondary transmissions buffered at thetth ARQ round.
For simplicity, we assume that the SU can perfectly track
the current values oft, φ andb. We now analyze the SU
outage performance forφ ∈ {0, 1}.

1) PM unknown to the SR (φ = 0):
When φ = 0, transmissions are performed with power
Ps and rateRs0 (bits/s/Hz). We defineαs0(Rp) and
αs1(Rs0, Rp) < αs0(Rp) as the probability of success-
fully decoding the PM at the SR, when the ST is silent
and transmits, respectively. Although a control policy
which regulates the decodability of the PM at the SR by
continuously varying the rateRs0 and powerPs might
be devised, in this work we use a binary control strategy,
i.e., either a fixed secondary rate/power pairRs0, Ps is
employed, or no transmission is made at all.

We letρs0 (Rs0, Rp) be the secondary outage probabil-
ity under primary interference. The accrued throughput
is given byTs0(Rs0, Rp) = Rs0 (1− ρs0(Rs0, Rp)).
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The probabilityρs0 (Rs0, Rp) (αs1(Rs0, Rp)) is calcu-
lated by treating the received signal at the SR as coming
through a two-user Multiple Access Channel (MAC)
[13], where the SR is interested only in decoding the SM
(PM), by exploiting the codebook structure of the PM
(SM) [14]. Let MACs (Rs0, Rp) and MACp (Rs0, Rp)
be the set of channel gain pairs(γs, γps) supporting
the rate pair(Rs0, Rp) of the two-user MAC channel,
when we are interested in decoding only the SM or PM,
respectively. We have
{

ρs0 (Rs0, Rp) = Pr[(γs, γps) /∈ MACs(Rs0, Rp)]
αs1 (Rs0, Rp) = Pr[(γs, γps) ∈ MACp(Rs0, Rp)] .

Notice that the SR can acquire CSI whenever the
links PT-SR and ST-SR are active. Assuming this can
be performed without estimation errors (we refer to
Section VI for a discussion on the imperfect CSI
case), the SR can predict whether a failed transmis-
sion can be recovered via BIC: if both the SM and
the PM undergo outage at the SR, i.e.,(γs, γps) /∈
MACs(Rs0, Rp)

⋃

MACp(Rs0, Rp), but the SM can be
decoded after cancelling interference from the PM,
i.e., (γs, γps) ∈ MACs(Rs0, 0), then the SR buffers
the secondary transmission. In fact, since(γs, γps) ∈
MACs(Rs0, 0), its recovery via BIC is guaranteed, if the
PM becomes available in a future slot. We define the
probability of buffering the secondary transmission as

ωs(Rs0, Rp) = Pr[(γs, γps) ∈ MACs(Rs0, 0)∩

MACs(Rs0, Rp)
c ∩ MACp(Rs0, Rp)

c]

= ρs0(Rs0, Rp)− ρs0(Rs0, 0) > 0, (3)

whereQc is the complementary set ofQ. The decod-
ability regions for the PM/SM are depicted in Fig. 2.

2) PM known to the SR (φ = 1):
When φ = 1, secondary transmissions are performed
with power Ps and rateRs1. The accrued average
throughput is given byTs1(Rs1) = Rs1 (1− ρs1(Rs1)),
whereρs1(Rs1) = Pr(Rs1 > C(γs)) is the outage prob-
ability. Since the choice ofRs1 does not affect the
outage behavior at the PR (2) and the evolution of the
ARQ process, we assume that the transmission rateRs1

maximizesTs1(Rs1), and therefore

Ts1(Rs1) ≥ Ts1(Rs0) > Ts0(Rs0, Rp). (4)

It can also be shown that

Ts1(Rs0) = Ts0(Rs0, Rp) + ωs(Rs0, Rp)Rs0. (5)

Notice that the same argument cannot be applied to
Rs0, since its value reflects a trade-off between helping
the SR to decode the PM, maximizing the throughput
Ts0(Rs0, Rp), and maximizing the probability of recov-
ering a failed secondary transmission via BIC.

III. PERFORMANCEMETRICS AND PROBLEM

STATEMENT

The ST follows a generic past-dependent policyµ,
taking actions in the setA = {0, 1}, which correspond to
the ST staying silent (0) or transmitting (1), respectively.

We define the long-term secondary throughput induced
by policy µ as

Ts(µ) = lim inf
N→+∞

1

N
E

[

N−1
∑

n=0

1 (Ψn
S(µ))Rsφn

+

N−1
∑

n=0

1 (Λn
S(µ)) bnRs0

]

, (6)

where1 (·) is the indicator function,Ψn
S(µ) andΛn

S(µ)
are the events corresponding to the SR successfully
decoding the SM and the PM, respectively,φn is theSR
variable andbn is thebuffer statevariable in time slotn,
as defined in Section II-B. A similar expression holds for
the long-term primary throughputTp(µ) and secondary
powerPs(µ), for a proper choice of the events.

In this work, we study the problem

µ∗
(

T (th)
p ,P(th)

s

)

=argmax
µ

Ts(µ) (7)

subject to

{

Tp(µ) ≥ T
(th)
p

Ps(µ) ≤ P
(th)
s ,

whereT (th)
p ∈ [Rp(1 − ρp1), Rp(1 − ρp0)] andP

(th)
s ∈

[0, Ps] represent the primary throughput and the sec-
ondary power constraints, respectively.

We remark that, although the setup is very similar
to [10], the different assumption on the SU behavior



(BIC mechanism) results in a richer interaction between
SU and PU than in [10], and in a different solution to
(7). In fact, on the one hand, the SU is incentivized to
transmit, not only to accrue secondary throughput but
also to optimize the buffer occupancy and enable BIC
at the SR. On the other hand, secondary transmissions
diminish the allowed margin on the interference to the
PU, and on the secondary power budget, and preclude
the ability of the SR to decode the PM and exploit it to
perform interference cancellation (unlike [10], where this
knowledge was exploited only in the subsequent ARQ
rounds, here we have the additional BIC mechanism).

We define the state space of the network as

S ≡{(t, b, φ) , t∈N(1, T ), b∈N(0, t − 1), φ = 0}∪

{(t, b, φ) , t∈N(2, T ), b = 0, φ = 1} . (8)

The network is in state(t, b, φ) when the PU is in ARQ
statet, the SR in stateφ and the SR buffer in stateb.

In this work, we consider only the class of randomized
stationary policiesU = {µ : S 7→ [0, 1]}, since they
are optimal for (7) [15]. Therefore,µ(s) represents the
transmission probability in states ∈ S. Underµ ∈ U ,
the state of the network is modeled as a Homogeneous
Markov Process{sn, n = 0, . . . ,+∞, sn ∈ S}.

For the sake of notational convenience, we omit the
dependence of the parameters defined above on the rates
Rp, Rs0, Rs1, as long as this does not lead to confusion.

IV. M AIN RESULTS

Let πµ : S 7→ [0, 1] be the steady state distribution
[16] of the network under a stationary policyµ ∈ U ,
i.e., πµ(s) represents the long term fraction of the time
slots that the network spends in states. The average
long-term cost/reward underµ, C(µ), is then given
by C(µ) =

∑

s∈S
πµ(s)c(s), i.e., by weighting the

cost/reward associated to each state,c(s), by its steady
state probabilityπµ(s). From (6),Ts(µ) is then given by

Ts(µ) =
∑

s=(t,b,φ)∈S

πµ (s)µ (s)Tsφ+ (9)

∑

s=(t,b,0)∈S

πµ (s) [µ (s)αs1 + (1− µ (s))αs0] bRs0.

Notice that the expected secondary throughput reward
in states = (t, b, 0) accounts for the throughput accrued
from both the current transmission (µ (s)Ts0), and the
b buffered transmissions, recovered via BIC with proba-
bility µ (s)αs1 + (1− µ (s))αs0.

We define thesecondary access rateunderµ as

Ws(µ) =
∑

s∈S

πµ (s)µ (s) . (10)

This represents the long term number of secondary
accesses per time slot. We have the following result [10].

Lemma 1. The problem (7) is equivalent to

µ∗(ǫ) = argmaxµ∈UTs(µ) (11)

s.t.Ws(µ)≤min

{

Rp(1− ρp0)− T
(th)
p

Rp(ρp1 − ρp0)
,
P

(th)
s

Ps

}

≡ ǫ.

Then, (7) is equivalent to the secondary throughput
maximization, under a secondary access rate constraint.

Unfortunately, an explicit characterization of the per-
formance metrics and of the optimal policy for the
general caseT ≥ 2 is far too complex, due to the
quadratic increase of the number of states withT , and
on the non trivial interaction between the states of the
system. Therefore, we consider the caseT = 2, which
can be treated analytically. Namely, we prove that, under
a condition on the secondary throughputsTs0, Ts1, the
optimal policy has a unique structure. Yet, this analysis
provides valuable insight on the structure of the optimal
SU operation and on the interaction between PU and SU
in the general case, which is confirmed by simulation.

A. Optimal policy for the caseT = 2

For the sake of a more intuitive readability, we label
the four states of the system as:

snew = (1, 0, 0) new primary transmission,
snobuf = (2, 0, 0) no buffered transmission available,
sbuf = (2, 1, 0) buffered transmission available,
snoint = (2, 0, 1) no primary interference.

Before proceeding with the proof, we briefly describe
the structure of the optimal policy, depicted in Fig. 3.
The secondary transmissions are allocated starting from
the leftmost non-fully allocated state, until either the
constraint onWs(µ) ≤ ǫ in (11) is attained with equality,
or Ts(µ) starts decreasing.

In particular, transmissions are prioritized insnoint,
where the SR knows the PM, since primary interference

1 2 3 4
0

1

µ
∗
(ǫ

)

snew sbufsnobuf

ǫ = 0 ǫ = 1

snoint ≻≻≻

Figure 3: Optimal policyµ∗(ǫ) for T = 2 under the
hypothesis of Theorem 1. The area of the shaded re-
gion in each bin gives the transmission probability in
the corresponding state. The transmissions are allocated
starting from the leftmost non-fully allocated state, until
the constraintWs(µ) ≤ ǫ in (11) is attained, or the
secondary throughput starts decreasing.



can be cancelled, thus accruing a throughput gainTs1−
Ts0 > 0 over the other states where the PM is unknown.

Once transmissions in this state occur with probability
one (we say that the state isfilled), further secondary
transmissions may be allocated tosnew. In fact, if a trans-
mission in this state undergoes outage due to primary
interference, its recovery may be possible in the next
ARQ round via BIC. If no transmission is performed in
snew, then the BIC capability is not enabled at the SR.
This opportunity is not available insbuf andsnobuf .

Oncesnew has been filled, further secondary transmis-
sions are privileged insnobuf over sbuf . In fact, the ST
is incentivized to stay silent insbuf , so as to help the
SR to decode the PM, which enables recovery of the
buffered secondary transmission via BIC. This incentive
is not available insnobuf , where the buffer is empty.

Finally, oncesnobuf has been filled, further secondary
transmissions may be allocated tosbuf . However, this
occurs only ifRs0 (1− ρs0 + αs1) > Rs0αs0, i.e., if the
expected reward insbuf when the ST transmits (current
transmission and BIC recovery) exceeds the expected
reward when the ST stays silent (BIC recovery).

In order to prove the optimal policy, we make the
following definitions.

Definition 1. We say that policyµ̃ dominatesµ (we
write µ̃ ⊇ µ) if Ws(µ̃) = Ws(µ) andTs(µ̃) ≥ Ts(µ).

If the latter inequality is strict, we say that̃µ strictly
dominatesµ (we write µ̃ ⊃ µ).

A policy µ̃ ⊃ µ attains a better operational point than
µ, from the perspective of (11). Hence,µ is sub-optimal.

Definition 2. We say that policyµ ∈ U gives priority to
states1 over s2 if either µ(s1) = 1 or µ(s2) = 0. We
define the set of policies with this property as2

U (s1 ≻ s2)={µ ∈ U :µ(s1)=1}∪{µ ∈ U :µ(s2)=0} .

In general, we define the set of policies giving priority
to s1overs2, to s2 overs3, and so on, tosn−1 oversn as

U (s1 ≻ s2 ≻, . . . ,≻ sn) =

n−1
⋂

i=1

U (si ≻ si+1) . (12)

According to policyµ ∈ U (s1 ≻ s2), the ST transmits
more frequently when in states1 than when in states2
(except whenµ(s1) = µ(s2) ∈ {0, 1}). In fact, the con-
dition µ(s1) = 1 or µ(s2) = 0 implies µ(s1) ≥ µ(s2).

2Notice that the priority relation is not strict. In fact,

U(s1 ≻ s2) ∩ U(s2 ≻ s1) ≡

{µ ∈ U : µ(s1) = µ(s2) = 0} ∪ {µ ∈ U : µ(s1) = µ(s2) = 1} 6= ∅.

However, this feature is of no importance in the following treatment.

Definition 3. States1 ∈ S haspriority overs2 ∈ S\{s1}
(we write s1 ≻ s2) if, ∀µ /∈ U(s1 ≻ s2), ∃µ̃ ∈ U(s1 ≻
s2) such thatµ̃ ⊃ µ.

Lemma 2 (Characterization of the optimal policy).
Assume s1 ≻ s2, and let µ /∈ U(s1 ≻ s2). Then,
∃µ̃ ∈ U(s1 ≻ s2) such thatµ̃ ⊃ µ, i.e., attaining a
better operational point thanµ, from the perspective of
(11). Equivalently,µ is strictly sub-optimal for (11).

Alternatively, any policyµ which allocates transmis-
sions to states2 beforestates1 is fully allocated with
transmissions (thus not obeying the priority ofs1 over
s2) is strictly sub-optimal. Necessarily, ifs1 ≻ s2, the
optimal policyµ∗(ǫ) ∈ U(s1 ≻ s2). We conclude that we
can characterize the optimal policy by the priority of a
state over another, which determines the order according
to which the network states are filled.

Definition 4. We define thetransmission efficiencyunder
policy µ in states, such thatdWs(µ)

dµ(s) 6= 0, as

η (µ, s) =

dTs(µ)

dµ(s)
dWs(µ)

dµ(s)

. (13)

η (µ, s) gives the rate increase (or decrease when
negative) of the secondary throughput, per unit increase
of the secondary access rate, due to an increase of the
transmission probability in states.

The following Lemma can be proved.

Lemma 3. Let µ /∈ U(s1 ≻ s2). If η (µ, s1) > η (µ, s2),
then∃µ̃ ∈ U(s1 ≻ s2) such thatµ̃ ⊃ µ.

Moreover, assume that∀µ /∈ U∗, ∃µ̃ ∈ U∗ such that
µ̃ ⊃ µ, whereU∗ ⊆ U is a given set of policies. If
η (µ, s1)>η (µ, s2), ∀µ /∈ U(s1 ≻ s2)∩U∗, thens1 ≻ s2.

This is a consequence of the fact that, ifη (µ, s1) >
η (µ, s2), transmissions in states1 aremore efficientthan
those in states1, and a new policỹµ may be devised,
which prioritizes transmissions in states1 over states2.
One such̃µ has the following structure:







µ̃(s) = µ(s) s ∈ S \ {s1, s2}
µ̃(s1) = µ(s1) + ν1 0 < ν1 ≤ 1− µ(s1)
µ̃(s2) = µ(s2)− ν2 0 < ν2 ≤ µ(s2),

(14)

where(ν1, ν2) is the unique solution of̃µ ∈ U(s1 ≻ s2)
andWs(µ̃) = Ws(µ). Compared toµ, policy µ̃ moves as
many transmissions as possible froms2 to s1, until either
µ̃(s1) = 1 (s1 is filled) or µ̃(s2) = 0 (s2 is emptied).

Notice that the hypothesis of the Lemma∀µ /∈ U∗,
∃µ̃ ∈ U∗, µ̃ ⊃ µ, whereU∗ ⊆ U is a given set of policies,
is important in the proof of the optimal policy, which



follows. In fact, under this hypothesis the optimal policy
satisfiesµ∗(ǫ) ∈ U∗, hence we can restrict the search of
the optimal policy within the setU∗, rather than over the
whole setU , since anyµ /∈ U∗ is strictly sub-optimal.

The structure of the optimal policy is stated in the
following Theorem. An intuitive, non rigorous argument
follows; a detailed proof is given in the Appendix.

Theorem 1. If

δs ≡
Ts1 − Ts0 − ωsRs0

Rs0
<

αs1

αs0 − αs1
ωs, (15)

the optimal policy obeys the following priority:

snoint ≻ snew ≻ snobuf ≻ sbuf . (16)

Moreover, transmissions are allocated to statesbuf only
if 1− ρs0 > αs0 − αs1.

Proof: We prove the Theorem by contradiction.
Let µ /∈ U (snoint ≻ snew ≻ snobuf ≻ sbuf ) be a policy
violating the priority of the states.

We now define a sequence of policies
{

µ(i), i ≥ 0
}

with µ(0) = µ such thatµ(i+1) ⊃ µ(i)∀i, characterized by
attaining a better operational point, from the perspective
of solving (11), thus proving the sub-optimality ofµ.

Step 1: If µ(0) ∈ U(snoint ≻ snobuf ), we let
µ(1) ≡ µ(0). Otherwise (µ(0) /∈ U(snoint ≻ snobuf )),
we show thatη

(

µ(0), snoint
)

> η
(

µ(0), snobuf
)

, i.e.,
transmissions in statesnoint are more efficient than
in state snobuf , from the perspective of solving (11).
From Lemma 3,∃µ(1) ∈ U(snoint ≻ snobuf ) such that
µ(1) ⊃ µ(0). This is defined as in (14),i.e., it is obtained
by moving transmissions from statesnobuf to snoint.

Step 2: If µ(1) ∈ U(snobuf ≻ sbuf ), we let µ(2) ≡
µ(1). Otherwise (µ(1) /∈ U(snobuf ≻ sbuf )), we show
that η

(

µ(1), snobuf
)

> η
(

µ(1), sbuf
)

, i.e., transmissions
in statesnobuf are more efficient than those in statesbuf ,
from the perspective of solving (11). Then, from Lemma
3, we can define, using (14),µ(2) ∈ U(snobuf ≻ sbuf ),
by moving transmissions from statesbuf to snobuf , so
that µ(2) ⊃ µ(1). Notice that at this point we may have
µ(2) /∈ U(snoint ≻ snobuf ). It may then be necessary to
repeat Steps 1 and 2 to obey both priority constraints.
Notice that the transfer of transmissions fromsbuf to
snobuf , and finally tosnoint is unidirectional, hence in a
finite number of iterations of Steps 1 and 2 we obtain
µ(2) ∈ U(snoint ≻ snobuf ≻ sbuf ).

Step 3: If µ(2) ∈ U(snoint ≻ snew), we let µ(3) ≡
µ(2). Otherwise (µ(2) /∈ U(snoint ≻ snew)), we show
that η

(

µ(2), snoint
)

> η
(

µ(2), snew
)

. With the same
approach used in the previous steps, we can thus define,
using (14),µ(3) ∈ U(snoint ≻ snew), with µ(3) ⊃ µ(2).

Notice that we have alsoµ(3) ∈ U(snoint ≻ snew), hence
µ(3) ∈ U(snoint ≻ snobuf ≻ sbuf ) ∩ U(snoint ≻ snew).

Step 4: If µ(3) ∈ U(snew ≻ sbuf ), we letµ(4) ≡ µ(3).
Otherwise (µ(3) /∈ U(snew ≻ sbuf )), we show that
η
(

µ(3), snew
)

> η
(

µ(3), sbuf
)

. We can thus define,
using (14),µ(4) ∈ U(snew ≻ sbuf ), with µ(4) ⊃ µ(3).
Notice that we have alsoµ(4) ∈ U(snew ≻ sbuf ), so that
µ(4)∈U(snoint≻snobuf ≻sbuf )∩U(snoint≻snew≻sbuf ).

Step 5: If µ(4) ∈ U(snew ≻ snobuf ), we let µ(5) ≡
µ(4). Otherwise (µ(4) /∈ U(snew ≻ snobuf )), we show
that η

(

µ(4), snew
)

> η
(

µ(4), snobuf
)

. We can thus
define, using (14),µ(5) ∈ U(snew ≻ snobuf ), with
µ(5) ⊃ µ(4). Then, sinceµ(4) ∈ U(snew ≻ snobuf ), we
have alsoµ(5) ∈ U(snoint ≻ snew ≻ snobuf ≻ sbuf ).

Starting from a generic policyµ /∈ U(snoint ≻ snew ≻
snobuf ≻ sbuf ), we have thus defined a sequence of
policies

{

µ(i), i = 0, . . . , 5
}

such thatµ(5) ⊃ µ(4) ⊃
, . . . ,⊃ µ. This proves the sub-optimality ofµ.

B. Discussion

Notice that Ts1 − Ts0 − ωsRs0 represents the gap
between the throughput accrued when the SR knows
the PM, and the sum of the throughput accrued when
it does not know it, plus the "throughput" recovered via
BIC. Therefore, the hypothesis (15) simply sets an upper
bound to this gap. If the upper bound is exceeded,i.e.,
the throughput accrued when the SR knows the PM is
much larger than the combined instantaneous and BIC
throughputs when it does not know it, then transmissions
in statesnew, by impairing the ability of the SR to decode
the PM, may induce the system to visit the statessbuf

andsnobuf more frequently thansnoint, where the reward
is much larger, thus causing a secondary throughput
degradation. In this case, priority ofsnew over snobuf
andsbuf is not guaranteed.

V. NUMERICAL RESULTS

In this section, we discuss numerical results for the
caseT = 2, which demonstrate the performance im-
provement achievable by the BIC mechanism (BIC pol-
icy) over the transmission strategy investigated in [10],
which does not make use of BIC (no BIC policy). We
also compare them with anopportunistic BICpolicy.
Namely, the SR does not inform the ST about the buffer
state. As a consequence, the ST obliviously allocates
transmissions without being able to take advantage of
such knowledge, whereas the SR, whenever the PM is
decoded, performs BIC on the buffered transmission.

Each channel is modeled as i.i.d. Rayleigh fading
with common powerΓ ≡ Γs = Γp = Γps = Γsp,
and zero mean-unit variance circular Gaussian noise
at each receiver. Moreover, we letPp = Ps = 1,
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Figure 4: PU vs SU throughputs,T = 2, Γ = 5

Rs1 = argmaxRs
Ts1 (Rs1), and Rp maximizes the

primary throughput when the ST is silent.
Fig. 4 compares the performance of the three policies

in terms of the primary and secondary throughputs for
the caseΓ = 5 (see Table I for the corresponding system
parameters), obtained by varying the secondary access
rate constraintǫ ∈ [0, 1]. Notice that each policy is
evaluated for two different values of the rateRs0, namely
Rs0=argmaxRs

Ts0 (Rs, Rp) (solid line) andRs0=Rs1

(dashed line).
As expected, for a specific value of the rateRs0

the no BIC strategy performs the worst. In fact,no
BIC drops the failed transmissions in the first ARQ
round, whereasopportunistic BICand BIC buffer part
of them, since they may be recovered in the next ARQ
round via BIC, thus getting a net throughput benefit.
Moreover,BIC outperformsopportunistic BIC. In fact,
from the operational perspective, with theBIC strategy
the ST takes advantage of the knowledge of the buffer
state to make better decisions, e.g., by staying silent
when a secondary transmission is buffered, so as to
help the SR to decode the PM, thus favoring the BIC
mechanism. This additional degree of freedom brings a
net benefit over theopportunistic BICstrategy. Notice
also that the two policies perform the same in the low
interference range (highTp). In fact in this regime the
same transmission probability is allocated to statessnew

andsnoint, whereas statessbuf andsnobuf are kept silent.
We now compare the choice of the rateRs0. We

observe that, for a specific policy, usingRs0 =
argmaxRs

Ts0 (Rs, Rp) outperformsRs0 = Rs1. This
is expected for theno BIC policy, since usingRs0 =
Rs1, compared toRs0 = argmaxRs

Ts0 (Rs, Rp), both
decreases the accrued throughputTs0, and impairs the

Primary System
Rp = 1.9141 ρp0 = 0.4252 ρp1 = 0.8475

Secondary System, Rs0 = argmaxRs
Ts0 (Rs, Rp)

Rs0 = 1.3214 ρs0 = 0.4380 Ts0 = 0.7427
αs0 = 0.5748 αs1 = 0.4431 ωs = 0.1789
Rs1 = 1.9141 ρs1 = 0.4252 Ts1 = 1.1002

Secondary System, Rs0 = Rs1

Rs0 = 1.9141 ρs0 = 0.6857 Ts0 = 0.6015
αs0 = 0.5748 αs1 = 0.3143 ωs = 0.2605
Rs1 = 1.9141 ρs1 = 0.4252 Ts1 = 1.1002

Table I: System parameters, SNRΓ = 5. In the first row we
list the PU parameters, in the second and third rows we list
the SU parameters, forRs0 = argmaxRs

Ts0 (Rs, Rp) and
Rs0 = Rs1.

ability of the SR to decode the PM (Table I). However,
this is non trivial for the other two policies. In fact, using
Rs0 = Rs1 rather thanRs0 = argmaxRs

Ts0 (Rs, Rp)
has opposing effects on the system: on the one hand, it
reduces both the accrued secondary throughputTs0 and
the probability that the SR successfully decodes the PM,
αs1; on the other hand, it increases the probability that a
secondary transmission is buffered,ωs (Table I). In this
case, the gain in terms of buffering is smaller than the
loss due to a decrease of bothTs0 andαs1.

VI. D ISCUSSION ANDFUTURE WORK

In the caseT > 2, the analysis becomes far more
complicated thanT = 2, due to the complex interaction
among the states of the system. For this case, we have
conducted extensive simulations, showing evidence that
the optimal policy has less structure than in the case
T = 2, since there is not a well defined priority of the
states. However, we observe that, as in the caseT = 2,
the optimal policy prioritizes transmissions in the states
where the PM is known at the SR, and in the initial
ARQ rounds. This behavior can be explained by noticing
that such a policy optimizes the buffer occupancy, thus
maximizing the expected reward accrued via BIC.

So far, we have assumed perfect CSI at the SR.
However, this is rarely the case in a real system, where
channel estimation errors result in a performance degra-
dation [17]–[19]. Of particular relevance in this work is
the fact that the SR, once the PM is successfully decoded,
cannot exactly remove its interference from the received
signal, due to the mismatch between the true channel
and its estimate, resulting in a residual error term which
degrades the performance of interference cancellation
techniques [18]. This can be circumvented by defining
a worst case model where the channel is replaced by
its estimate, and the residual interference from channel
mismatch is modeled as additive Gaussian noise [19].



VII. C ONCLUDING REMARKS

In this work, following [10]–[12], we have further
investigated the idea of exploiting the primary ARQ pro-
cess to enhance the performance of cognitive networks,
and to enable primary and secondary users coexistence.
In particular, we have proposed and analyzed aBackward
Interference Cancellationscheme, according to which
the SR buffers the secondary transmissions that undergo
outage and attempts to recover them once the knowledge
about the PM becomes available in a future instant.

Following [9], [10], we have used a control based
approach to optimize the secondary access strategy,
under a constraint on the PU’s degradation. We have
characterized the optimal policy for the case where the
primary ARQ scheme is limited to one retransmission,
proving that, under certain conditions on the secondary
throughput terms, the policy admits a unique structure.
Finally, we have shown numerically the throughput ben-
efit of this scheme, over other techniques that either do
not use BIC, or use it in an opportunistic fashion.

APPENDIX

PROOF OFTHEOREM 1

Proof: By solving the stationary equation for a
specific policyµ ∈ U , we have






















πµ (snew) = 1
1+µ(snew)ρp1+(1−µ(snew))ρp0

πµ (snobuf )=
µ(snew)ρp1(1−αs1−ωs)+(1−µ(snew))ρp0(1−αs0)

1+µ(snew)ρp1+(1−µ(snew))ρp0

πµ (sbuf ) = µ(snew)ρp1ωs

1+µ(snew)ρp1+(1−µ(snew))ρp0

πµ (snoint) =
µ(snew)ρp1αs1+(1−µ(snew))ρp0αs0

1+µ(snew)ρp1+(1−µ(snew))ρp0

,

whereπµ(·) is the stationary distribution under policyµ,
and the system parameters are defined in Section II. We
now prove, in order,snoint ≻ snobuf ≻ sbuf , snoint ≻
snew, snew ≻ sbuf andsnew ≻ snobuf .

1) Proof ofsnoint ≻ snobuf :
Let µ /∈ U(snoint ≻ snobuf ). Notice that

η (µ, snoint) = Ts1 > η (µ, snobuf ) = Ts0. (17)

Therefore, from Lemma 3 withU∗ ≡ U , ∃µ̃ ∈
U(snoint ≻ snobuf ) such thatµ̃ ⊃ µ. Since this property
holds∀µ /∈ U(snoint ≻ snobuf ), the result follows.

2) Proof ofsnobuf ≻ sbuf :
Let µ /∈ U(snobuf ≻ sbuf ). Assumeµ(snew) = 0 first.
Then, sbuf is not accessible (since no message can be
buffered if the SU stays silent in the first ARQ round),
and therefore we can trivially definẽµ ∈ U(snoint ≻
sbuf ) as µ̃(s) = µ(s),∀s 6= sbuf , µ̃(sbuf ) = 0, such that
Ws(µ̃) = Ws(µ) andTs(µ̃) = Ts(µ). Hence,µ̃ ⊇ µ.

Otherwise (µ(snew) > 0), we have

η (µ, sbuf ) = Ts0 + (αs1 − αs0)Rs0

< Ts0 = η (µ, snobuf ) , (18)

where we have used the fact thatαs1 < αs0. From
Lemma 3 withU∗ ≡ U , this proves the existence of
µ̃ ∈ U(snobuf ≻ sbuf ) such thatµ̃ ⊃ µ.

In both cases, we have shown that∃µ̃ ∈ U(snobuf ≻
sbuf ) such thatµ̃ ⊇ µ. Therefore,snobuf ≻ sbuf .

3) Proof ofsnoint ≻ snobuf ≻ sbuf :
By combining the two cases above, we then obtain
snoint ≻ snobuf ≻ sbuf . Notice that, from Lemma
3, any policyµ /∈ U (snoint ≻ snobuf ≻ sbuf ) is sub-
optimal. In the following, we then assumeµ ∈
U (snoint ≻ snobuf ≻ sbuf ), and thus restrict the search
of the optimal policy within this set.

4) Proof ofsnoint ≻ snew:
Let µ /∈ U(snoint ≻ snew), µ ∈ U(snoint ≻ snobuf ≻
sbuf ). The first assumption impliesµ(snoint) < 1. Then,
from the second, we haveµ(sbuf ) = µ(snobuf ) = 0.

We proveη (µ, snew) < η (µ, snoint), or equivalently

Ts0 − Ts1 + ρp1ωsαs0Rs0 < 0. (19)

This inequality is trivially verified, by using (4), (5),
andρp1αs0 < 1. Therefore, from Lemma 3 withU∗ ≡
U (snoint ≻ snobuf ≻ sbuf ), ∃µ̃ ∈ U(snoint ≻ snew)
such thatµ̃ ⊃ µ, which provessnoint ≻ snew.

5) Proof ofsnew ≻ sbuf :
Let µ /∈ U(snew ≻ sbuf ), µ ∈ U(snoint ≻ snobuf ≻
sbuf ). The first assumption impliesµ(sbuf ) > 0. Hence,
from the second, we haveµ(snoint) = µ(snobuf ) = 1.

If µ(snew) = 0, sbuf is not accessible, and there-
fore we can trivially defineµ̃ ∈ U(snew ≻ sbuf ) as
µ̃(s) = µ(s), ∀s 6= sbuf , µ̃(sbuf ) = 1. Clearly,
Ws(µ̃) = Ws(µ) andTs(µ̃) = Ts(µ), henceµ̃ ⊇ µ.

Otherwise (µ(snew) > 0), we prove thatη(µ, snew) >
η(µ, sbuf ) = Ts0 −Rs0 (αs0 − αs1), or equivalently

g(ρp0, ρp1)=(αs0 − αs1)(1 + ρp1)+ρp1ωsαs1(1 + ρp0)

+(ωs + δs) (ρp1αs1 − ρp0αs0 + ρp1ρp0 (αs1 − αs0))>0,

Notice that g(ρp0, ρp1) is a linear function ofρp0.
Since ρp0 ∈ [0, ρp1], we then haveg(ρp0, ρp1) ≥
min {g(0, ρp1), g(ρp1, ρp1)}, where






g(0, ρp1) = (αs0−αs1)(1+ρp1)+(2ωs + δs)ρp1αs1

g(ρp1, ρp1) = (αs0−αs1)(1+ρp1)+ρp1ωsαs1(1+ρp1)
+(ωs + δs)ρp1 (1 + ρp1) (αs1 − αs0) .

Moreover, g(ρp1,ρp1)
1+ρp1

is a linear function ofρp1, hence

g(ρp1, ρp1) ≥ (1 + ρp1)min

{

g(0, 0),
g(1, 1)

2

}

,



where






g(0, 0) = (αs0 − αs1)
1
2g(1, 1) = (αs0 − αs1) + ωsαs1

+(ωs + δs) (αs1 − αs0) .
(20)

By combining the above inequalities, we obtain

g(ρp0, ρp1)

1 + ρp1
≥ min

{

g(0, ρp1)

1 + ρp1
, g(0, 0),

1

2
g(1, 1)

}

.

Clearly, g(0, ρp1) > 0, g(0, 0) > 0. If g(1, 1) > 0, i.e.,

δs < 1− ωs + ωs
αs1

αs0 − αs1
(21)

(this is implied by the hypothesis of the Theorem), then
g(ρp0, ρp1) > 0. Therefore,∃µ̃ ∈ U(snew ≻ sbuf ) such
that µ̃ ⊃ µ, which provessnew ≻ sbuf .

6) Proof ofsnew ≻ snobuf :
Let µ /∈ U(snew ≻ snobuf ), µ ∈ U(snoint ≻ snobuf ≻
sbuf ). Since we have provedsnoint ≻ snew ≻ sbuf , we
also assumeµ ∈ U(snoint ≻ snew ≻ sbuf ). Then we
haveµ(snobuf ) > 0, µ(sbuf ) = 0 andµ(snoint) = 1.

We prove thatη(µ, snew) > η(µ, snobuf ) = Ts0, i.e.,

h(ρp0, ρp1) = ωs [(ρp1 − ρp0)αs0 + ρp1αs1 (1 + ρp0)]

+ δs [(1 + ρp0)ρp1αs1 − (1 + ρp1)ρp0αs0] > 0. (22)

We prove the inequality by lower boundingh(ρp0, ρp1)
with a non-negative function.h(ρp0, ρp1) is a linear
function of ρp0 ∈ [0, ρp1], therefore h(ρp0, ρp1) ≥
min{h(0, ρp1), h(ρp1, ρp1)}, where

{

h(0, ρp1) = ωsρp1 (αs0 + αs1) + δsρp1αs1

h(ρp1, ρp1) = ρp1 (1 + ρp1) [ωsαs1 − δs (αs0 − αs1)] .

Clearly,h(0, ρp1) > 0. If h(ρp1, ρp1) > 0, or equivalently

δs < ωs
αs1

αs0 − αs1
(23)

(from the hypothesis of the Theorem), thenh(ρp0,ρp1)>0.
Therefore,∃µ̃ ∈ U(snew ≻ snobuf ) such thatµ̃ ⊃ µ.

This provessnew ≻ snobuf .
7) Proof ofsnoint ≻ snew ≻ snobuf ≻ sbuf :

By combining the above results, we have proved that

snoint ≻ snew ≻ snobuf ≻ sbuf . (24)

Finally, if η(µ, sbuf ) ≤ 0 (equivalently,1 − ρs0 ≤
αs0−αs1), then transmissions insbuf induce a secondary
throughput degradation, hence they should be avoided.
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