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Abstract—A two-state compound relay channel is considered
where the relay and the destination are informed about the
channel state while the source is not. Achievable rates and upper
bounds are derived for discrete memoryless and Gaussian mod-
els, and specialized to a scenario with orthogonal components.
It is shown that, apart from some special cases, optimality
conditions valid for decode-and-forward (DF)-based solutions
on a standard relay channel do not carry over to a compound
setting, and more fl exible transmission strategies are generally
advantageous. For instance, partial decode-and-forward (PDF)
that superimposes transmission of three layers and uses joint
decoding at the destination performs better than the standard
two-layer PDF with successive decoding, even when the latter
is optimal for the regular relay channel. Moreover, the capacity
is derived in the special case in which the relay is not active in
one state. Extension to the broadcast coding approach, as an
alternative to the compound model, is also discussed.

I. INTRODUCTION

The relay channel introduced in [1] represents one of
the most fundamental building blocks of communication
systems in which cooperative transmission is enabled. In its
basic form, a relay channel consists of a three-node network
including a source, a destination and a relay, the sole purpose
of the latter being that of improving the source-destination
communication. Initial work on the relay channel has focused
on discrete memoryless and Gaussian models [2]. In these
models, an underlying assumption is that the source, relay
and destination are all informed about the channel, i.e., about
the conditional distribution of the outputs (of the relay and
the destination) given the inputs (of the source and the
relay). Given the interest of cooperative models for wireless
systems, relaying over fading channels has later been studied,
under both the assumption of ergodic fading variations (for
fast-varying channels) and quasi-static fading (for slow-
varying channels), see, e.g., [3] and references therein. In
both cases, channel state information at the receiver side
(for both the relay and the destination) is typically assumed,
whereas the transmitters (the source and the relay) may or
may not be aware of the current channel realizations. The
latter condition is generally assumed for quasi-static fading
channels, where the concept of outage probability is used
to define the probability that a certain fixed rate cannot be

O. Simeone is with CWCSPR, ECE Dept. NJIT
{osvaldo.simeone@njit.edu}.

D. Gündüz is with the Dept. of EE, Princeton Univ., and with the Dept.
of EE, Stanford Univ. {dgunduz@princeton.edu}.

S. Shamai (Shitz) is with the Department of EE, Technion
{sshlomo@ee.technion.ac.il}.

’This work was supported by the NEWCOM++ network of excellence
within the 7th European Community Framework Programmes, and the ISRC
consortium for wireless communication, and by the U.S. National Science
Foundation under grant CCF-0914899.

supported by the current channel realization, see, e.g., [3]-
[6].

Consider a relay channel where the channel state remains
constant for the entire duration of a codeword, and assume
that the source, and possibly the relay, are unaware of
the current channel realization. The scenario just described
can be seen as a compound relay channel. In a compound
channel, a rate is said to be achievable if a code can be
found that guarantees vanishing probability of error for any
channel in the uncertainty set [8]. In this sense, the quasi-
static fading relay model can be studied as a compound
relay channel where the channel uncertainty set is selected
so that the measure of its complement provides the desired
outage probability. This standpoint is taken in [4] to derive
an achievable rate for half-duplex quasi-static fading relay
channels.

In this paper, we revisit the model of a compound relay
channel. Unlike [4], where the goal was that of deriving
an achievable scheme with optimal outage properties, here
we tackle the analysis of discrete memoryless and Gaussian
compound relay channels per se. We focus on a two-state
model and assume that while the source is unaware of the
current channel conditions, the relay and the destination are
informed. Achievable rates and upper bounds are derived for
discrete memoryless and Gaussian models, and specialized to
a scenario with orthogonal components, extending the anal-
ysis in [7]. Generalization to the broadcast coding approach
[9] [10], as an alternative to the compound model, is also
discussed. After completing this paper, the authors became
aware of the concurrent work [12] that considers the same
model studied here by deriving achievable rates based on
Decode-and-Forward (DF) and the coding scheme of [13].

We start by describing the system model in Sec. II,
and then analyze the general two-state discrete and Gaus-
sian compound relay channel in Sec. III. The orthogonal-
component model is studied in Sec. IV, and the broadcast
coding approach scenario is discussed in Sec. V. Finally, the
"occasional relay" scenario is studied in Sec. VI.
Notation: We define xi = (x1, ..., xi); Probability distri-

butions are identified by their subscripts, e.g., PX(x) or PX
equals PX(x) = Pr[X = x] for a random variable X; For a
set X , |X | denotes the cardinality; [1,M ] = {1, ...,M} with
M integer.

II. SYSTEM MODEL

Consider a discrete memoryless compound relay (CR)
channel (X ,T ,P(θ)

Y,Z|X,T ,Y,Z) parameterized by θ ∈ Θ,
with Θ being the channel uncertainty set, as shown in Fig. 1-
(a). The input symbol of the source is taken from alphabet X ,



while the input alphabet for the relay is T . Output alphabets
for the relay and the destination are denoted as Y and Z,
respectively. The channel at state θ ∈ Θ is characterized
by the distribution P(θ)

Y,Z|X,T . The encoder is assumed to be
unaware of the current channel realization θ ∈ Θ, while both
the relay and the destination are informed about θ.
Remark 1: The analysis of this paper carries over to more

general CR models (X ,T (θ),P(θ)
Y,Z|X,T ,Y(θ),Z(θ)) where

the input and output alphabets of the relay and the output
alphabet of the destination depend on the current value of θ.
Definition 1: An (M,n) code for the CR channel of Fig.

1-(a) consists of a message set [1,M ], a source encoder

f : [1,M ]→ Xn, (1)

that maps a message W ∈ [1,M ] into a codeword xn(W ) ∈
Xn; a set of n|Θ| relaying functions

f
(θ)
i : Yi−1 → T , (2)

that map the received sequence yi−1 into an input symbol
ti = f

(θ)
i (yi−1) ∈ T , for i = 1, ..., n and θ ∈ Θ; and |Θ|

decoding functions

g(θ): Zn → [1,M ], (3)

that provide the decoded message as Ŵ (θ) = g(θ)(zn) ∈
[1,M ] for θ ∈ Θ.

Notice that the relay encoding function (2) and the de-
coding function (3) depend on the channel state θ since the
relay and the destination are assumed to know the current
parameter θ ∈ Θ. The channel is assumed to be memoryless
so that given the above definitions, the joint distribution of
the involved random variables P(θ)

WXnTnY nZnŴ
for a given

θ factorizes as

1

M
PXn|W (xn|w)

Ã
nY
i=1

P
(θ)
Ti|Y i−1(ti|yi−1) (4)

·P(θ)
Y Z|XT

(yi, zi|xi, ti)
´
P
(θ)

Ŵ |Zn(ŵ|z
n),

where PXn|W , P
(θ)
Ti|Y i−1 and P(θ)

Ŵ |Zn are defined by (1), (2)
and (3), respectively, and are thus deterministic (i.e., they
take values 0, 1), and the message W is assumed to be
uniformly distributed in [1,M ]. For a given (M,n) code the
probability of error is defined as

Pn
e = sup

θ∈Θ
Pr θ[Ŵ 6=W ], (5)

where Pr θ[·] is taken with respect to the measure (4).
Definition 2: A rate R is said to be achievable for the CR

channel if for any � > 0 and δ > 0 and for all sufficiently
large n there exist (M,n) codes such that Pn

e ≤ � and
logM/n ≥ R − δ. The capacity of the CR channel is the
supremum of all achievable rates.

A. Equivalent System with Two States (Θ = {1, 2})
From now on, we focus for simplicity on the case with

only two states, i.e., Θ = {1, 2}. Under the stated as-
sumption, it can be seen that the CR channel is equiv-
alent to a multicasting system with two relays and two
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iXW
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Ŵ

W1

W2

(b)





2iY 2iT

Fig. 1. (a) A Compound Relay (CR) channel; (b) Equivalent model for
uncertainty set Θ = {1, 2}.

receivers as shown in Fig. 1-(b). Denoting as T1, T2
the relays’ inputs, as Y1, Y2 the relays’ outputs and as
Z1, Z2 the destinations’ outputs, we will use the defini-
tions PYθZθ|XTθ , P

(θ)
Y Z|XT

, PTθ,i|Y i−1
θ

, P
(θ)
Ti|Y i−1 and

PŴθ|Znθ , P
(θ)

Ŵ |Zn for θ ∈ {1, 2} to clarify the relationship
between the equivalent models in Fig. 1-(a) and Fig. 1-
(b). Note that the achievable rate as defined above depends
on the joint distribution PWXnTn1 T

n
2 Y

n
1 Y n

2 Zn1 Z
n
2 Ŵ1Ŵ2

only
through the marginals PWXnTn1 Y

n
1 Zn1 Ŵ1

= P
(1)

WXnTnY nZnŴ

and PWXnTn2 Y
n
2 Zn2 Ŵ2

= P
(2)

WXnTnY nZnŴ
(recall (4)).

B. Gaussian Model with Power Constraints
Beside the discrete memoryless CR discussed above, the

corresponding Gaussian CR model is considered, which is
given by, with the notation of the equivalent two-relay model
of Fig. 1-(b),

Yθ,i = γθXi +NYθ,i (6a)
Zθ,i = αθXi + βθTθ,i +NZθ,i, (6b)

for θ ∈ {1, 2}. We assume all channel gains γθ, αθ, βθ ≥ 0,
and white, unit-power, independent Gaussian noises NY,i and
NZ,i. Finally, we assume per-block power constraints

1

n

nX
i=1

E[X2
i ] ≤ P and

1

n

nX
i=1

E[T 2θ,i] ≤ Pθ, (7)

θ = 1, 2, where the average E[·] is taken with respect to
the message set and the channel statistics. Note here that we
consider separate average power constraints at the relay for
different channel states.

III. SYSTEM ANALYSIS

In this section, we derive upper and lower bounds on the
capacity of the CR channel.



A. Upper Bound
Proposition 1: The following is an upper bound on the

capacity of the discrete memoryless CR channel:

R ≤ max
PX

min
n
I
(ub)
1 (PX), I

(ub)
2 (PX)

o
(8a)

I
(ub)
θ (PX) = max

PTθ|X
min{I(X;YθZθ|Tθ), I(XTθ;Zθ)} ,

(8b)

whereas for the Gaussian CR channel, we have the upper
bound

R ≤ min
n
I
(ub)
1 , I

(ub)
2

o
(9a)

I
(ub)
θ = max

0≤ρθ≤1
min

⎧⎨⎩
1
2 log2

¡
1 + (γ2θ + α2θ)P (1− ρ2θ)

¢
1
2 log2

µ
1 + α2θP + β2θPθ
+2ρθαθβθ

√
PPθ

¶ ⎫⎬⎭ .

(9b)

Proof : The bound (8) follows from the standard cut-set
bound, and uses the fact that I

(ub)
θ (PX) depends only on

the joint distribution PXTθ . The bound for the Gaussian
case follows similarly by further accounting for the power
constraints and using the maximum conditional entropy
theorem.

B. Achievable Rates
Achievable rates via Compress-and-Forward (CF) for both

discrete-memoryless and Gaussian CF, and Amplify-and-
Forward (AF) for the Gaussian CR channel are straight-
forward generalizations of the corresponding results for the
standard relay channel model of [2] (see also Remark 7).
Therefore, here we limit the scope to DF protocols, whose
analysis does not follow from the standard relay channel
model.
1) Decode-and-Forward (DF): In DF the message is

decoded by both of the relays, which then collaborate with
the source to forward the message to the destinations.
Proposition 2: The following rate is achievable via DF for

the discrete memoryless CR channel:

R < max
PXT1T2

min
n
I
(DF )
1 (PXT1T2), I

(DF )
2 (PXT1T2)

o
,

(10)
with

I
(DF )
θ (PXT1T2) = min {I(X;Yθ|T1T2), I(XTθ;Zθ)} ,

(11)
whereas for the Gaussian CR channel we have

R < max
0≤ρ≤1

min
n
I
(DF )
1 , I

(DF )
2

o
(12)

I
(DF )
θ = min

½
1
2 log2

¡
1 + γ2θP

¡
1− ρ2

¢¢
,

1
2 log2

¡
1 + α2θP + β2θPθ + 2ραθβθ

√
PPθ

¢ ¾ .

Proof : See Appendix-A.
Remark 2: Consider the case where both component re-
lay channels are physically degraded, i.e., the symbol-wise
Markov chain conditions X − TθYθ − Zθ hold for θ = 1, 2.
In the standard relay channel case, it is well know that DF
achieves the cut-set bound and is thus optimal under this
assumption. In contrast, for the CR channel, this is generally

not the case. Intuitively, this is because the source cannot
choose the optimal resource allocation between the signal
that carries the newly generated information in each block
(to be decoded at the relays) and the signal correlated with
the relay input Tθ (to boost reception at the destination),
simultaneously for both of the relay channels. For instance,
if a relay is closer to the destination than the other, the source
would have to target the farther destination when allocating
resources to the transmission of the new message. From an
analytical standpoint, notice that in (11) the conditioning on
both T1 and T2 in the first term accounts for the fact that the
part of the source input X that is correlated with either of
the relay inputs does not carry new information in a given
block. It follows that DF for the CR is optimal when the two
channel components are degraded and, additionally, one of
the two conditions hold: (i) Among the pairs of distributions
PXT1 and PXT2 maximizing the cut-set bound (8), there
exist one such that PXT1 = PXT2 , P∗XT = P∗TP

∗
X|T :

Under this assumption, we can take PXT1T2(x, t1, t2) =
P∗T (t1)P

∗
X|T (x, t1)δ(t1 − t2) in (10), which coincides with

the optimized cut-set bound (This is the case, e.g., when
one channel component is "better" than the other so that
P∗XT can be chosen to be the optimal distribution for the
worse component); (ii) The distributions PXT1 and PXT2

maximizing the cut-set bound (8) are of the form P∗XP∗Tθ
so that we can set PXT1T2 = P

∗
XP∗T1P∗T2 in (10) and obtain

the cut-set bound (8) (This case occurs, e.g., in a "multihop"
scenario where we have PYθZθ|XTθ = PYθ|XPZθ|Tθ ).

Further elaboration on the performance of DF is provided
by focusing on the Gaussian model via some numerical
results. Fig. 2 shows the upper bound (9) along with the
achievable rate (12) via DF (upper figure) and the optimal
correlation coefficients for I(ub)1 , I

(ub)
2 and for the achievable

rate (12) (lower figure). Parameters are selected as P = P1 =
P2 = 3, α

2
1 = α22 = 1, γ

2
θ = 1/d

2
θ, β

2
θ = 1/(1−dθ)2, where

dθ denotes the source-to-relay normalized distance for the
two relays. It is assumed that d2 = d1 + x/2 so that as
x increase the second relay moves away from the source.
Moreover, we set d1 = 0.01. For x = 0, both relays are
in the same location and close to the source, and thus DF
is approximately optimal (i.e., it coincides with the upper
bound). However, as x increases, one of the two relays moves
further away and DF is no longer optimal. As for the optimal
values of the correlation coefficient, it can be seen that in
the upper bound (9) as far as the first relay is concerned,
the optimal correlation coefficient is ρ∗1 ' 1, while ρ∗2
decreases with x. The achievable DF scheme selects a single
correlation factor, whose optimal value falls somewhere in
between ρ∗1 and ρ∗2.

2) Partial Decode and Forward (PDF): As discussed
above, DF is limited by the fact that the source cannot tailor
the transmission strategy similarly for both relays. Partial
decode-and-forward (PDF) based on a three-layer coding
strategy is investigated in this section as a solution to this
limitation.

Proposition 3: The following rate is achievable via PDF
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Fig. 2. Upper bound (9) and achievable rates via DF (12) and PDF (13)
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2).

for the discrete memoryless CR channel:

R < min{min
θ

I(XTθ;Zθ),

min{I(XT1;Z1|V T2U1), I(X;Z2|V T2U1)}
+min

θ
I(U1;Yθ|V T2),

min{I(X;Z1|U1U2V T1T2), I(X;Z2|U1U2V T1T2)}
+min

θ
I(U1;Yθ|V T2) + I(U2;Y1|U1V T1T2)} (13)

for any joint distribution

PU1U2V T1T2X = PV U1T2PT1|V T2PU2X|U1V T1T2 .

For the Gaussian model rate (13) is achievable via PDF with
the mutual information terms calculated in (31)-(32) for any
parameter set 0 ≤ η, η1, η2, η

0
3, η

00
3 ≤ 1 with η03 + η003 ≤ 1

(and definitions η̄j = 1−ηj and η̄3 = 1−η03−η003). The rate
defined above is also achievable with swapped subscripts 1
and 2.
Proof : See Appendix-B.
Remark 3 (sketch of the proof): The proposed PDF scheme

works by using block-Markov encoding (with number of
blocks B → ∞), along with superposition coding, and
the basic idea is as follows. The source splits the message
to be sent in each block (of rate R) into three parts as
R = R1+R2+R3. The first part, of rate R1, is decoded by
both of the relays and is "carried" by the auxiliary random
variable U1. The second part is decoded only by the first
relay (a symmetric result holds by considering the second
relay instead) and is conveyed via the auxiliary random
variable U2. The third part is not decoded by any relay
and is transmitted directly to the destinations. Relay 1 and
relay 2 cooperate with the source, in the slot following
decoding, for transmission of the first message, while relay 1
also cooperates for the transmission of the second message.
Specifically, cooperation on the first message at relay 1 takes
place through the auxiliary variable V. The two destinations

perform joint decoding of the three messages using either
backward or sliding window decoding based on two consec-
utive received blocks.
Remark 4: Setting V = T1, U1 = X and U2 = U1 in (13),

we recover the rate achievable with DF. The same holds in
the Gaussian case by choosing η1 = 1, η = 0, and η03 = 1.
Remark 5: In the standard relay channel, PDF transmits a

single message to the relay [2]. Moreover, there is no loss in
performance by using successive decoding at the destination,
whereby the message that is forwarded with the help of the
relay is decoded first, followed by the message sent directly
to the destination. On the contrary, in the CR channel, a more
general scheme that transmits two messages to the relays, as
explained above, may be more advantageous. Furthermore,
the performance with successive decoding can be improved
upon by joint decoding. To illustrate this latter fact, consider
the special case of (13) where the rate of the second message
(see description above) is set to zero, i.e., R2 = 0 and V =
T1, U2 =constant, so that a single message is decoded by
both relays. Rate (13) reduces to

R < max
PXU1T1T2

min{min
θ

I(XTθ;Zθ), min
θ

I(U1;Yθ|T1T2)

+min
θ

I(X;Zθ|U1T1T2)}. (14)

By employing successive decoding as in the standard relay
channel case, we instead achieve:

R < max
PXU1T1T2

min
θ
{min(I(U1;Yθ|T1T2), I(U1T1T2;Zθ))}

+min
θ
{I(X;Zθ|U1T1T2)} , (15)

which is generally smaller than (14).
Remark 6: For the numerical example of Fig. 2, it is seen

that, as expected, PDF improves the achievable rate when
the distance of the two relays from the source is sufficiently
different, i.e., when x is large enough.
Remark 7: It is interesting to compare the performance of

the DF and the PDF schemes discussed above with the CF
strategy. Focusing on the Gaussian CR (same considerations
apply for the discrete memoryless CR), it can be seen that
CF achieves the rate

R =
1

2
log2

µ
1 +min

θ

½
α2θP +

γ2θP

1 + σ2θ

¾¶
(16)

with σ2θ =
1+P (γ2θ+α

2
θ)

β2
θ
Pθ

. This is simply the minimum of the
CF rates for the two channels (see, e.g., [11]). For the ex-
ample of Fig. 2, the rate of CF is approximately equal to 1.4
[bits/channel use] for any x and is thus largely outperformed
by DF. This is due to the fact that the performance of CF is
limited by the "worst" relay channel, which in our example
is the first relay, being close to the source.

IV. ORTHOGONAL-COMPONENTS COMPOUND RELAY
MODEL

In this section, we focus on the orthogonal-components
(OC) CR model, which generalizes the scenario of [7]. In this
model, the channel from the source to the relay is orthogonal
to that from the source-relay pair to the destination, as



detailed below. Reference [7] shows that in a standard OC
relay channel, PDF is optimal, in that it achieves the cut-set
upper bound.

A. Orthogonal-Components CR channel
Similar to [7], the OC-CR channel is defined as a special

case of the general CR model of Fig. 1 by setting X = [XR

XD] and

PYθ,Zθ|X,Tθ = PYθ|XR,TθPZθ|XD,Tθ , (17)

for θ ∈ {1, 2}, where XR represents the symbol sent on the
channel component from the source to the two relays, i.e.,
PYθ|XR,Tθ , and XD represents the symbol sent on the chan-
nel component towards the destination, i.e., PZθ|XD,Tθ . We
also consider the Gaussian version of the OC-CR channel,
which is defined, extending [7] to the compound model at
hand, as:

Yθ,i = γθXR,i +NYθ,i (18a)
Zθ = αθXD,i + βθTθ,i +NZθ,i, (18b)

with white, unit-power, independent Gaussian noises NY,i

and NZ,i, and power constraints 1
n

Pn
i=1E[X

2
R,i] +

E[X2
D,i] ≤ P and 1

n

Pn
i=1E[T

2
θ,i] ≤ Pθ.

B. Upper Bound
Proposition 4: The following is an upper bound on the

capacity of the discrete memoryless OC-CR channel:

R ≤ max
PXDXR

min
n
I
(ub)
1 (PXDXR

), I
(ub)
2 (PXDXR

)
o

(19a)

I
(ub)
θ (PX) = max

PTθ|XDXR

min{I(XR;Yθ|Tθ)

+ I(XD;Zθ|Tθ), I(XDTθ;Zθ)}, (19b)

while for the Gaussian OC-CR channel, we have:

R ≤ max
0≤η≤1

min
n
I
(ub)
1 (η), I

(ub)
2 (η)

o
(20a)

I
(ub)
θ (η) = max

0≤ρθ≤1,
min{1

2
log2

¡
1 + (1− η)γ2θP

¢
(20b)

+
1

2
log2

¡
1 + ηα2θP (1− ρ2θ)

¢
,

1

2
log2

³
1 + ηα2θP + β2θPθ + 2ρθαθβθ

p
ηPPθ

´
}.

Proof : The bound (19) follows from Proposition 1 by
setting X = [XD XR] and then proceeding as in Sec. II of
[7]. The bound for the Gaussian case also follows similarly
to the discussion in Sec. III of [7].

C. Achievable Rates
Here, we study the rate achievable via PDF. It is recalled

that PDF is optimal for the standard OC relay channel [7].
Proposition 5: The following rate is achievable via PDF

for the discrete memoryless OC-CR channel:

R < max
PXDXRUT1T2

min{min
θ

I(XR;Yθ|T1T2) (21)

+min
θ

I(XD;Zθ|XRT1T2), min
θ

I(XDTθ;Zθ)},

while for the Gaussian OC-CR channel we have:

R < max
0≤η≤1
0≤ρ≤1

min{min
θ

1

2
log
¡
1 + γ2θηP

¢
(22)

+min
θ

1

2
log
¡
1 + α2θ(1− η)(1− ρ2)P

¢
,

min
θ

1

2
log

µ
1 + α2θ(1− η)P + β2θPθ
+2αθβθρ

p
(1− η)PPθ

¶
}.

Proof : Rate (21) follows from (14) by setting U1 = XR.

For the Gaussian model, we evaluate the involved mutual
informations with Tθ =

√
PθT̃ , XR =

√
ηPŨ and XD =p

(1− η)P
³
ρT̃ +

p
1− ρ2X̃

´
, where T̃ , X̃, Ũ ∼ N (0, 1)

are independent.
Remark 8: While the scheme of Proposition 5 employs

a two-layer PDF scheme, a generally better rate can be
obtained by setting U1 = XR in (13), rather than in (14),
thereby using a three-layer transmission. This is not further
pursued here.
Remark 9: Similar to the discussion in Remark 5, rate

(21) is obtained via joint decoding at the destination. Using
the successive decoding scheme that would be optimal in a
standard OC relay channel, we instead obtain from (15) the
achievable rate:

R < max
PXDXRT1T2

min
θ

½
min(I(XR;Yθ|T1T2),

I(XRT1T2;Zθ))

¾
+min

θ
{I(XD;Zθ|XRT1T2)} , (23)

and for the Gaussian OC-CR:

R < max
0≤η≤1
0≤ρ≤1

min
θ

½
min

µ
1

2
log
¡
1 + γ2θηP

¢
,

1

2
log

Ã
1 + α2θ(1− η)P + β2θPθ + 2αθβθρ

p
(1− η)PPθ

1 + α2θ(1− η)(1− ρ2)P

!!
+min

θ

½
1

2
log
¡
1 + α2θ(1− η)(1− ρ2)P

¢¾
. (24)

Fig. 3 shows the achievable rate for a Gaussian OC-
CR model via PDF with joint decoding (JD) as in (22),
successive decoding (SD) as in (24), and the upper bound
(20) for P = P1 = P3 = 3, γ21 = β21 = a > 1,
γ22 = β22 = 1, α22 = a versus α21. In other words, the first
channel has the best gains to/from the relay by a factor of
a > 1, while the direct channel to the destination of the
second channel can be potentially better for channel 2 (since
α22 = a). Two major differences are observed with respect
to the standard non-compound case [7]: (i) Here, PDF is not
necessarily optimal: In particular, it is optimal if one of the
two channels dominates the other, that is, all the channel
gains are larger for one of the two channels (here channel
1 dominates if α21 ≥ a, see also Remark 2); (ii) Successive
interference cancellation at the receiver may fail to achieve
the upper bound (when α21 is sufficiently large), even when
PDF is optimal: in this case, joint decoding at the receiver
is necessary.
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Fig. 3. Achievable rate on a Gaussian OC-CR model via PDF with joint
decoding (JD), (22), and successive decoding (SD), (24), as compared to
the upper bound (20) versus α21 (P = P1 = P3 = 3, γ21 = β21 = a > 1,
γ22 = β22 = 1, α

2
2 = a).

V. BROADCAST CODING APPROACH

In this section, we consider an alternative definition of the
achievable rate that allows delivery of a variable number of
bits depending on the network state [9] [10]. This strategy
is typically referred to as the broadcast coding approach and
entails the following definitions of coding and achievable
rates. Notice that we focus on the general CR but the results
are specialized easily to the OC-CR model.
Definition 3: An (M1,M2, n) broadcast code for the CR

model of Fig. 1-(a) with Θ = {1, 2} consists of message sets
[1,M1] and [1,M2], an encoder

f : [1,M1]× [1,M2]→ Xn, (25)

that maps messages Wi ∈ [1,Mi], i = 1, 2, into a codeword
xn(W1,W2) ∈ Xn; a set of 2n relaying functions (2) and
two decoding functions

g(1) : Zn → [1,M1]× [1,M2] (26)
g(2) : Zn → [1,M1], (27)

that provide the decoded messages as (Ŵ (1)
1 , Ŵ2) =

g(1)(zn) ∈ [1,M1]× [1,M2] and Ŵ
(2)
1 = g(2)(zn).

The definition above implies that when in state θ = 1
(the "good" state) the destination is required to decode both
W1 and W2, thus receiving log2M1+log2M2 bits, whereas
in state θ = 2 (the "bad" state) only the message W1 is
decoded. As explained in [10], this approach to coding is
especially of interest for multimedia applications such as
video streaming, where multilayer (successive refinement)
coding enable progressively better "reception quality" as
more layers (messages) are correctly decoded. Notice that
one could clearly switch the indices of channels 1 and 2.
Definition 4: A pair of rates (R1, R2) is said to be

achievable for the CR channel with broadcast coding if for
any � > 0 and δ > 0 and for all sufficiently large n

there exist (M1,M2, n) broadcast codes such that Pn
e =

max{Pr θ=1[(Ŵ (1)
1 , Ŵ2) 6= (W1,W2)], Pr θ=2[Ŵ

(2)
1 6=

W1]} ≤ � and logM1/n ≥ R1 − δ, logM2/n ≥ R2 − δ.

The capacity region of the CR channel is the closure of the
set of all achievable rate pairs.

The proposition below provides an achievable rate region
based on DF at the two relays and superposition coding. It
is noted that superposition coding is known to be optimal
for a broadcast channel with degraded message sets, which
coincides with the CR channel under study for Y1 = Y2 = ∅.
The use of DF implies that message W1 is decoded at both
relays while W2 is only decoded at relay 1 (i.e., in the "good"
channel state).
Proposition 6: The closure of the union of all rates

(R1, R2) satisfying the inequalities

R1 < min

½
minθ I(U1;Yθ|V T2),

I(U1T2;Z2)

¾
(28a)

R2 < min{I(X;Y1|U1V T1T2),
I(XT1;Z1|V T2U1)} (28b)

R1 +R2 < I(XT1;Z1) (28c)

for some joint distribution

PU1V T1T2X = PV U1T2PT1|V T2PX|U1V T1T2 ,

is achievable via DF for the CR with broadcast coding. In the
Gaussian model, region (28) is achievable via DF with the
mutual information terms calculated in (31)-(32) and (33) for
any parameter set 0 ≤ η1, η2, η

0
3, η

00
3 ≤ 1 with η03 + η003 ≤ 1

and η = 0.
Proof : The encoding scheme is a special case of the one

used for PDF in Proposition 3 in which we set R3 = 0 and
U2 = X (i.e., no message is sent directly to the destinations
without being decoded at the relays). However, decoding at
the destinations takes place differently in that decoder 1 is
interested in both W1 and W2, while decoder 2 only recovers
W1. This modifies the error events as brie�y discussed in
Appendix-C.
Remark 10: Setting R2 = 0 and X = U1, one recovers the

rate R = R1 achievable with DF of Proposition 3. From this,
and noticing that the latter choice maximizes the achievable
rate R1 in Proposition 6, one can conclude that the broadcast
coding approach allows to transmit a larger rate R1+R2 in
the "good state" θ = 1 at the expense of a reduction in the
maximum rate R1 achievable in the "bad state" θ = 2.

VI. THE OCCASIONAL RELAY CHANNEL SCENARIO

In this section, we consider a special case of the CR
channel in which the relay may be present (say, in state
θ = 1) or not (in state θ = 2). We refer to this model as
the Occasional Relay (OR) channel. This amounts to setting
PY2Z2|XT2 = PZ2|X or equivalently Y2 and T2 to constants
(for the Gaussian model, γ2 = 0 and/ or β2 = 0). We treat
this channel separately here for its relevance and to point out
two results specific to this model. We start with the following
capacity result that is the counterpart of the conclusions in
[6] for a quasi-static fading relay channel.
Proposition 7: If channel 1 is physically degraded, i.e.,

the Markov chain X − T1Y1 − Z1 holds symbol-wise, the



capacity of the OR channel is given by

C = max
PT1X

min {I(X;Y1|T1), I(X;Z2), I(XT1;Z1)} .

Proof : The converse follows from Proposition 1, while
achievability is a special case of the PDF scheme of Propo-
sition 3 by setting U2 = X and V,U1 as constants.

Consider now the broadcast coding approach for the OR
channel. The region of Proposition 6 reduces to R1 = 0 and
R2 ≤ min{I(X;Y1|T1), I(XT1;Z1)}. The next proposition
provides a better achievable scheme tailored to the OR.
Proposition 8: The closure of the union of all rates

(R1, R2) satisfying the inequalities

R1 < min {I(U ;Y1|T1), I(UT1;Z2)}
R2 < I(X;Z1|UT1)

R1 +R2 < I(XT1;Z1)

for some joint distribution PUT1X is achievable for the OR
channel with broadcast coding.
Proof : Message W1 is decoded at relay 1 and at both

destinations 1 and 2, while W2 decoded only at destination
1. Encoding takes place in each block b by transmitting code-
words tn1 (w1b−1), un(w1b, w1b−1) and xn(w2b, w1b, w1b−1),
jointly generated and decoded similarly to Appendix A and
B.
Remark 11: Similar considerations as Remark 10 apply

here.

VII. CONCLUDING REMARKS

In the presence of inherent uncertainty regarding the
channel state at the transmitter, design of robust coding
schemes becomes a critical issue. This is especially true for
cooperative networks where more links and nodes participate
in the ongoing communication. Rather than considering a
standard outage formulation, this paper has taken a com-
pound view of the problem for a single-relay channel with
two possible states. Under the assumption that the relay and
the destination are informed about the current channel state
but the source is not, achievable rates based on DF and PDF
as well as an upper bound are derived for discrete memo-
ryless and Gaussian models, and specialized to a scenario
with orthogonal components. It is shown that, apart from
some special cases (like the "occasional relay" scenario),
the optimality of DF for a physically degraded relay and
the optimality of PDF with orthogonal components for a
standard relay channel do not carry over to a compound
setting, and more general transmission strategies may be
more advantageous. For instance, partial decode-and-forward
(PDF) that superimposes transmission of three layers and
uses joint decoding at the destination performs better than
the standard two-layer PDF with successive decoding, even
when the latter is optimal for the regular relay channel.

VIII. APPENDIX

A. Appendix-A: Proof of Proposition 2
We use random coding arguments as follows. Generate

codewords tn1 (w
0) and tn2 (w

0) with w0 ∈ [1, 2nR] for each

block independently, where each letter (t1,i, t2,i) is drawn
independent and identically distributed (i.i.d.) according to
the given distribution PT1T2 . Then, for each w0, generate
2nR codewords xn(w,w0) with each letter i.i.d. with re-
spect to PX|T1T2(·|t1,i(w0), t2,i(w0)). Coding takes place
via a standard block-Markov strategy [2] with the mapping
between messages and codewords for block b given by
tn1 (wb−1), tn2 (wb−1) and xn(wb, wb−1), where wb denotes
the message sent over block b (initial and final blocks
are dealt as in [2]). Decoding at the relays is performed
block-by-block via joint typicality. Namely, assume that at
block b decoding at the previous block b − 1 has been
successful so that wb−1 is known by the relays (this can
be assumed without loss of generality by reasoning from
the first block and imposing the conditions discussed below
[2]). Now, a message wb ∈ [1, 2nR] is sought by re-
lay (θ) such that (xn(wb, wb−1), tn1 (wb−1), tn2 (wb−1), ynθ (b)),
where ynθ (b) is the received signal at block b, are jointly
typical with respect to distribution PXT1T2Yθ . The relay
declares an error if none or more than one such wb is
found. Following standard arguments, the probability of
error in this step can be made arbitrarily small if R <

I(X;Yθ|T1T2). At the receiver, sliding window decoding
(or backward decoding) can be employed. Here we consider
sliding window. Assume again without loss of generality
that message wb−1 is known at the end of block b by the
destinations. The destinations look for a message wb such
that the tuples (xn(wb, wb−1), tn1 (wb−1), tn2 (wb−1), znθ (b))
and (xn(wb+1, wb), tn1 (wb), tn2 (wb), znθ (b + 1)) are both
jointly typical each with respect to distribution PXT1T2Zθ .

The probability of error can be made arbitrarily small if
R < I(X;Zθ|T1T2) + I(T1T2;Zθ) = I(XT1T2;Zθ) =
I(XTθ;Zθ).

For the Gaussian model, it can be seen that it is sufficient
to consider Gaussian inputs of the type Tθ =

√
PθT̃ and X =

ρ
√
PT̃ +

p
(1− ρ2)PX̃ with T̃ , X̃ ∼ N (0, 1) independent.

B. Appendix-B: Proof of Proposition 3
For each block independently, we generate the following

set of codewords (recall also sketch of proof in Sec. III-
B.2): Two sets of 2nR1 codewords denoted by vn(w1) and
tn2 (w1) i.i.d. with distributions PV T2 with w1 ∈ [1, 2nR1 ];
For each w1, 2nR1 codewords un1 (w

0
1, w1) according toQn

i=1 PU1|V T2(u1,i|vi(w1), vi(w1)); For each w1, 2nR2

codewords tn1 (w2, w1) with w2 ∈ [1, 2nR2 ] according
to

Qn
i=1 PT1|V T2(t1,i|vi(w1), vi(w1)); for each w2,

2nR2 codewords un2 (w
0
2, w2, w

0
1, w1) with distributionQn

i=1 PU2|T1U1V T2(u2,i|t1,i(w2, w01, w1), u1,i(w
0
1, w1),

vi(w1), t2,i(w2)); Finally, for each (w02, w2, w01, w1)
generate 2nR3 codewords xn(w3, w02, w2, w01, w1) with
distribution

Qn
i=1 PX|U2T1U1V T2(xi|u2,i(w02, w2, w01, w1),

t1,i(w2, w01, w1), u1,i(w01, w1), vi(w1), t2,i(w2)).
Coding takes place following a standard block-Markov
coding strategy with mapping in the bth block
given by vn(w1b−1), tn2 (w1b−1), un1 (w1b, w1b−1),
tn1 (w2b−1, w1b−1), un2 (w2b, w2b−1, w1b, w1b−1),
xn(w3b, w2b, w2b−1, w1b, w1b−1).



Relays decode block by block. Assume without loss
of generality that at block b, messages w1b−1 and
w2b−1 are known at relay 1, while relay 2 knows
w1b−1. Relay 1 and decode w1b by looking for a
tuple (un1 (w1b, w1b−1), vn(w1b−1), tn2 (w1b−1), ynθ (b))
that is jointly typical with respect to PUV T2Yθ .
Imposing vanishing error probability leads to the
condition R1 < minθ I(U1;Yθ|V T2). Relay 1
successively decodes also message w2b by looking
for a jointly typical tuple (un1 (w1b, w1b−1), vn(w1b−1),
tn1 (w2b−1, w1b−1), tn2 (w1b−1), un2 (w2b, w2b−1, w1b, w1b−1), yn2 (b)),
which yields the condition R2 < I(U2;Y1|U1V T1T2).
Decoding at the destinations may take place either
via backward decoding or sliding window. Consider
sliding window and assume that at block b messages
w1b−1, w2b−1, w3b−1 have been already decoded at the
destinations. Now, at both destinations, joint decoding of
w1b, w2b, w3b, is carried out by looking for one such triple
so that the pairs of all involved sequences in blocks b and
b + 1 are jointly typical with respect to the distribution
PU1U2V T1T2X . It can be seen that there are three dominating
error events due to the nested coded structure. These events
lead to the following three conditions

R3 < I(X;Z1|U1U2V T1T2) (29a)
R2 +R3 < I(XT1;Z1|V T2U1) (29b)

R1 +R2 +R3 < I(XT1;Z1) (29c)

for destination 1, while for destination 2 we have

R3 < I(X;Z2|U1U2V T1T2) (30a)
R2 +R3 < I(X;Z2|V T2U1) (30b)

R1 +R2 +R3 < I(XT2;Z2), (30c)

This leads to the rate claimed in the Proposition.
For the Gaussian case, we fix (without claim of op-

timality) the following random variables T2 =
√
P2T̃2,

T1 =
p
η1P1T̃2 +

p
η̄1P1T̃1, V = T̃2, U1 =

√
η2T̃2 +√

η̄2Ũ1, U2 =
p
η03U1 +

p
η003 Ũ2 +

√
η̄3T̃1 and X =√

ηPX̃+
√
η̄PU2 with parameters defined as in Proposition

3 and T̃1, T̃2, Ũ1, Ũ2 independent N (0, 1). This leads to the
following mutual information terms:

min
θ

I(XTθ;Zθ) (31a)

= min

⎧⎨⎩12 log
⎛⎝ 1 + α21P + β21P1+

2α1β1

µ p
η̄η1η2η

0
3PP1

+
p
η̄η̄1η̄3PP1

¶ ⎞⎠ , (31b)

1

2
log
³
1 + α22P + β22P2 + 2α2β2

p
η̄η03η2PP2

´¾
(31c)

I(XT1;Z1|V T2U1) (31d)

=
1

2
log

µ
1 + α21(η + η̄η̄03)P

+β21η̄1P1 + 2α1β1
p
η̄η̄3η̄1P1P

¶
(31e)

and

I(X;Z2|V T2U1) =
1

2
log
¡
1 + α22 (η + η̄η̄03)P

¢
(32a)

I(U1;Yθ|V T2) =
1

2
log

µ
1 +

γ2θη̄η̄2η
0
3P

1 + γ2θ(η + η̄η̄03)P

¶
(32b)

I(X;Z1|U1U2V T1T2) =
1

2
log
¡
1 + α21ηP

¢
(32c)

I(X;Z2|U1U2V T1T2) =
1

2
log
¡
1 + α22ηP

¢
(32d)

I(U2;Y1|U1V T1T2) =
1

2
log

µ
1 +

γ21η̄η
00
3P

1 + γ21ηP

¶
. (32e)

C. Appendix-C: Proof of Proposition 6
As explained in Sec. V, the encoding scheme is the same

as in Appendix-B but with R3 = 0 and thus U2 = X.
Moreover, decoding at the relay and destination 1 takes
place in the same way so that the same rate conditions
derived above remain valid here. However, since destination
2 only decodes message W1, we need to further impose the
condition R1 < I(U1T2;Z2), which concludes the proof.
Finally, for the Gaussian model, the mutual information
above reads

I(U1T2;Z2) =
1

2
log

Ã
1 +

α22η
0
3P + β22P2 + 2α2β2

p
η03η2PP2

1 + η̄03P

!
.

(33)
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