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Abstract— This paper considers the input-erasure Gaussian

channel. In contrast to the output-erasure channel where easures y,

are applied to the output of a linear time-invariant (LTI) sy stem, X H(f) Decoder
here erasures, known to the receiver, are applied to the inps of

the LTI system. Focusing on the case where the input symbols z

are independent and identically distributed (i.i.d)., it is shown
that the two channels (input- and output-erasure) are equiglent. i
Furthermore, assuming that the LTI system consists of a twdap (a)
finite impulse response (FIR) filter, and using simple propeties of
tri-diagonal matrices, an achievable rate expression is msented x‘ HP) > n Yi
in the form of an infinite sum. The results are then used to stug ' \f

Z;

Decoder

the benefits of joint multicell processing (MCP) over singlecell

processing (SCP) in a simple linear cellular uplink, where ach i
mobile terminal is received by only the two nearby base-stans e.
(BSs). Specifically, the analysis accounts for ergodic shading ' ()
that simultaneously blocks the mobile terminal (MT) signalfrom
being received by the two BS. It is shown that the resulting
ergodic per-cell capacity with optimal MCP is equivalent tothat
of the two-tap input-erasure channel. Finally, the same céllar
uplink is addressed by accounting for dynamic user activity

Fig. 1. The linear input- and output-erasure Gaussian @&iann

which is modelled by assuming that each MT is randomly seleed In [5], Tulino et al. have calculated the capacity of an
to be active or to remain silent throughout the whole transmgsion . ¢ trained G . h | t td Wi
block. For this alternative model, a similar equivalence rsults Input power-constraine aussian channe Conc"’_‘ ena _W_'
to the input-erasure channel are reported. a memoryless erasure channel. The problem requires algaini
the asymptotic spectral distribution of a sub-matrix of a

. INTRODUCTION nonnegative definite Toeplitz matrix obtained by randomly

In recent years various variants of erasure networks hatdeleting rows and columns. In addition, [5] presents anieipl
been the focal point of many works in the fields of informaexpression for the optimal input power spectral densityd(PS
tion theory, coding theory, communication, and digitalnsij function. Asymptotic capacity expressions in various meeg
processing (DSP). It turns out that the idealization ofaitns such as extreme-SNR, sporadic erasures events, and sporadi
where symbols are detectable with very high or very lowon-erasure events, are reported as well. In addition rakve
probability is useful in providing accurate and tractaldeess- useful bounds (lower and upper) in closed form are presented
ment of practical interest. Applications of erasure neksor Recently, the results of [5] were extended in [6] to include
in general, and erasure channels, in particular, inclugkgia any flat fading distribution, not necessarily the on-off ggss
switched networks, wireless fading channels, impulse enoisbtained by erasures.
channels, and sensor networks with faulty transducersthfmo  In this paper, we consider the input-erasure Gaussian chan-
interesting DSP application is decimation using frequenawel. According to this setup, erasures (known at the receive
shaped random erasures [1] (see also [2] for a somewhat dually) are applied directly to the Gaussian input of a linear
problem). time-invariante (LTI) system (e.g. a finite input respongerfi

The simplest non-trivial setting incorporating erasures FIR), whose output samples are affected by additive Gaussia
perhaps a memoryless discrete channel observed throughoie. To simplify the analysis, we consider independedt an
memoryless erasure channel. In this case, it is straighdial identically distributed (i.i.d.) input signaling, and stdahat
to see that the capacity of the concatenated channel is thehis case the input-erasure channel and the output+igrasu
capacity of the discrete channel times the erasure rate [hannel of [5] are equivalent. Focusing on the case where
Moreover, even if the erasures have memory, the lattertresthle channel filter includes two taps, we present an altemmati
holds [3] [4]. However, adding memory to the discrete channanalysis to [5] that obtains the achievable rate withoutingl
changes the picture considerably. on random matrix theory tools. The analysis is based on



a simple observation that in the two-tap case, each erasur&Ve consider transmissions in blocks &f symbols. The
splits the output vector into two independent sub-vecthrs. received vector of an arbitrary block is given by
addition, it uses a useful property of tri-diagonal matice
which states that their determinant can be expressed as a Yt = HyinEnXN + 2N+ (3)
weighted sum of the determinants of their two main principalhere Y .1 £ (y1,...,yn.1)! is the (N + L) x 1 output
sub-matrices. It is also shown that the analysis can be é&tenvector, Xy £ (21,...,2y)" is the complex GaussiaV x 1
to the case in which the erasures are not memoryless.  input vectorX y ~ CA(0, Q 5) with average power constraint
The results are then used to find the achievable rate syp(Q,) < NP, Ex 2 diag(es,...,en) is the N x N
ported by a simple cellular uplink model (where inter-celiagonal erasure matrix, arly . . = (z1,...,2zn41)" is the
interference is limited only to adjacent cells), in whicketh (N + L) x 1 noise vectoZ 1 ~ CN(0,In.1). In addition,
transmission of each mobile terminal (MT) undergoes eessUrH . ; is the(N+L)x N L-diagonalToeplitzchannel transfer
due to ergodic shadowing, which simultaneously blocks it matrix with [H y 1]n.m = hn_m (Where out-of-range indices
from being received by all the base-stations (BSs). We sh@hould be ignored).
that with optimal joint decoding of the received signalsnfro  Recalling that the receiver is aware of the erasures, it is
all the BSs (that is, multicell processing, MCP), the ergodeasy to prove that a Gaussian input distribution is a capacit
per-cell capacity of this cellular uplink equals the ratettid  achieving distribution and that the capacity is given by
two-tap input-erasure channel considered earlier. Théoper
mance of MCP is compared to that of single-cell processingC = Nlim max
(SCP), demonstrating that the benefits of MCP decrease with ! 700 Qs & (Qu) NP
the erasure rate (the reader is ref_erred to_ [7_] and [8] foazmeg E [_ log det (IN+L + HNJFLENQNEEVH;V-Q—L)] . @
surveys on MCP). We then consider a similar cellular uplink
setup but with adynamic user activity model, in which each where the expectation is taken over the diagonal entries of
user is randomly active or silent for the whole transmissidhe erasure matri y, andI . is an(N + L) x (N + L)
block. We show that with MCP the system throughput pédentity matrix.
active user is equal to the rate of the two-tap input-erasureUnfortunately, finding the optimal covariance matrix and
channel divided by the probability of an arbitrary user leincalculating (4) is still an open problem. Instead, we foaqus i
active. Similar benefits of MCP over SCP, as those reported the rest of this work on assessing achievable rates regudtin
the shadowing scenario, are observed also for the useitactivusing i.i.d. inputs, hence, by settif@, = PIy.
model.
It is finally noted that a related analysis has been recently
reported in [9], where theutage capacity supported by aA. Arbitrary FIR Filter

similar cellular uplink and user activity model was derived Here we consider an arbitrafylength FIR filter and rewrite
with both MCP and SCP. the logdet term of (4) as:

IIl. RATE ANALYSIS

II. CHANNEL MODEL

In this work we consider a channel (see Fig. 1.a), where
erasures{e, }, known to the receiver only, are applied to log det (IN +PE}LVH;fv+LHN+LEN) . (5)
the inputs symbolgz, } of a discrete time LTI system with
transfer functionH (f). For simplicity, we assume that the LTIBY noting that the left-hand-side (LHS) of the last equai®n
system is causal and has a fikiiepulse response of Iengththe same as the one resulting from the analysis of the output-
(L+1) symbols. Accordingly, the received signal at time indefrasure channel with i.i.d. inputs, considered in [5] (s&e F

log det (IN+L + PHNJFLENEEVH]]LVJFL) =

n, is given by 1.b), we can state the following.
L
_ Proposition 1 The Gaussian input-erasure and output-
Y rnZ:() v ¢ e @ erasure channels with i.i.d. inputs are equivalent.
where {h,,}L _, are the impulse response coefficients suchhis result implies that with i.i.d. inputs, both channetsiave
that . the same rate. Hence, all the results reported in [5] hold
- —j2mmf verbatim for the input-erasure channel with i.i.d. inpuiy,
H(f) = 2_:06 fom. 2) setting the PSD accordingly (i.e5(f) = P |H(f)|?) in the

results of [5].
The analysis in [5] uses random matrix theory tools to derive
he main result which is the rate of the output-erasure chlann

andz, is the additive complex Gaussian noisg~ CA/ (0, 1).
The erasures,,, are assumed to be i.i.d. Bernoulli dis-t

tributed rando_m vzinables (r.v._san -~ B(q) (e en € o any channel FIR filter and any input PSD. The rate result of

10,1}, Pr(en=0)=gq, Pr(en =1)=1-q). [5] involves a fixed-point integral equation and in genetal i
Uit is easily verified that the results extend to any LTI systeith finite 1S NOt explicitly formulated. Next, we present an alterveti

gain [ [H(f)|? df < co. analysis for the special case of i.i.d. inputs and a two-tap



channel filter. The resulting rate expression is considgratwherer is defined in (8).

different than that of [5], and may shed some further light on Turning to asymptotic analyses, we refer the reader to [5],

the problem. where compact closed-form expressions are reported for the

, rate low-SNR characterization, the rate with sporadiclees

B. Two-Tap Filter (L =1) and the rate with sporadic non-erasures. These expressions
In this section we consider a two-tap channel filter (i.., itan be used verbatim for the two-tap input-erasure charfnel o

impulse-response includes only two non-zero coefficient interest by setting i.i.d. inputs in [5]. In addition, [5]quides

andh;). Hence, the channel transfer mat#iky 1.1 reduces to also the high-SNR characterization of the output-erashiae-c

a bi-diagonal Toeplitz matrix. For this special case we hayg| rate, albeit the calculation of the high-SNR power dffse

the following. involves a fixed point-equation. Applying definitions of [12

to the rate expression (6), we provide an alternative espas
Proposition 2 The achievable rate of the two-tap input- for the high-SNR power offset as well.
erasure Gaussian channel with i.i.d. inputs is given by

00 pntl _ gntl Proposition 3 The two-tap input-erasure Gaussian channel
Ratap = ¢° Z(l —q)"log (7> ,  (6) ratewithi.i.d. inputsis characterized in the high-SNR regime
T—S
n=1 by
where Seo = (1 —¢q) and
a2 1+ P(lhol*+ |m|?) and b2 Plho|lhi] , (7)

oo - |h0|2(n+1) _ |h1|2(n+1)>
Loo = —¢° 1—¢)" tlo
" o =0 n;( 9) g( TP
rél(a—i— a2—4b2) and s= (G—M) -
2 ( ) And the deleterious effects of increasing erasure tatge
clearly visible.
Proof: See Appendix A ] 1) Erasures with Memory: Following the proof of Prop.
The proof relies on a simple observation that in the two-tap it can be verified that the presented analysis method can
case, each erasure splits the output vector into two indgyen handle also erasures with memory (stationary and ergodic).
sub-vectors. In addition, it uses a useful property of trifhe only stage that should be altered is the calculation of
diagonal matrices, which states that their determinant c£3b), that is, the probability of having an isolated seqeenc
be expressed as a weighted sum of their first two mainof n consecutive non-erasures should be recalculated for
principal sub-matrices. It is noted that this analysis does the new erasure source. For example, assuming the erasures
involve classical random matrix theory. Moreover, since fpllow a first order Markov chain with transition probakiiis
relies heavily on the two-tap assumption, it cannot be appli P7(0 — 1) = 1—qo, andPr(1 — 0) = qi, it is easily verified
to input-erasure channels with filter lengths larger thao.tw that 5
Examining the rate expression (6), a few comments are in Pr({ =n) = M(l —q)" (12)
place. Although the rate expression is an infinite sum, any L=qo+aq
finite sum, which is evidently a lower bound, can be calcalateand the corresponding rate of the two-tap input erasurersian
numerically in a straightforward manner. In addition, cenv with i.i.d. inputs is given by
gence is assured since the expression is a power series and 201 o0
(1 —¢) < 1. Itis also observed that the rate is independeng,,, — a1~ ) 2(1 —q1)" tlog (
of the filter coefficients’ phases, and hence, random phases l—gqo+a /=
(known to the receiver) can be added to the channel model ) ”(13)
without changing the end result. By applying HadamardAS expected, foi, = ¢, = ¢ the erasure source is i.i.d. and
inequality directly to the covariance matrid y + G ) (see (13) reduces to ((_5). It is interesting to note that for thec&de
(27)), it can be shown that for a fixed filter gain, filter memorga‘seh1 = 0, which corresponds to a memoryless channel
reduces the rate. Hence, the rate is maximized for a one-tafiowed by an erasure channel with memory, the rate reduces

filter with equal gain. On this note, it is easily verified that®

N =

Tn+l _ Sn+1)

r—S

2
for the special case df; = 0 (memoryless Gaussian channel Rigap = (1 — q)log(1 + P |ho|") (14)
with erasures)s = 0 and (6) reduces to where
Ritap = (1 — q) log(1 + P ho|? 9 g=—21 (15)
1tap ( q) Og( + | 0| ) 3 ( ) 1—q0+q1

which was already reported in [10]. Another special cask, the steady-state erasure rate. This results is in agréeme

which is also an upper bound, is the case where 0. The with [4], where it has been shown that the capacity of a

capacity of this two-tap channel with i.i.d. inputs is giveyn concatenation of a discrete memoryless channel with cpaci

[11] C, and an erasure channel (possibly with memory) with
Roap—ub = logr , (10) erasure rate, is equal to(1 — ¢)C.



Rates vs. erasure rate (| *=0.8, |n, ’=0.2) Rates vs. |h|* (P =10 [dB])
T T T T

Rate [bits/channel use]
T

Fig. 2. Rates vs. erasure rage for P = 0, 2, 4, 6, 8, 10, 12, and

) ) - 2 _
|ho|? = 0.8, |h1]? =0.2. Fig. 4. Rates vs. filter coefficiebo |, for ¢ = 0, 0.05, 0.1, 0.2, 0.3, 0.4.

e SRP QU ‘ |h1|* = 1), and P = 10 [dB]. It is observed that the worst-
case filtering corresponds to coefficients with equal amgés
(i.e., |ho|*> = |h1]?). On the other hand, as claimed earlier,
best-case filtering is achieved for flat or memoryless chianne
(i.e., |hi|> = 0 or |h|> = 0). Moreover, these observations
are independent of the erasure rate

V. APPLICATION TOCELLULAR COMMUNICATIONS

Cellular systems are currently the main media to provide
high-data rate services to mobile users. Therefore, arooedi
search for techniques that provide better service and ageer
in cellular systems is under way. A promising cooperation-
‘ ‘ based technique is joint MCP, proposed by Wyner in [13].
s ] Accordingly, clusters of BSs jointly process their signtds

mitigate or eliminate the overall interference, since more
Fig. 3. Rates vs. SNRP, for ¢ — 0, 0.05, 0.1, 0.2, 0.3, 0.4, and Signals are useful. Unlike conventional approaches tleattsr
|ho|> = 0.8, |h1]? =0.2. interference stemming from other cells as noise, or tries to
avoids it, this approach (also referred todagtributed antenna
array) exploits the interference to provide better rates to the
clusters’ MTs.
Here we are interested in further exploring the benefits of

The rate (6) is plotted in Figure 2 as a function of th&CP when ergodic erasures affect the MTs’ transmissions in
erasure rate, for several SNR values, and filter coefficientshe uplink. Such erasures account for a scenario where an
lho> = 0.8, |hy|* = 0.2. Expression (6) is calculated byMT may undergo ergodic deep fading (or shadowing) such
taking 200 summands and is plotted with solid lines, whilhat its transmission cannot be receiveddny of its cluster’s
Monte-Carlo simulation results of 50 trials, each with locantennas.
size of 200 symbols, are shown as well. Examining the figure,Motivated by the fact that inter-cell interference is es-
the deleterious effect of erasures is evident. In addittbe, sentially limited to only a small number of BSs, and with
figure demonstrates a good match between the Monte-Carlathematical tractability in mind, we assume a synchronous
simulations and the “exact” results. Similar conclusioas be Wyner-like cellular uplink setup. According to this setuge¢
obtained from Figure 3, which includes rate curves (cateala Fig. 5), an infinite number of cells are arranged on a line, as
from (6) as above) as functions of the SNR for several along a highway. Moreover, the each MT “sees” its own BS
values of the erasure ratg and |ho|* = 0.8, |k1|> = 0.2. In  antenna (with unit path gain), and the adjacent BS antenna
addition, the erasure-freg & 0) rate curve (10) is included (with path gaina € [0, 1]) only. This model, which was
as a reference. first introduced in [11], focuses on users lying on the cells’

In Figure (4) the rate curves are plotted as functions bbundaries and is thus sometimes referred to asstlfte
the filter coeﬁicientqh0|2 for a unit gain filter (i.e.,|h0|2 + handoff model. Specifically, assuming a single active user

IV. NUMERICAL RESULTS



2) Inter-Cell Frequency Sharing: Here we consider a more
involved approach that requires static resource sharitvgdam
the cells. Since, according to the soft-handoff model, rinte
ference stems from one cell only, by dividing the available
bandwidth of W [Hz] into two orthogonal subbands with
bandwidth ofi¥/2 [Hz] each, and assigning them alternately
to even and odd indexed cells, interference is totally asaid
Accordingly, it is easily verified that the achievable rase i

given by
1 —
Backhaul Network Ricts = 5E[10g(1 + eP)] = 5 4 log(l + P) , (20)
Central Processor wheree is an arbitrary erasure r.\we,~ B(q).

The high-SNR characterization @{;.¢ is given by

Fig. 5. The soft-handoff cellular uplink model. S l—q and L. =0 (21)
o0 oo T bl

where the deleterious effects of both the erasures, and the
per-cell (intra-cell time-division multiple-access)getheceived bandwidth sharing are clearly observed in the multiplexing
signal at thenth BS antenna, for an arbitrary time index, igain expression. Comparing the multiplexing gains of the
given by SCP and inter-cell frequency sharing (ICFS) rates, revbals
Yn = €nTp + €n_10Tpn_1 + 2 , (16) superiority of the latter for erasure rates< 1/2 in the high-

- SNR regime.
wherex,, andx,_; are the MTs’ transmissions,,, z,_1 ~ 9

CN(0,P), e, ande,_, are the erasures,, e,_1 ~ B(g), B. Multicell Processing

and z, is the additive noiser, ~ CN/(0,1). It is noted that  \jth MCP, the BSs send their received signals to a central
the erasures are assumed to be i.i.d. among different usgiscessor (CP) via an ideal backhaul network. The CP cellect
(along the cells’ indices), and ergodic along the time indexthe received signals and jointly decodes the MTs’ messages.
for each user. Finally, it is noted that users are not alloteed sjnce the CP is aware of all the erasures, the overall channel
cooperate. is an ergodic multiple-access channel (MAC) for which the
A. Single Cell Processing sum-rate capacity divided by the number of cells is given by

As a reference results we consider two conventional SCP~  _
approaches. mep 1

1) No Frequency PI_anning: '_I'he simpl_est approach is_for lim E [N log det (IN+1 + PHN+1ENE;VH;V+1):| ,
each cell to decode its own signals while treating the signaf’ —>

from the interfering cell as noise. Assuming that each cell i (22)
aware of its own user’s erasures and those of the interferighierey,y_; £ (y1,...,yn41)! is the(IN+1) x 1 output vec-
cell's user (see [14] for a similar setting), it is easily #ied tor, X 2 (2,...,2y)" is the complex GaussiaN x 1 input
that the achievable rate is given by vector Xy ~ CN(0, PIy), Ey £ diag(er,...,en) is the
B esig P N x N diagonal erasure matrix, arftly ;1 2 (z1,..., 2n11)f

Rsep =K {IOg (1 + 1+0<26imP)] ’ (17 is the (W + 1) x 1 noise vectorZy 41 ~ CA(0, In.1). In

addition,H 41 is an(N+1) x N bi-diagonalToeplitz channel
transfer matrix withlH n+1]p,, = 1 and [Hn41]nn—1 = «
(where out-of-range indices should be ignored). It is noted
ward calculation we get that (17) is given by that, by the symmetry of the model, the ergodic per-cell sum-
capacity derived above is also the equal per-cell capacity.
(1+P)1 (14 (1+ aQ)P)lfq Comparing the rate expression of the two-tap input-erasure
Rsep = (1-q)log 1+ a2P)i—q - (18) " channel with i.id. inputs (see (4)) to the per-cell sunerat
supported by the soft-handoff model, the following is ewide

where the expectation is taken oveg, and ej,; which
represent arbitrary i.i.d. erasure r.v.’s of the usefuhaigand
interference, respectivelyss, eint ~ B(g). By straightfor-

The high-SNR characterization @i, is given by

Seo=q(1—¢q) and Lo =0. (19) Corollary 4 The per-cell sum-rate supported by the soft-
. , handoff model with optimal joint decoding and no MT coop-
It is interesting to observe that the rate above demonstate

, g , X eration equals the rate of the two-tap input-erasure Gaussian
non-interference I|m|ted behawolr, aItho_ug_h the receiver treatSonannel with i.i.d. inputs and ho = 1, h1 = a.
the other cell's signals as noise. This is easily explaingd b
noting that with probabilityg(1 — ¢) the useful signal is Since the shoft-handoff model is equivalent in terms of &5 p

received without interference. cell sum-rate to the input-erasure channel, all the resuits



Rates vs. erasure rate (4 = 0.5, P = 14 dB) Throughputs vs. non-active probability (@ = 0.5, P = 14 dB)
T T T T T T T T T

ICFS ICFS

roughput [bits/channel use]

@
<]
9

Thr

5 04 05 06
Erasure rate q Non-active probability g

Fig. 6. Rates vs. erasure rate, fof = 0.5 and P = 14 [dB]. Fig. 7. Throughputs per active user vs. non-active prolbil for o2 = 0.5
and P = 14 [dB].

conclusions reported in Section Ill also hold here. In gaitr

the high-SNR characterization reduces to probability (1 — ¢) throughout the entire transmission block.
- . This may be implemented by means of control, or simply

Seo = (1—¢) and Lo = —¢ Z(l_q)nq log (1 —a ) ~ when the MT has no information to send. In these cases, the
— 1—a? erasures are still i.i.d. along the cells’ indices but ar@-no

(23) ergodic along the time index for each user. With optimal MCP,

The benefits of MCP are evident in the high-SNR regime sindee throughput per active user is an r.v., given in the large

its rate has two-fold degrees of freedom relative to the ICKystem limit by

rate, andl /¢-fold degrees of freedom relative to the SCP rate.

It is noted that the MCP rate is an increasing function of C\,cp_ua =
the i_nter-celll inte_rference facter. This is since: (a)* ands ) 1 t gt
are increasing withy ; (b) > s ; and (c) by recalling that ~\im_ o (En) log det (INH +PHyENE)y N+1) ;

Tn+l _ Sn+1 n (25)
- - = Z rTmg™m (24) _ o B
r—s 0 wherediag(E ) = (e1,...,e,) is a realization of the i.i.d.
I . o . . _activi incg(Ex) N—oo
which is a summation of multiplications of increasing funcuSer-activity pattern. Since-g=> ——= (1 —q) due to .the
tions of o and hence is an increasing function af strong law of large numbers, we can replacg¢ Ey) with

It is also worth mentioning that a similar analysis in [9]1 — ¢)/V in (25). Following similar argumentations as those
facilitates also to address the issue of successful trasgoni made in [15], it can be shown thét,., .. converges a.s. to
per a given user, and when the average rate per user(lis- ¢)~'Cmep. Turning to the SCP and ICFS schemes it is
examined, the results are in agreement with Prop. 6 (or Cagasily verified that the throughputs per active user coreverg

4). a.s. to the corresponding rates of the shadowing setup times
: (1—q) L.
C. Numerical Results In Figure 7 the throughputs per active user of the MCP, SCP,

The achievable rates of the MCP, SCP and ICFS schens#wl ICFS schemes are plotted as functions of the non-active
with o2 = 0.5 and or P = 14 [dB], are plotted as functions probability ¢, for «? = 0.5 and P = 14 [dB]. The superiority
of the erasure rate, in Figure 6.The figure demonstrate thef MCP over the other schemes is apparent. Also we can
superiority of MCP over both SCP and ICFS schemes. It @serve that both MCP and ICFS are robust and maintain their
also observed that ICFS is beneficial over SCP for erasuhgoughput constant (for ICFS) or almost constant (for MCP)

rates smaller than a certain threshold. regardless of;, while the throughput of SCP drops sharply
_ _ with decreasing. This is easily explained since neither MCP
D. Discussion nor ICFS suffers from inter-cell interference, the first doe

A different scenario which gives rise to a similar, man- the fact that it leverages all received signals as usefuilewh
ergodic, erasure model in a cellular scenario is one in whicthe second since it avoids interference by frequency planni
the MTs may be active or not in a given block with a give®n the other hand, SCP treats the other cell’s signals ag nois
probability accounting for dynamic user activity. Accardito and hence, with more active users, more cells have to decreas
this model, each user is randomly selected to be active witkeir rate to overcome the emerging interference.



VI. CONCLUDING REMARKS sub-matrices. The latter is easily explained by the foltayvi
In this work we have considered the input-erasure Gauss@fgmMple. AssumeV = 10 and an erasure realizatiarf —
channel. We have shown that with i.i.d. inputs, the inputt arf1>1,0,0,1,1,1,0,1,1). In this case we have
output-erasure [5] channels are equivalent. Focusing en th

two-tap case, we have presented an alternative analysi®to t Lo+ PGro =

one reported in [5]. In particular, in contrast to [5] where aT ¢ 8 8 8 8 8 8 8 8

the rate expression involves a fixed-point equation, the new % g 1 0 00 0 0 0 0
expression is given in the form of an infinite sum, whichen{ ¢ o 0 1 00 0 0 0 0
ables simple calculation of arbitrarily accurate lower badst 0 0 0 0 a b 0 0 0 0
Moreover, the analysis is based on simple properties of trf 0 0 00 e ¢ 0 0 0 ’
diagonal matrices and also holds for erasures with memory. 0 0 00 0 ¢ a 0 00

An alternative simpler high-SNR rate power offset expr@ssi 00 00 0 0 0 1 0 0

in the form of an infinite sum has also been presented, WhiCQ 8 8 8 8 8 8 8 8 :T Z

contrasts to the one reported in [5] which involves a fixedhpo 31)
equation. Numerical results have demonstrated the digleter

effects of increasing erasure rate and reveal the natureeof wherea is defined in (7), and £ Ph{h;. Accordingly
worst-case filter (coefficients with equal amplitudes) amat t

of the best-case filter (either coefficients is set to zertp T 08det (T10 + PGio) = ~

results have then been used to demonstrate the benefits of MCP 2logdet (I> + PG2) + logdet (Is + PG3)  (32)
over SCP s_chemes for.a_ simple cellular uplink with sh:;}dowir\}ghere G, & HIL+1Hn+1 is a tri-diagonaln x n Toeplitz
fadmg or with user—ag'uwty model. Other settings thatinie matrix (equal toG,, with no erasures). Turning to the general
independent shadowing to each BS, and more complex uselza
activity models, are currently being studied.

N
APPENDIX logdet (Iy + PGy) = Y _ n(e’)logdet (I, + PGy) ,
A. Proof of Proposition 2 n=1

(33)
We need to calculate

1 wheren(e’) is the number ofi-length consecutive non-erasure
R= lim E [_ log det (IN+1 4 PHNHENER/HEVH) . sub-sequences i@’. Using (33), we can express the rate for
N—oo '[N any block sizeN as

(2
Using (5) and defining théV x N matrix N _
g (5) g Ry =E l2$1ogdet (I, + PG,)
Gy = E}rVH}rVHHNHEN , (27) n—1 (34)
N
we can rewrite (26) as _ E {”(6)} loo det (I ~
= — n+ PG,) .
C = Jim E [ —logdet (I + PGx) (28) "z::l v |
el (VA A NI Defining 1. ,,; @s an indicator function of the event that
Straightforward calculations reveal th@ty is given explic- an isolated sequence ofnon-erasures starts at indexin e
: we get that
itly by
2 2 n(e) 1 & n
en(lhol + ) n=m E =B\ > Ly | = (1- %) 21 -0,
f W N N ' N
. enen+ti1hohy n=m-—1 m=1
en—1enhphy n=m+1 o
0 otherwise y\{here the last equality is due to the fact that the erasuees ar
_ i.i.d, hencé
e.g., for the special case of = 3 we have £t = P(1-q" m=2.. N—n (36)
G — {ex n,m} 0 otherwise ’
3=
e1(Jhol® + |ha|?) ereahoh! 0 Next, we calculatedet (I,, + PG,,) ; n = 1,...,N, by
ereshfhy ea([hol? + |h1|?) eseshoh! . recal_ling the fact that the dgtermingnt of any tri-diagonal n
0 eseshdhi es(lhol?® + |h1]?) matrix V' obeys the followingecursive relation

30)

It is observed thatGy is a tri-diagonal matrix (due to the
two-tap filter), and that an erasure of thé¢h input symbol,
i.e., e, = 0, sets thenth row and th_e”th column Of_GN to 2For simplicity maters we neglect the fact that far= 1, E [14.. 13| =
zero. Hence, each erasure splifsy into two block-diagonal ¢(1 — ¢)* and claime it has no effect in the large system limit.

det V,, = [Vp]nndet V4
- [Vn]n,n—l[vn]n—l,n det Vn—? y n 2 3 ) (37)



where V,,_1, V,,_o are the first two mainprincipal sub-

matrices of V', (composed of the first—1 andn—2 rows and

(1]

columns ofV,,, respectively). Applying the recursive formula

to D,, £ I,,+ PG, we get the followingdifference equation:

det (D,,) = adet (D,,_1) — b*det (D,,_2) ; n>2, (38)

with initial conditionsdet (D) = 1 anddet (D;) = a, where

(2]

(3]

a andb are defined in (7). A solution to a difference equation

of this form is given by

det (D) = or"™ — ¢s™ | (39)

wherer ands are defined in (8). The initial condition are used

to calculatep and ¢:

S

p=—— and ¢= : (40)
r—s r—s
hence,
,,,nJrl_SnJrl
det (D,,) = in=1,...,N . (42)
r—s

Substituting (35) and (41) into (34) we get that

N n+l _ n+l
Ry = ;qz(l -q) (1 — —) log (%) . (42)

N—oo

It remains to show thaky ——— R. To do that we notice

that

N
1 2 n
RN:R_N;q (1—-¢)"nlogdet (D) —

>

n=N+1

¢*(1 — q)"logdet (D,,) . (43)

Hence,Ry can be bounded by

_% )3 n?-3Y Pl-g"n<Ry<R.

n=N
(44)

(1—q)"

(4
(5]

(6]

(7]

(8]

El

[10]

(11]

[12]

[13]

[14]

[15]

This is since the summands in (43) are positive, and by

noticing thatlog det (D,,) < ng (for some positive3 > 0).
After some algebra we get that

26(1 —-q)

R_
Nq

—BL—q)N (N+1)g+1)) <Ry <R.

(45)
Finally, taking N — oo completes the proof.
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