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Abstract—The capacity region of a Multiple Access Channel
can be increased by feedback to the sources, since feedback
enables cooperative transmission. Focusing on a linear cellular
system (as for a highway or a corridor), a novel transmission
strategy is proposed that exploits feedback from the neigh-
boring mobile stations (MSs). The strategy enables cooperative
communications via “analog network coding” (i.e., broadcasting
and interference cancellation via side information) to exchange
signalling information among MSs. Numerical results show that
the proposed technique provides gains over non-cooperative
strategies in the low-signal-to-noise-ratio regime.

I. I NTRODUCTION

Feedback plays a number of roles in communication sys-
tems, such as predicting and correcting noise, enabling source
cooperation, decreasing computational complexity and reduc-
ing delay [1]. In particular, in the context of Multiple Access
Channels (MACs), feedback enlarges the capacity region by
enabling cooperation at the sources, here referred to as mobile
stations (MSs) [2]. Different types of feedback signals canbe
available, ranging from output-feedback, where the destination
output is directly obtained by the MSs [2]–[4] or “generalized”
feedback where each source observes different channel outputs
[5]–[7].

In this paper, we extend the transmission strategies of [5]
–[7] to the uplink of a multicell scenario with generalized
feedback, as depicted in Fig. 1 (see also [8]). The cellular
scenario at hand follows the linear Wyner model [9], where
cells are arranged in a linear geometry with one active user per
cell at any given time as for intra-cell time-division multiple-
access (TDMA). Moreover, decoding is carried out at a central
processor which is connected to every base station (BS) via
ideal backhaul links (i.e. multicell joint decoding, see [10]
for a review). We extend the basic linear Wyner model by
allowing for generalized feedback. Specifically, due to the
broadcast nature of the wireless medium, each MS is assumed
to receive signals from the MSs in adjacent cells. Similarlyto
[5]–[7], these signals constitute generalized feedback that can
be used to communicate among neighboring MSs and set up
cooperative transmission strategies.

Unlike [5]–[7], the presence of multiple MSs and the
specific geometry call for sophisticated techniques for theex-
change of the cooperation-enabling information (also referred
to as signalling in the following) among MSs that exploit
local communications. For instance, in Fig. 1 themth MS
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Fig. 1. Uplink of a multi-cell system with generalized feedback at the MSs.

might want to cooperate with the (m+2)th MS, thus requiring
the signalling information to be propagated along two hops.
The proposed technique recognizes that such transmissions
can benefit from “analog network coding” techniques [11]–
[16], that take advantage of the broadcast channels between
adjacent MSs and the side information available at the MSs:
when decoding the signalling information broadcast by the
neighboring MSs, each MS can cancel the contribution due
to the messages that were originated at the MS itself or
previously relayed through it.

This paper is organized as follows. In Sec. II, we discuss
basic background material covering Gaussian MACs with
feedback and analog network coding. Then, in Secs. III and IV,
an achievable per-cell rate for the system in Fig. 1 is derived.
This rate is evaluated numerically in Sec. V.

Notation: X ∼ CN (µ, σ2) denotes a complex Gaussian cir-
cularly symmetric random variable with meanµ and variance
σ2.

II. BACKGROUND AND RELATED WORK

In this section, we present background material and discuss
related work. In particular, Sec. II-A focuses on a two-user
Gaussian MAC with feedback and reviews known results as
applied to a symmetric system. Sec. II-B then briefly discusses
the basics of analog network coding and previous work in the
area. The techniques and concepts recalled in this section will
be instrumental in the analysis of the system of Fig. 1 in later



sections.

A. Gaussian Multiple Access Channel With Feedback

Consider a symmetric two-user Gaussian MAC with signal
received by the destination at time instanti given by:

Yi = X1,i + X2,i + Zi, i = 1, 2, ..., n, (1)

where the noise sequence{Zi}n
i=1 is such thatZi ∼ CN (0, 1),

independent and identically distributed (i.i.d.) overi = 1, ..., n,
and we enforce a per-symbol power constraintE[|Xm,i|2] ≤
P, m = 1, 2. A fairly general model for feedback prescribes
the signal received by the two MSs at theith symbol to be
given by (see Fig. 2-(a)):

Y1,i = βX2,i + Z1,i (2a)

Y2,i = βX1,i + Z2,i, (2b)

with noise sequences{Zm,i}n
i=1 such thatZm,i ∼ CN (0, 1),

i.i.d. over i = 1, ..., n (m = 1, 2). Notice that model (2)
assumes perfect echo cancelation. The parameterβ ≥ 0
measures the quality of the inter-MS channels. The noise
samples{Zm,i}n

i=1 are generally correlated with{Zi}n
i=1 with

given correlation coefficientρ (|ρ| ≤ 1); i.e.,

Zm,i = ρZi +
√

1 − ρ2Z̃m,i, (3)

with Z̃m,i being an independent i.i.d. noise process with
Z̃m,i ∼ CN (0, 1). For instance, ifβ = 1 andρ = 1, this model
corresponds to output-feedback [17]. Note that the model
above entails full-duplex operation at the MSs. Moreover, we
remark that the model at hand is related to relay channels
where the relay also has a message to deliver to the destination
[18].

Focusing on a symmetric scenario, each user has a message
Wm in the range{1, 2, ..., 2nR}, m = 1, 2, of equal rateR
to deliver to the BS. Using standard definitions, encoding is
carried out at eachmth MS by mapping the messageWm

and the previously received samplesYi−1
m = [Ym,1 · · · Ym,i−1]

into the ith channel inputXm,i for i = 1, 2, ..., n. RateR is
said to be achievable if the average probability of decoding
error Pr[(Ŵ1, Ŵ2) 6= (W1, W2)], where Ŵ1, Ŵ2 are the
decoded messages, can be made to tend to zero asn → ∞.

For anyβ ≥ 0 and any|ρ| ≤ 1, an achievable equal rate
can be found by specializing the results of [5] [6] [7] to
the scenario at hand, obtaining (see Appendix-A for a brief
derivation)

R = min

{

1
2 log (1 + 2Pp) + Rc,
1
2 log

(

1 + 2P + 2ν2Pc

)

}

, (4)

with

Rc = log

(

1 +
β2(1 − ν2)Pc

1 + β2Pp

)

, (5)

power allocationP = Pp +Pc and0 ≤ ν ≤ 1. We remark that
the notation used here is different from previous references and
is tailored to facilitate the discussion in the following sections.
The rate (4)-(5) is achieved by a block-Markov encoding
scheme, where each MS splits its rate and powers between

a private and acommonpart. Specifically, rateR is split as
R = Rp +Rc (subscripts denote private “p” and common “c”
parts) and the power asP = Pp +Pc. The private part, of rate
Rp, is sent to the BS with powerPp without any cooperation
from the other MS, while transmission of the common part, of
rateRc, benefits from the cooperation with the other MS. In
order to enable cooperative transmission, a fraction(1 − ν2)
of the common powerPc is devoted tosignalling the local
message to the other MS. The remaining powerν2Pc is then
employed for cooperative transmission to the BS. Condition
(5) enables each MS to decode the signalling message (of
rate Rc) from the other MS and (4) is sufficient for correct
decoding at the BS. We refer the reader to [5] - [8] and
Appendix-A for details.

Remark 1: The achievable rate (4)-(5) is not the capacity
of the system at hand. To see this, consider the caseβ = 1
andρ = 1, which corresponds to output-feedback [17]. With
this choice, the entire capacity region has been derived in
[3], which, when specialized to our symmetric case, leads to
the equal-rate capacity (i.e., maximum achievable equal rate)
Cf = 1/2 log(1 + 2P (1 + θ∗)) with θ∗ being the solution
of the equation1 + 2P (1 + θ) = (1 + P (1 − θ2))2 satisfying
0 ≤ θ ≤ 1. The equal-rate capacityCf and can be shown to be
larger than (4)-(5). The main reason for the suboptimality of
(4)-(5) is that the transmission scheme leading to (4)-(5) limits
the correlation structure between the channel codewords (via
a specific Markov chain condition, see Appendix-A) and thus
does not enable full exploitation of the coherent addition of
the two codewords at the receiver (see also [8] and [19]).

Remark 2: A simple upper bound on the equal rate is
provided byRfull−coop = 1/2 log(1+4P ), which corresponds
to full cooperation between the two transmitters (that is, to
a multiple-input-single-output system). As explained in the
previous remark, this rate cannot be achieved with output-
feedback, but, as discussed below, it can be attained with
arbitrary precision if the quality of the MS measurement (2)
is sufficiently good (i.e., ifβ is large enough). To elaborate,
suppose that we are interested in achievingRfull−coop − ǫ
with ǫ > 0, then, defining asν∗ the value0 ≤ ν∗ ≤ 1
such that 1

2 log
(

1 + 2(1 + ν∗2)P
)

= Rfull−coop − ǫ, it is
easy to see that by settingPc = P (and Pp = 0), if β >
(2Rfull−coop−ǫ−1)/((1−ν∗2)P ), we haveR = Rfull−coop−ǫ
in (4)-(5). In other words, ifβ is large enough, it is optimal
to invest all the power in the common message and dedicate a
vanishingly small portion(1−ν∗2) of such power to signalling,
since this leads to a rate that approaches the upper bound set
by the full-cooperation scenario.

B. Analog Network Coding

In the cellular network of Fig. 1, the MSs can exchange
signals among neighbors in order to enablecooperation. As
will be shown in the next section, such signalling can benefit
from a transmission strategy sometimes referred to asanalog
network coding, due to the broadcast nature of the transmission
of each MS. The basic idea behind analog network coding
is to broadcast a mix of signals rather than of bits, as in
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Fig. 2. (a) Two-user Gaussian MAC with generalized feedback; (b) Two-way
relay network.

conventional network coding, and to cancel interfering signals
using side information available at the decoder. This idea is
illustrated by the example in Fig. 2-(b), which represents the
so called two-way relay network. In this channel, studied ina
large number of recent works, see, e.g., [11]-[16], nodes 1 and
3 have data to communicate to each other via relay 2: upon
reception of the signal transmitted by nodes 1 and 3, relay node
2 can broadcast a mix of the two signals relying on the fact that
both nodes 1 and 3 can cancel their own signal, as they clearly
have side information about it. Different techniques have been
proposed to perform transmission from nodes 1 and 3 to 2 first
and then from 2 to 1 and 2, according to amplify-and-forward,
decode-and-forward or denoise-and-forward techniques (see
[11]). The extension to linear networks with more than three
nodes, which is of interest for our scenario, has also been
treated in different works (see, e.g., [16]).

III. SYSTEM MODEL

The system model we consider provides a simple abstraction
for the uplink of a cellular system with generalized feedback.
The setup generalizes the linear Wyner model studied in a
large number of works (see [10] for a review). We assume
that only one user is active at any transmission block (e.g.,
intra-cell TDMA) and that we have perfect synchronization.
Using notation similar to that in Sec. II-A, and referring to
Fig. 1, the signal received by themth BS at theith symbol is
given by (0 ≤ α ≤ 1)

Ym,i = Xm,i + α(Xm−1,i + Xm+1,i) + Zm,i, (6)

with i.i.d. (over both time i and BS indexm) Gaussian
noise Zm,i ∼ CN (0, 1) and per-symbol power constraint
E[|Xm,i|2] ≤ P. Generalized feedback at the MSs amounts
to having themth MS receive at theith symbol

Ym,i = β(Xm−1,i + Xm+1,i) + Zm,i, (7)

with i.i.d. (over both timei and BS indexm) Gaussian noise
Zm,i ∼ CN (0, 1), andβ ≥ 0. The noise processes{Zm,i}

n
i=1

are generally correlated with{Zm,i}n
i=1 similarly to (4) as

(|ρ| ≤ 1)

Zm,i = ρZm,i +
√

1 − ρ2Z̃m,i. (8)

Encoding is defined similarly to Sec. II-A and so is the
equal rate R, which can be interpreted here as aper-cell
rate. Decoding is performed viamulticell processing, i.e.,
the central processor decides on the transmitted messages
{Wm}M

m=1 based on the signals received by all the BSs. The
achievability of a per-cell rateR is defined based on the
error probabilityPr[{Ŵm}M

m=1 6= {Wm}M
m=1] at the central

processor.
Finally, we recall the expression of the per-cell capacity of

the system at hand in the absence of cooperation (i.e., for
β = 0 andρ = 0), which is given by (see [10])

Rno−coop =

∫ 1

0

log(1 + PH(f)2)df, (9)

where we have defined the transfer functionH(f) = 1 +
2α cos(2πf) with 0 ≤ f ≤ 1. Rate (9) clearly sets a lower
bound on the maximum achievable per-cell rateR. An upper
bound can be instead obtained by considering full cooperation
at the MSs, which leads to [20]

Rfull−coop =

∫ 1

0

log
(

1 + P · H(f)2S(f)
)

df, (10)

with S(f) corresponding to the waterfilling power spectral
density:

S(f) =

(

µ −
1

PH(f)2

)+

(11a)

s.t.
∫ 1

0

S(f)df = 1. (11b)

IV. A N ACHIEVABLE PER-CELL RATE

The following proposition is the main contribution of this
paper and describes an achievable per-cell rate for the system
in Fig. 1.

Proposition 1: Fix an integerK > 0, a (2K+1)×1 complex
unit-norm symmetric vectorg = [gK gK−1 · · · g0 · · · gK−1

gK ]
T (

∑K
k=−K |gk|2 = 1) with Fourier transformG(f), and

constants0 ≤ νi ≤ 1, i = 1, 2, the following rate is achievable
for any β ≥ 0 and |ρ| ≤ 1:

R = min

{

∫ 1

0 log(1 + PpH(f)2)df + Rc,
∫ 1

0 log(1 + PpH(f)2 + ν2
1Pc|G(f)|2H(f)2)df

}

(12)
with

Rc = min


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


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



1
2 log

(

1 +
β22Pc(1−ν2

1
)(1−ν2

2
)

1+β2(2|gK |2Pcν2

1
+2Pp)

)

,

1
2(K−1) log

(

1 +
β2Pc(1−ν2

1
)ν2

2

1+β2(2|gK |2Pcν2

1
+2Pp)

)

,

1
2K log

(

1 +
β2Pc(1−ν2

1
)(2−ν2

2
)

1+β2(2|gK |2Pcν2

1
+2Pp)

)

,

1
2K−1 log

(

1 +
β2Pc(1−ν2

1
)

1+β2(2|gK |2Pcν2

1
+2Pp)

)

,

1
1+K log

(

1 +
β2Pc/2(1−ν2

1
)(4−3ν2

2
)

1+β2(2|gK |2Pcν2

1
+2Pp)

)
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(13)
andPc + Pp = P.

Sketch of proof: Rate (12)-(13) is achieved via block-
Markov encoding using rate and power splitting, in a way that
resembles the achievability scheme for the two-user Gaussian



MAC channel described in Sec. II-A. Specifically, as for
that basic scenario, each MS divides its resources between
transmission ofprivate and commoninformation, where the
latter is transmitted cooperatively by the MSs to the BSs.
Moreover, in order to enable cooperation, the MSs exchange
signalling information about the common messages. The main
issue is how to perform this task in an effective manner.
As explained below, this can be done by using decode-
and-forward techniques and exploiting the side information
available at each MS regarding the signals generated at the
MS itself or already decoded by it.

To be more specific, fix an integerK > 0. Encoding is
performed inB + K blocks. To generate such codebooks, a
number of auxiliary variables per MS are defined:

• Um accounts for the common information of themth MS
that is cooperatively sent by a number of other MSs to the
BSs. Specifically, cooperation takes place with2K other
MSs, K on each side of themth MS (see also [20]);

• Vr,m and Vl,m represent the signalling information that
themth MS sends to the neighboring MSs to the right (the
(m+1)th MS) and left (the (m−1)th MS), respectively, to
enable cooperation. More specifically, as explained below,
Vr,m is used by themth MS to propagate signalling
information from left to right; similarly,Vl,m propagates
signalling information from right to left. Note that the
decoding of such signalling information at each MS
uses the fact that the codewords generated fromVr,m+1

and Vl,m−1 are known at themth MS as they carry
information that has been previous routed through the
mth MS (analog network coding); and

• Vd,m accounts for signalling information generated lo-
cally by themth MS.

The joint distribution of all random variables is chosen
to be complex Gaussian:Um, Vr,m, Vl,m, Vd,m, Ud,m are
independent distributed asCN (0, 1) and

Vm = ν1

√

Pc

K
∑

k=−K

gkUm−k + ν2

√

Pc

2
(1 − ν2

1)(Vr,m

+ Vl,m) +
√

Pc(1 − ν2
1 )(1 − ν2

2 )Vd,m (14)

Xm = Vm +
√

PpUd,m, (15)

where the parameters are constrained as in Proposition 1.
Note thatPp and Pc correspond, respectively, to the powers
used for transmittingprivate and commoninformation: the
former is sent to the BSs without any cooperation from
other MSs, unlike the latter, where cooperation occurs with
2K other MSs (see the discussion above). Furthermore, the
common-part powerPc is divided between the power used
for cooperative transmission to the BSs, given byν2

1Pc (the
first term in (14)), and the power used for signalling to other
MSs so as to enable cooperation, given by (1 − ν2

1 )Pc. The
latter power is in turn split between the power employed
to forward signalling information received from neighbors
(ν2

2Pc(1− ν2
1), the second term in (14)) and locally generated

common information (Pc(1−ν2
1)(1−ν2

2 ), the last term in (14)).

We emphasize that the parameterν1 is especially critical as it
accounts for the trade-off between power used for cooperative
transmission to the BSs and that used for signalling among
MSs.

As further shown in Appendix-B, using an appropriately
designed block-Markov coding strategy and backward decod-
ing at the destination, rates (12)-(13) can be achieved. It
is noted that, similarly to (4)-(5) for the two-user Gaussian
MAC, a proper choice of the common rateRc as in (13)
guarantees correct decoding of the signalling messages at the
MSs, while condition (12) enables correct decoding at the
central processor.

Remark 3: As discussed in Remark 1, the scheme achieving
rate (12) fails to be optimal even in the case of the two-
user Gaussian MAC. However, as will be discussed in the
next section, it obtains relevant gains with respect to a non-
cooperative scenario.

Remark 4: In Remark 2, it was noted that for a two-
user Gaussian MAC, if the MS measurements are of good
enough quality, the scheme at hand is able to attain the upper
bound corresponding to full cooperation. The same conclusion
applies to the rate (4)-(5) for the cellular MAC of Fig. 1. In
fact, if β is large enough in (7), by selectingPc = P (and
Pp = 0) andν2

1 sufficiently close to1, one can get arbitrarily
close to the upper bound (10). To see this, observe that: (i) For
K large enough, we can have|G(f)|2 ≃ S(f) in (12) since a
finite-impulse-response filterg can approximate any frequency
response (e.g., the waterfilling solutionS(f)) if the number
of taps is large enough (see also [20]); and (ii ) One can set
gK = 0 so as to avoid interference in the decoding of the
inter-MS signalling messages (see (13)): by settinggK = 0,
every MS effectively cooperates with only2(K−1) MS, rather
than2K, thus sacrificing some cooperative gain to enable the
two neighboring MSs to cancel all the interference caused by
such cooperative signals (see the proof in Appendix-B and the
discussion above for details).

V. NUMERICAL RESULTS

In this section, we provide some numerical results to obtain
insight into the performance and limitations of the achievable
rate derived above. For comparison, we consider the rate (13)
achievable with no cooperation, which sets a lower bound,
and the upper bound (10) corresponding to full coopera-
tion. To reduce the number of optimization variables, we fix
ν2
2 = (K − 1)/K, which essentially corresponds to dividing

the power used for signalling in an equal fashion among the
common messages communicated at each block. Moreover, the
filter g is chosen (suboptimally) using a frequency-sampling
method with target function given by the waterfilling solution
(11) as in [20]. The remaining parameters specifying the
per-cell achievable rate (12), namely the power allocation
(Pc, Pp) and the fractionv1 of the common power used for
cooperative transmission to the BSs or signalling (recall (14)),
are optimized numerically. Note that the noise correlation
coefficientρ in (8) plays no role in either the achievable rate



or the bounds, and can thus be set to an arbitrary value in the
following.

Fig. 3 shows the achievable rate (12) versus the signal-
to-noise ratioP as compared to lower and upper bounds
for α = 0.8, β2 = 20dB 1 and for different values of
the number of cooperating terminalsK = 1, 2, and 3. It is
noted that the optimal fraction of common powerv1 used for
cooperative transmission decreases withK (not shown), as
expected, since more power is required for signalling as the
number of common messages to be delivered increases. We
also remark that increasing the number of cooperating MSs
beyondK = 3 is deleterious in terms of achievable rates in
this example, due to the limitations in terms of resources for
signalling. Also shown is the caseβ2 = 30dB, K = 2. It
is seen that, ifβ2 is sufficiently large, the proposed scheme
enables relevant rate gains with respect to no cooperation,and
allows the system to partially bridge the gap to the upper
bound corresponding to full cooperation.

This fact is further investigated in Fig. 4 where the rates
discussed above are shown versusβ2 for α = 0.6 and
P = −2dB. Following Remark 4, we setgK = 0 and
obtain the remaining2(K − 1) + 1 taps in g according to
the frequency-sampling as above. This is motivated by the
fact that we are interested in achieving the upper bound of
full cooperation for sufficiently largeβ2. As discussed above,
a full optimization over all the parameters has the potential
of further increasing the achievable rate. It should also be
emphasized that the choice to operate in the low-SNR regime
is motivated by the fact that only in this regime are gains
from cooperation attainable: In fact, for sufficiently large SNR
P, the upper (10) and lower (9) bounds coincide, implying
that optimal performance is achieved without any cooperation
among MSs. Fig. 4 confirms that, for sufficiently largeβ and
K, the performance of the proposed scheme attains the upper
bound of full cooperation.

VI. CONCLUSIONS

The presence of feedback signals can be exploited by the
MSs of a cellular system to set up cooperation. The achievable
rate derived in this paper extends previously proposed tech-
niques for two-user Gaussian MACs by exploiting the regular
cellular structure to effectively communicate among nearby
MSs via “analog network coding” techniques. Numerical re-
sults show that, even when accounting for the resources needed
to set up cooperation via inter-MS signalling, feedback-based
techniques can achieve rate gains in the low-SNR regime, and
can achieve the upper bound of full cooperation if the MS
measurement channels are “good” enough. The results here
provide a more complete picture regarding the gains from MS
cooperation predicted by [20], where the inter-MS channel
used for signalling were provided as extra resources orthogonal
to the main uplink channel.

Interesting extensions of this work include devising feed-
back strategies similar to [3] [4] based on local feedback from

1β2, when measured indB, is defined as10 log10 β2, where the latter is
in linear scale.
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BSs to corresponding MSs and extending the results to two-
dimensional cellular models [10].

APPENDIX

A. Brief Derivation of (4)-(5)

Using the achievable rates of [5]–[7] (see also [8]), we
obtain the following conditions on the equal rateR (recall



definitions in Sec. II-A):

R ≤ I(X1; Y |UV1V2X2) + I(V1; Y2|UX2) (16a)

R ≤ I(X2; Y |UV1V2X1) + I(V2; Y1|UX1) (16b)

R ≤
1

2
I(X1X2; Y |UV1V2) (16c)

+
1

2
I(V1; Y2|UX2) +

1

2
I(V2; Y1|UX1) (16d)

R ≤
1

2
I(X1X2; Y ) (16e)

to be maximized over auxiliary random variablesU, V1, V2

satisfying the Markov chain relationship(V1X1)−U−(V2X2)
and the power constraintE[|Xi|2] ≤ Pi. As discussed in
Remark 1, the Markov condition limits the correlation struc-
ture between the codewords of the two sources. Now for the
following choice of auxiliary random variables (i = 1, 2), we
have

Vi = ν
√

PcU +
√

(1 − ν2)PcV
′
i (17a)

Xi = Vi +
√

PpU
′
i (17b)

with 0 ≤ ν ≤ 1, Pc + Pp = P and U, V ′
i and U ′

i (i =
1, 2) independentCN (0, 1); definingRc = I(V1; Y2|UX2) =
I(V2; Y1|UX1), one gets (4)-(5).

B. Proof of Proposition 1

Referring to Sec. IV for basic definitions, here we complete
the proof.

Codebook generation:
Split the per-cell rateR as R = Rp + Rc (private and

common parts,Rp, Rc ≥ 0).

• Generate 2nRc codewords un
m(w̃c,m), w̃c,m =

1, 2, ..., 2nRc , by choosing each symbol independently
according toCN (0, 1);

• Generate 2n(K−1)Rc codewords vn
r,m({wc,m−k}

K−1
k=1 )

for wc,m−k = 1, 2, ..., 2nRc (k = 1, ..., K −
1) by choosing independentCN (0, 1) symbols. Pro-
ceed similarly for codewordsvn

l,m({wc,m+k}
K−1
k=1 ),

wc,m+i = 1, 2, ..., 2nRc . Finally, generate2nRc code-
words vn

d,m(wc,m), wc,m = 1, 2, ..., 2nRc , again by
choosing independentCN (0, 1) symbols;

• For each value of w̃c,m = ({w̃c,m+k}K
k=−K)

and wc,m = ({wc,m+k}
K−1
k=−K+1) create a code-

word vn
m(w̃c,m,wc,m) by summing the corresponding

un
m(w̃c,m), vn

r,m({wc,m−k}
K−1
k=1 ), vn

l,m({wc,m+k}
K−1
k=1 ),

vn
d,m(wc,m) according to (14);

• For each value of w̃c,m and wc,m generate
2nRp codewords xn

m(w̃c,m,wc,m, wp,m) with
wp,m = 1, 2, ..., 2nRp by choosing each symbol
independently according to the complex Gaussian
distribution fX|V (·|vm,i(w̃c,m,wc,m)) defined as in
(15).

Encoders: We use Block-Markov encoding overB + K
blocks. Each MS messagewm carriesn((B+K)Rp+BRc) =
n(BR + KRp) bits and it is split into two parts, one private
wp,m with n(B + K)Rp and one common withnBRc bits.

The private message is then further split intoB + K blocks
w

(b)
p,m, b = 1, 2, ..., B + K (each withnRp bits), while the

common message is split intoB blocksw
(b)
c,m, b = 1, 2, ..., B,

each withnRc bits. Note that the overall rate is

R̄(K) =
BR + KR

B
,

so thatR̄(K) → R for B → ∞ andfixedK.

Define w̃
(b)
c,m = ({w

(b−K)
c,m+k}

K
k=−K) and w

(b)
c,m =

(w
(b)
c,r,m, w

(b)
c,m,w

(b)
c,l,m) with w

(b)
c,r,m = {w

(b−k)
c,m−k}

K−1
k=1 ,

w
(b)
c,l,m = {w

(b−k)
c,m+k}

K−1
k=1 . Assume that at blockb each

mth MSs has correctly estimated̃w(b)
c,m (it clearly already

knows w
(b−K)
c,m ) and w

(b)
c,m (it knows w

(b)
c,m) (see the de-

scription of decoding below). Themth encoder transmits
xn

m(w̃
(b)
c,m,w

(b)
c,m, wp,m) at blockb, wherew

(b′)
c,m = 1 for b′ ≤ 0

and b′ ≥ B. See Fig. 5 for an illustration forB = 2 and
K = 2.

Decoders:
Decoders at themth MS: Themth MS at blockb, based on

the observation ofYn(b)
m is interested in decodingw(b)

c,l,m+1,

w
(b)
c,r,m−1, w

(b)
c,m−1 and w

(b)
c,m+1. This is done via a joint

typicality decoder that attempts to find the variables mentioned
above such that the sequences

{{un
m+k(w

(b−K)
c,m+k)}K

k=−K , vn
r,m−1(w

(b)
c,r,m−1),

vn
l,m−1(w

(b)
c,l,m−1), vn

r,m+1(w
(b)
c,r,m+1), vn

l,m+1(w
(b)
c,l,m+1),

vn
d,m−1(w

(b)
c,m−1), vn

d,m+1(w
(b)
c,m+1), Y

n(b)
m }

are jointly typical. Notice that messages{w(b−K)
c,m+k}

K
k=−K ,

w
(b)
c,l,m−1 andw

(b)
c,r,m+1 are known by themth MS at thebth

block as they have either been decoded or generated by the
mth MS at previous blocks.

Decoder at the CP: The CP uses backward decoding and
joint typicality detection [7].

Analysis of error probability:
At the mth MS: There are 15 disjoint error events and

keeping only the dominant ones, we get

Rc ≤
1

2
log

(

1 +
2β2Pc(1 − ν2

1 )(1 − ν2
2 )

1 + β2(2|gK |2Pcν2
1 + 2Pp)

)

Rc ≤
1

2(K − 1)
log

(

1 +
β2Pc(1 − ν2

1 )ν2
2

1 + β2(2|gK |2Pcν2
1 + 2Pp)

)

Rc ≤
1

2K
log

(

1 +
β2Pc(1 − ν2

1)(2 − ν2
2)

1 + β2(2|gK |2Pcν2
1 + 2Pp)

)

Rc ≤
1

2K − 1
log

(

1 +
β2Pc(1 − ν2

1 )

1 + β2(2|gK |2Pcν2
1 + 2Pp)

)

Rc ≤
1

1 + K
log

(

1 +
β2Pc/2(1 − ν2

1 )(4 − 3ν2
2)

1 + β2(2|gK |2Pcν2
1 + 2Pp)

)

.
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Fig. 5. Block-Markov encoding strategy forB = 2 andK = 2.

At the BSs: Using backward decoding, the analysis of the
error probability reduces to the one carried out in [20] so that

Rp + Rc ≤

∫ 1

0

log(1 + PpH(f)2 + ν2
1Pc|G(f)|2H(f)2)df

Rp ≤

∫ 1

0

log(1 + PpH(f)2)df,

from which Proposition 1 is proved.
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