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Abstract— A modulation classification scheme based on
Independent Component Analysis (ICA) in conjunction with
either maximum likelihood or Support Vector Machines (SVM) is
proposed for MIMO-OFDM signals over frequency selective,
time varying channels. The method is blind in the sense that it is
assumed that the receiver has no information about the channel
and transmitted signals other than that the spatial streams of
signals are statistically independent. The processing consists of
separation of the MIMO streams followed by modulation
classification of the separated signals. While in general, blind
separation of signals over frequency selective channels is a
difficult problem, the non-frequency selective nature of the
channel experienced by individual symbols in a MIMO-OFDM
system enables the application of well-known ICA algorithms.
Modulation classification is implemented by maximum likelihood
and by an SVM-based modulation classification method relying
on pre-selected modulation-dependent features. To improve
performance in time varying channels, the invariance of the is
exploited across the coherence bandwidth and the time
coherence. The proposed method is shown to perform with high
probability of correct classification over realistic ITU pedestrian
and vehicular channels.

1. INTRODUCTION

To meet the growing demand for high-data rates in
communications systems, new wireless applications rely on
multiple-input multiple-output (MIMO) technologies. MIMO
can support increased data capacity through, spatial
multiplexing, i.e., the transmission of data in parallel streams.
Orthogonal Frequency Division Multiplexing (OFDM) is a
multicarrier transmission technique where the frequency band
is divided into several orthogonal sub-bands, such that the
symbols transmitted on each sub-band experience frequency
non-selective fading. Channel equalization is then reduced to a
one-tap filter per data symbol. The combination of MIMO
transmission and OFDM data modulation is central to fourth
generation (4G) wireless technologies, such as WiMax, LTE,
and IEEE 802.22.

Recognition of the modulation of unknown received signals
has obvious military applications. As for civilian applications,
attempts to reduce overhead of reference signals required for
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channel estimation has motivated research in blind and
semi-blind MIMO techniques. Blind techniques are also
expected to play a role in software defined radio and cognitive
radio. Configuration information required by a software
defined radio system is transmitted as overhead to the data.
However, intelligent receivers capable of extracting this
information blindly may improve transmission efficiency
through reductions in overhead. For example, automatic
modulation  classification eliminates the need for
supplementary information on the modulation type.

In general, classification requires preprocessing of the
received signals for acquiring signal parameters, such as carrier
frequency and symbol rate. This paper focuses on the
modulation classification of MIMO-OFDM signals assuming
that frequency and time synchronization have already been
attained.

Modulation classification methods for single-input
single-output SISO systems are generally classified as
likelihood-based ~ or  feature-based.  Likelihood-based
classification is optimal in the sense of attaining minimum
probability of misclassification, but is computationally
complex often requiring exhaustive searches through
parameter values. With feature-based methods, specific
features are extracted from the signal and compared with
pre-calculated values. Feature-based methods are usually
ad-hoc, but computationally efficient. A detailed survey of
automatic modulation classification methods for SISO systems
is given in [1].

MIMO modulation classification relies on the blind channel
estimation of the MIMO channel. Blind MIMO channel
estimation has been an active area of research (e.g. [2] and [3]).
Blind channel estimation for MIMO-OFDM has been studied
in [4]. A likelihood-based approach to MIMO modulation
classification is proposed in [5], where the channel matrix
required for the calculation of the likelihood is first estimated
blindly by independent component analysis (ICA).

The main contributions of the current paper are: (1) exploit
the frequency non-selective channel experienced by the
MIMO-OFDM data symbols and the finite frequency and time
selectivity to perform modulation classification on groups of
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data symbols with a common channel; (2) develop a low
complexity SVM-based modulation classifier.

The rest of the paper is organized as follows: the next section
introduces the signal model, the proposed MIMO-OFDM
modulation classification methods are presented in Section III,
numerical examples are provided in Section IV, and Section V
wraps up with conclusions.

Il SIGNAL MODEL
Consider a MIMO-OFDM system with M, transmit
antennas and M, receive antennas. Identifiability conditions
of the MIMO channel require, M, < M, . The system transmits

frames of OFDM symbols with s (k,n) denoting the length

M, symbol vector of modulation Q" transmitted on
subcarrier index n and frame index k. A frame is an OFDM
block of data symbols. The transmitted symbols are of
unknown PSK/QAM modulation, but are assumed statistically
independent between antennas, subcarriers and frames. In
addition, ideal time synchronization as well as ideal carrier
frequency synchronization is assumed at the receiver side. A
block diagram of the MIMO-OFDM system is shown in Fig. 1.

Assuming a cyclic prefix that ensures inter-carrier
interference-free observations, the received length A vector

in the frequency domain, y(k,n) , is expressed

y(k,n) = H(k,n)s(k,n)+z(k,n) (1
where H(k,n) is the MIMO channel matrix associated with

the subcarrier and frame, and z(k,n) is additive white
Gaussian noise. The noise is complex-valued, zero mean, has
known variance ¢ /2 for both real and imaginary parts, and
is independent between receive antennas, subcarriers, and
frames.

Blind estimation of the MIMO channel relies on channel
values that remain static over multiple observations. We
exploit the coherence bandwidth and time coherence of the
channel, assumed known at the receiver, to form a set of K
frames and N subcarriers over which the channel is fixed, and
denote the channel matrix H. For notational convenience, the
KN observation vectors y(k,n) , signal vectors s(k,n), and

noise vectors z(k,n) associated with channel H, are
re-indexed y, , s, , and z, , respectively, for k=1,...,KN .
With that, the received signal is written

Y, =Hs, +z, (2)
For future use, denote Y = {y k}g the set of all observations
and S = {s ' }g the set of all transmitted vectors belonging to

modulation Q.
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Fig. 1. MIMO-OFDM system model

A MIMO-OFDM system can be considered a set of
instantaneous mixtures of transmitted signals. The problem of
separating MIMO-OFDM signals becomes a blind source
separation problem (BSS) at each subcarrier.

III.  PROPOSED METHODS

The proposed method for the blind classification of the
MIMO-OFDM signals has three stages as summarized in Fig.
2. The first stage groups subcarriers and frames to maximize
the number of observations for a fixed channel matrix. The
second stage applies an ICA algorithm to separate the MIMO
signals. Finally, modulation classification methods are applied
to the separated data streams.

Phase
Estimation

MIMO-OFDM .
data symbols | Subcarrier ICA
————— and Frame

(JADE)

Grouping

ML Classification

Feature
Extraction
SVM
Classification

Fig. 2. Block diagram of MIMO-OFDM modulation classification
A. MIMO Separation by ICA

The received MIMO signal at each subcarrier is a linear
mixture of the transmitted sources. Reconstructing unobserved
signals from their linear mixtures is possible if the signals are
statistically independent. ICA is a class of techniques for
achieving that. Since the mutual interference between signals
in the mixture dominates additive noise effects, noise is usually
ignored in ICA formulations. Given the signal model (2), ICA
methods [6-8] seek to compute a demixing matrix W=H".
Application of W to the data vector y, enables to recover the

vector of transmitted symbols s, , according to §, = Wy, .

Since H=W™' | computation of the demixing matrix is
equivalent to the estimation of the channel matrix.

ICA relies on statistical independence, a condition stricter
than requiring the components of s, to be only orthogonal. It is
well known that if the components of a linear mixture are
statistically orthogonal, methods relying on second order
moments can separate the signals up to an invertible matrix.



For signals that are non-Gaussian and statistically independent,
it is possible to resolve this ambiguity up to a complex scaling
and permutation. In other words, ICA estimates the channel
matrix

H=DPH 3)
where D is a diagonal, complex-valued matrix, and P is a
permutation matrix. The scaling ambiguity can be reduced to a
phase only ambiguity by setting E[s,sy |=1, where the
superscript denotes Hermitian operation, and I is the identity
matrix.

A number of algorithms are available for implementing
ICA. They have in common the aim to minimize a contrast
function, which measures the statistical dependency of the
sources in the mixture. Minimization of the contrast function
yields the desired independent signals. In this paper, we use the
JADE algorithm [7, 8] due to its relative fast speed of
convergence. As discussed above, the signal separation is up to
a permutation and phase ambiguity.

All ICA algorithms, JADE included, require multiple
observations to estimate the demixing matrix W. Thus, it is
implicit in the estimation process that the target channel matrix
H is constant over the processed observations. In practice, due
to data support and noise limitations, the estimated demixing
matrix W is only an approximation of the true inverse channel
matrix. Thus each stream of separated signals contains also
multiuser interference, which affects the modulation
classification.

B. Maximum Likelihood Modulation Classification

For the MIMO-OFDM system (2), under the assumption of
statistically independent received symbols, the likelihood
function of the observations is given by

L(Y|s<">,H)

1 I 1 ol

e o] Svmf |
where the norm is Euclidean. The likelihood is conditioned on
the transmitted symbols SY and channel H, which are
unknown. These unknown quantities are addressed in different
ways. The ICA processing yields an estimate H of the channel
matrix, which is then used in (4). The difficulty posed by the
unknown symbols S is resolved by assuming a uniform a
priori distribution, and averaging over the symbols from each
constellation Q. With these modifications, the likelihood

function for constellation Q) is given by
(v A)=E,, [L(’) (v s, H)} .

The ICA stage of the processing produces a demixing matrix

W or equivalently, an estimate of the channel matrix H=W".

As discussed previously and indicated by (3), the channel
estimate produced by ICA has inherent permutation and phase
indeterminacies. It is shown in [5] that the likelihood function
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(5) is invariant to a permutation matrix applied to H , l.e.
L |H)=1"( | PH).

Unlike its invariance to unknown permutations of the
signals, the likelihood function for modulation classification is
dependent on the unknown phase offsets contained in the
diagonal of the matrix D. These phase offsets need to be
estimated for correct modulation classification. If the unknown

phase offset for one of the separated MIMO streams is ¢ , the
log likelihood function for estimating it is

0(¢)= glog {g; exp{— 2;2 |x(k)—s(k)e’¢|2}} 6)

where x(k) is a data symbol at the output of the ICA

algorithm, s (k) is one of the symbols in the constellation, and

o’ is the interference term (multiuser interference due to

imperfect MIMO channel equalization by the ICA). In [9] it is
shown that as the SNR tends to zero, the maximum likelihood
phase estimator takes on the blind form

KN
¢3 = larg{E[S*P:‘Z:xp (k):| @)

P P
where P is the number of symbols of the constellation that are
rotationally symmetric. For example, for QAM constellations,
P =4 . According to [9], even after the phase offset estimation
according to (7), there remains a leftover phase ambiguity
corresponding to a multiple of the phase difference between the
constellation symbols. It is an easy argument to make that this
remaining ambiguity does not interfere with the modulation

classification.

Substituting the estimated channel matrix in the likelihood
expression, averaging over the symbols of each hypothesized

constellation, and estimating the phase offsets leads to the
following likelihood-based modulation classification

QO =argmax In{L" (¥ | H)}, ®)
)

C. SVM Modulation Classification

Feature-based modulation classification methods are of
interest since they have lower complexity than
likelihood-based methods. Here, we propose an SVM
modulation classification method that combines multiple
features.

The fourth order cumulants, |C40| and C,, were previously
proposed for modulation classification [10]. It is known that

fourth order cumulants can be applied to distinguish between
modulations, and are robust to noise effects. Given M samples

of a signal s(k), cumulant C,, is defined [10, 11]
e a1 LY

s(k)* =3] — k

' =3{ 3y sy |

k=0
2

1 4 2
(M R ]

lel

40

)

whereas C,, is defined
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- z(ﬁzgp(k)rj
2l |

It is shown in [10] that |C40| and C,, are invariant to carrier

(10)

phase offset, which in our case corresponds to the phase
ambiguity inherited from the ICA algorithm. Therefore,
classification based on these features is not affected by the
unknown phase offsets introduced by the ICA algorithm.

SVM is an important pattern recognition method, in which
each pattern is represented by D features [12-13]. The aim in
SVM is to find the best separating hyperplane in
D-dimensional space to discriminate between the patterns.
SVM processing has two main steps: training and testing. In
the training step, training data obtained from known sources is
processed to find the optimum hyperplane separating data of
different modulations. In the second stage of SVM, the test
data is compared with the separating hyperplane and then
classified accordingly. The training data in the proposed
method corresponds to a number of |C40| and C,, values for
each candidate modulation and for each SNR value. Since
thresholding between the modulations is SNR dependent,
SVM modulation classification requires knowledge of the SNR
at the receiver.

IV. NUMERICAL EXAMPLES

Numerical simulations were carried out to demonstrate the
ability of the proposed MIMO-OFDM modulation
classification methods to discriminate between QPSK and
16QAM modulations over standard channel models. The
simulations addressed a MIMO-OFDM system with two
transmit antennas, M, = 2, and four receive antennas, M, = 4.

The total number of subcarriers was set to N =512, and the
signal bandwidth was chosen 6.4 MHz.

Performance was evaluated over the ITU pedestrian B and
vehicular A channel models with the parameters given in Table
I.  The maximum speeds were assumed 3 km/hr for
pedestrians, and 60 km/hr for vehicles. Time variations of the
channels were modeled according to the Clarke and Guns
model [14].

In the training stage of the SVM, 150 symbols from each
modulation QPSK and 16QAM were generated synthetically.
The average power of each modulation was set to unity. White
Gaussian noise with a set variance corresponding to the SNR
was added to the modulated signal. Finally, the features |C4O|
and C,, of the noisy training data were calculated according to
(9) and (10). SVM was implemented with the Matlab
Bioinformatics Toolbox. The probability of correct
classification was computed based on 1000 Monte Carlo trials
for each SNR value.

Fig. 3 shows the probability of correct classification for
pedestrian B channels, and both stationary and moving
terminals. In this figure, performance was evaluated using
observations collected from 50 OFDM frames, without
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exploiting the similarity in channel response across the
coherence bandwidth. Classification scores are shown for both
likelihood-based and SVM-based methods. It is observed that
both methods perform well for stationary and moving
pedestrians. This is not surprising since at 3 km/hr, a pedestrian
experiences a negligible Doppler spread. To achieve 85%
correct classification rate, the likelihood-based approach
outperformed the SVM approach by approximately 10 dB.

It is interesting to compare the computational complexity of
the two methods. The number of basic operations required for

the SVM approach is O(KN x M), where KN is the number
of data samples processed in the ICA algorithm. In contrast, the
likelihood-based approach requires O(KN x M, :4 ") basic

operations, where M is the maximum number of hypothetical

states of the assumed constellations. In our case, M, =16,

since the 16QAM modulation has 16 states. Thus the
complexity of the likelihood-based algorithm can be
considerably higher than that of the SVM algorithm.

The second simulation was performed for the vehicular A
channel. In Fig. 4 are shown the successful classification rates
for stationary and moving terminals. At high Doppler, the
performance is significantly degraded. This degradation is due
to the time varying nature of the channel, which renders the
channel estimation by ICA useless.

In order to improve the performance over time varying
channel, the number of OFDM frames should be limited
according to the coherence time of the channel. Regarding the
OFDM system simulated, for a moving vehicle at the speed of
60 km/hr, the coherence time spans approximately 35 OFDM
frames. But from the simulation results, we observed that
JADE needs at least 50 samples to separate the MIMO data
streams. One way to overcome this problem is through
grouping subcarriers according to the coherence bandwidth of
the channel. In the simulations, we grouped the data of five
subcarriers and 10 frames. The performance is shown in Fig. 5.
This method significantly improved the classification rate. For
example, even at high speed, likelihood-based correct
classification is close to guaranteed for SNR greater than 10
dB, while classification with SVM has a success rate higher
than 80% for SNR greater than 10 dB.

V. CONCLUSIONS

This paper studies two classification modulation methods
for MIMO-OFDM signals. First, the ICA JADE algorithm is
applied to separate the data streams of the MIMO-OFDM
signal. The modulation of the separated data streams is
subsequently detected by maximum likelihood and by SVM.
Modulation classification of MIMO signals is more
challenging than for SISO signals due to the residual multiuser
interference resulting from imperfect signal separation. Our
approach to modulation classification relies on the frequency
non-selective nature of the channel experienced by individual
OFDM data symbols, and exploits the invariance of the MIMO
channel matrix across the coherence bandwidth and time
coherence. The proposed modulation classification methods



were demonstrated over ITU channels. Over the slowly
time-varying ITU pedestrian channel, the proposed SVM
method achieved 85% classification rates for SNR higher than
15 dB. Over the fast fading channel, high probabilities of
correct classification were maintained by grouping signals
according to the coherent bandwidth and time coherence of the
channel. In this case, performance was close to the static
channel.
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TABLE I

ITu TAPPED DELAY LINE CHANNEL PARAMETERS FOR PEDESTRIAN B AND

'VEHICULAR A TEST ENVIRONMENT

Pedestrian B Vehicular A Doppler
Tap | Relativ Average Relative Average | spectrum
e delay power delay power
(ns) (dB) (ns) (dB)
1 0 0 0 0.0 Classic
2 200 —0.9 310 -1.0 Classic
3 800 —4.9 710 -9.0 Classic
4 1200 8.0 1090 -10.0 Classic
5 2300 7.8 1730 -15.0 Classic
6 3700 -23.9 2510 -20.0 Classic
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Fig. 3. Probability of Correct Classification over ITU Pedestrian B
channel.
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Fig. 4. Probability of Correct Classification over ITU Vehicular A
channel.



