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Abstract—Mobile cloud computing enables the offloading of
computationally heavy applications, such as for gaming, object
recognition or video processing, from mobile users (MUs) to a
cloud server connected to wireless access points. The optimization
of the operation of a mobile cloud computing system amounts
to the problem of minimizing the energy required for offloading
across all MUs under latency constraints at the application layer.
In a scenario with multiple MUs transmitting over a shared
wireless medium across multiple cells, this problem requires
the management of interference for both the uplink, through
which MUs offload the data needed for computation in the cloud,
and for the downlink, through which the outcome of the cloud
computation are fed back to the MUs, as well as the allocation
of backhaul resources for communication between wireless edge
and cloud and of computing resources at the cloud. In this
paper, this problem is formulated for general multi-antenna, or
MIMO, channels, and tackled by means of successive convex
approximation methods. The numerical results illustrate the
advantages of a joint allocation of computing and communication
resources.

Index Terms—Mobile cloud computing, 5G, successive convex
approximation, application offloading, backhaul.

I. INTRODUCTION

Mobile cloud computing enables the offloading of com-
putationally heavy applications, such as for gaming, object
recognition, video processing, or virtual reality, from mobile
users (MUs) to a cloud server connected to wireless access
points [1], [2]. Given the battery-limited nature of mobile
devices, mobile cloud computing is deemed to be an important
enabler for the provision of advanced services [3]. When stud-
ied purely at the application layer, the optimization of a mobile
cloud computing system entails the fine-grained decision of
which subtasks of the call graph of a given application should
be offloaded as a function of the latency constraints of the
application with the aim of minimizing energy expenditure
(see, e.g., [4]). Given that offloading requires transmission and
reception on the wireless interface, a more systematic approach
involves the joint optimization of offloading decisions and
communication parameters, such as power allocation [5], [6].

While the mentioned problem formulations encompass the
operation of a single MU, in a scenario with multiple MUs
transmitting over a shared wireless medium across multiple
cells, the design of a mobile cloud computing system requires:
(i) the management of interference for the uplink, through
which MUs offload the data needed for computation in the

Fig. 1: Illustration of the system model.

cloud; (ii) the management of interference for the downlink,
through which the outcome of the cloud computations are fed
back to the MUs; (iii) the allocation of backhaul resources for
communication between wireless edge and cloud; and (iv) the
allocation of computing resources at the cloud. In prior works
[7], [8], a problem formulation that includes elements (i) and
(iv) was studied, and the resulting problem tackled by means
of the successive convex approximation (SCA) method [9].

In this paper, a problem formulation is considered that
accounts for all aspects (i)-(iv) mentioned above for general
multi-antenna, or MIMO, channels, in both uplink and down-
link. This work is mostly motivated by the importance of
taking into accout backhaul capacity limitations in the system
design, since backhaul is well understood to be often the bot-
tleneck in modern dense network deployments [10]. Moreover,
unlike [9], we also explicitly model the optimization of the
downlink for downloading the outcome of the optimization.
The problem is addressed by adapting the SCA method to the
set-up under study.

The rest of the paper is organized as follows. Section
II, presents the system model and the problem formulation.
The suggested iterative SCA scheme is explained in Section
III. The simulation results are shown in Section IV and
conclusions are finally provided in Section V.



II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the system model, and then
the problem formulation.

A. System Model

We consider a network composed of Nc small cells which
generalizes the system model in [7] by accounting also for
limited backhaul resources and for downlink transmissions as
shown in Fig. 1.

In each cell n = 1, ..., Nc, there is a small-cell base station,
referred to as small-cell cloud-enhanced e-Node B (ceNB),
which is connected to a common server, or pool of servers,
named cloud, that provides computational resources. Each
ceNB serves K Mobile Users (MUs) in orthogonal spectral
resources, say in the frequency domain. We denote by in the
MU in cell n that is scheduled on the ith spectral resource,
and by I , {in : i = 1, ...,K, n = 1, ..., Nc} the set of all
the users. Each MU in and ceNB n is equipped with NTin

transmit and NRn
receive antenna, respectively. Note that

MUs in different cells that are scheduled on the same spectral
resources interfere with one other.

Each MU in wishes to run an application within a given
maximum latency Tin . The application to be executed is
characterized by the number Vin of CPU cycles necessary
to complete it, by the number BI

in
of input bits, and by

the number BO
in

of output bits encoding the result of the
computation. Each MU offload computations to the ceNB in
the same cell, as long as the latency constraint is satisfied.

We next derive energy and latency resulting from an of-
floading decision at all MUs. The offloading latency consist
of the time ∆ul

in
needed for the MU to transmit the input bits

to its ceNB in the uplink; the time ∆exe
in

necessary for the
cloud to execute the instructions; the round-trip time ∆bh

in
for

exchanging information between ceBN and the cloud through
the backhaul link; and the time ∆dl

in
to send the result back

to the MU in the downlink. We can hence write the total
offloading latency for MU in as

∆in = ∆ul
in + ∆exe

in + ∆bh
in + ∆dl

in . (1)

The energy Ein of each MU in instead depends only on
the power used for transmission in the uplink. These latency
and energy terms are computed as a function of the radio and
computational resources in the following.

1) Uplink transmission: The optimization variables at the
physical layer for the uplink are the users’ transmit covariance
matrices Qul , (Qul

in)in∈I , where Qul
in = E[xulinxul

H

in
] with

xulin ∼ CN (0,Qul
in) being the signal transmitted by the user

in. These matrices are subject to power budget constraints so
that the set of feasible uplink covariance matrix is given by

Qul
in ,

{
Qul

in ∈ C
NTin

×NTin : Qul
in � 0, tr(Qul

in) ≤ Pul
in

}
(2)

where Pul
in

is the maximum allowed transmit energy per
symbol of MU in. For any given profile Qul , (Qul

in)in∈I ,

the achievable transmission rate of MU in in bits per symbol
can be written as

rulin(Q) = log2 det
(

I + HH
inRul

n (Q−in)−1HinQul
in

)
, (3)

where

Rul
n (Q−in) , σ2

wI +
∑

im∈I,m 6=n

HimnQul
imHH

imn (4)

is the covariance matrix of the sum of the noise and of the
inter-cell interference affecting reception at the ceNB in the
ith spectral resources; Hin is the uplink channel matrix for
MU in to the ceNB in the cell n, whereas Himn is the cross
channel matrix between the interfering MU im in the cell m
and the ceNB in cell n. The time, in seconds, necessary for
user i in cell n to transmit the input bits BI

in
to its ceNB in

the uplink is then

∆ul
in

(
Qul

)
=

BI
in

Wulrulin (Qul)
, (5)

where Wul is the uplink channel bandwidth allocated to each
one of the orthogonal spectral resources. The corresponding
energy consumption due to offloading is defined as

Ein

(
Qul

)
= BI

in

tr
(
Qul

in

)
rulin (Qul)

. (6)

2) Downlink transmission: The optimization variables
for the downlink are ceNBs’ transmit covariance matrices
(Qdl

in)i=1,...,K , which are subject to per-ceNB power con-
straints and hence must belong to the set

Qdl
n ,

{
(Qdl

in)i=1,...,K ∈ CNTin
×NTin :

K∑
i=1

tr(Qdl
in) ≤ P dl

n

}
.

(7)
Similar to the uplink, we can write the achievable rate in bits
per symbol for each MU in the downlink and the correspond-
ing required transmission time as

rdlin(Qdl) = log2 det
(

I + GH
inRdl

n (Qdl
−in)−1GinQdl

in

)
, (8)

with

Rdl
n (Qdl

−in) , σ2
wI +

∑
im∈I,m6=n

GimnQdl
imGH

imn, (9)

and

∆dl
in

(
Qdl

)
=

BO
in

W dlrdlin (Qdl)
, (10)

where Gin is the downlink channel matrix between the ceNB
in cell n and the MU in and Gimn is the cross channel matrix
between the interfering MU im in the cell m and the ceNB in
cell n; and W dl is the downlink channel bandwidth. Note that
(7)-(8) implicitly assume that the downlink spectral resources
are allocated to the MUs in the same way as for the uplink, so
that MUs in for n = 1, ..., Nc are mutually interfering in both
uplink and downlink. This assumption can be easily alleviated
at the cost of introducing additional notation.



3) Cloud processing: Let the capacity in terms of number
of CPU cycles per second of the cloud be Fc. Moreover, let
fin ≥ 0 be the fraction of the processing power Fc assigned
to user in, so that

∑
in∈I

fin ≤ 1. The time needed to run Vin

CPU cycles for user in remotely is then

∆exe
in (fin) =

Vin
finFc

. (11)

4) Backhaul transmission: We denote as Cul
n the capacity in

bits per second of the backhaul connecting the ceNB in cell n
with the cloud, and as Cdl

n the capacity in bits per second of
the backhaul connecting the cloud with the ceNB in cell n. Let
culin , c

dl
in
≥ 0 be the fraction of the backhaul capacities Cul

n and
Cdl

n , respectively, allocated to the ith MU in cell n. We then
have the constraint

∑
i

culin ≤ 1 and
∑
i

cdlin ≤ 1. Moreover,

the time delay due to the backhaul transfer between ceNB n
and the femtocloud in both directions is given as

∆bh
in (culin , c

dl
in) =

BI
in

culinC
ul
n

+
BO

in

cdlinC
dl
n

. (12)

B. Problem Formulation

The optimal offloading problem can be stated as the mini-
mization of the sum of the energies spent by all MUs to run
their applications remotely, subject to individual latency and
power constraint. Mathematically, this problem can be written
as

minimize
Qul,Qdl,f ,cul,cdl

E
(
Qul

)
=
∑

in∈I
Ein

(
Qul

in
,Qul
−n
)

=
∑

in∈I
BI

in

tr(Qul
in)

rul
in

(Qul)

s.t. C.1 BI
in

Wulrul
in

(Qul)
+

BI
in

cul
in

Cul
n

+
Vin

finFc

+
BO

in

Wdlrdlin
(Qdl)

+
BO

in

cdlinCdl
n
≤ Tin

C.2 fin ≥ 0,
∑

in∈I
fin = 1

C.3 culin , c
dl
in
≥ 0,

∑
i

culin = 1,
∑
i

cdlin = 1

C.4 Qul
in
∈ Qul

in
,Qdl

in
∈ Qdl

n ,∀in ∈ I
(P.1)

where constraint C.1 enforces that the latency for any MU
in be less than or equal to the maximum tolerable delay of
Tin seconds; C.2 imposes the mentioned limit on the cloud
computational resources; C.3 enforces the limited backhaul
capacities in uplink and downlink; and C.4 guarantee that
power budget constraint on the radio resources of both uplink
and downlink is satisfied. Note that problem (P.1) depends
only on the ratios BI

in
/Wul, BI

in
/Cul

n , Vin/Fc, BO
in
/W dl and

BO
in
/Cdl

n . Problem (P.1) is not convex due to the non-convexity
of the objective function and the constraint C.1. Therefore, in
the next section, we explore an efficient algorithm based on
SCA that aim at obtaining an effective suboptimal solution.

III. SUCCESSIVE CONVEX APPROXIMATION OPTIMIZATION

Problem (P.1) is non-convex due to the non-convexity
of the objective function and constraint C.1. To address

this issue, we apply here the successive convex approxi-
mation (SCA) method proposed in [9] and used in [7] to
tackle problem (P.1) only over the uplink precoding vari-
ables Qul and computing resource vector f. To this end,
we identify: (i) a family of strongly convex approxima-
tions Ẽ

(
Qul;Qul (v)

)
of E(Qul), which are parameterized

by a current iterate Qul (v) with the key property that
∇Qul* Ẽ

(
Qul;Qul

)
= ∇Qul*E

(
Qul

)
for any feasible uplink

precoding profile Qul, where ∇Q* f (Q) represents the conju-
gate gradient of function f(Q); (ii) a family of convex up-
per bounds g̃in

(
Qul,Qdl, fin , c

ul
in
, cdlin ;Qul (v) ,Qdl (v)

)
≥

gin
(
Qul,Qdl, fin , c

ul
in
, cdlin

)
, parameterized by the current it-

erate Qul (v) and Qdl (v) of the constraint C.1.

A. Convexification of the Objective Function

Following the same procedure in [7], a strongly convex
approximation with the desired properties can be obtained as

Ẽ
(
Qul;Qul (v)

)
=
∑
in∈I

Ẽin

(
Qul;Qul (v)

)
(13)

where

Ẽin

(
Qul;Qul (v)

)
= tr

(
Qul

in (v)
) BI

in

rulin
(
Qul

in
,Qul
−n (v)

)
+ tr

(
Qul

in

) BI
in

rulin
(
Qul

in
(v) ,Qul

−n (v)
)

+
∑

im∈I,m 6=n

〈
∇Qul

in

*Eim

(
Qul (v)

)
,Qul

in −Qul
in (v)

〉
+
cqin

2

∥∥Qul
in −Qul

in (v)
∥∥2
,

(14)

where 〈A,B〉 ∆
= Re

{
tr
(
AHB

)}
and the conjugate gradient

∇Qul
in

*Eim

(
Qul (v)

)
is given by [7, eq. (17)]

∇Qul
in

*Ejm

(
Qul (v)

)
=

tr
(
Qul

jm
(v)
)

∆ul
jm

(
Qul (v)

)
log (2) rjm (Qul (v))

.[HH
inm(Rul

m

(
Qul
−jm (v)

)−1 − (Rul
m

(
Qul
−jm (v)

)
+ HjmQul

jm (v)HH
jm)−1)Hinm],

(15)

and the last term is a quadratic regularization term added
to make Ẽin uniformly strongly convex, with cqin being an
arbitrary positive constant.

B. Inner Convexification of the Constraints

Finally, we need to calculate an upper bound on the right-
hand side of C.1. Let us define the non-convex part of latency
expression as

gin
(
Qul,Qdl

) ∆
=

BI
in

Wulrulin (Qul)
+

BO
in

W dlrdlin (Qdl)
. (16)



To build the desired bound on gin , we exploit first the
concave-convex structure of the rate functions rulin

(
Qul

)
rulin
(
Qul

)
= log2 det

(
I + HH

inR
ul
n

(
Qul
−in
)−1

HinQ
ul
in

)
= log2 det

(
Rul

n

(
Qul
−in
)

+ HH
inHinQ

ul
in

)︸ ︷︷ ︸
rul
in

+(Qul)

− log2 det
(
Rul

n

(
Qul
−in
))︸ ︷︷ ︸

rul
in

−(Qul
−n)

(17)

where rulin
+ (

Qul
)

is a concave function, and −rulin
− (

Qul
−n
)

is
a convex function. The same applies to rdlin(Qdl). The desired
inner convex approximation g̃in on constraint functions of the
difference convex (DC) − type can be obtained from gin by
retaining the convex parts in (16) and linearizing the non-
convex parts, resulting in:

g̃in
(
Qul,Qdl;Qul (v) ,Qdl (v)

) ∆
=

BI
in

Wulr̃ulin (Qul;Qul (v))

+
BO

in

W dlr̃dlin (Qdl;Qdl (v))
,

(18)

where

r̃ulin
(
Qul;Qul (v)

)
= rul+in

(
Qul

)
− rul−in

(
Qul
−n (v)

)
−

Nc∑
n 6=m=1

K∑
j=1

〈
∇Qul

in

*rulim
− (

Qul
−n (v)

)
,Qul

im −Qul
im (v)

〉
,

(19)

and

r̃dlin
(
Qdl;Qdl (v)

)
= rdl+in

(
Qdl

)
− rdl−in

(
Qdl
−n (v)

)
−

Nc∑
n 6=m=1

K∑
j=1

〈
∇Qdl

in

*rdlim
− (

Qdl
−n (v)

)
,Qdl

im −Qdl
im (v)

〉
,

(20)

with [7]

∇Qul
jm

*rul−in

(
Qul
−n (v)

)
= HH

jmnR
ul
n

(
Qul
−n (v)

)−1
Hjmn,

(21)

∇Qdl
jm

*rdl−in

(
Qdl
−n (v)

)
= HH

jmnR
dl
n

(
Qdl
−n (v)

)−1
Hjmn.

(22)

C. SCA Algorithm

The SCA algorithm operates by iteratively solving the
following problem around the current iterate Z (v)

∆
=

(
Qul (v) ,Qdl (v)

)
,

Ẑ (Z (v))
∆
= argmin

Qul,Qdl,f,cul,cdl
Ẽ
(
Qul;Qul (v)

)
+ E (v)

subject to

C.1 g̃in
(
Qul,Qdl;Qul (v) ,Qdl (v)

)
+

BI
in

culinC
ul
n

+
BO

in

cdlinC
dl
n

+
Vin
finFc

− Tin ≤ 0

C.2 fin ≥ 0,
∑
in∈I

fin = 1 (23)

C.3 culin , c
dl
in ≥ 0,

∑
i

culin = 1,
∑
i

cdlin = 1

C.4 Qul
in ∈ Q

ul
in , Qdl

in ∈ Q
dl
n , ∀ in ∈ I

(P.2)

where Ẑ (Z (v))
∆
= (Q̂ul (Z (v)) , Q̂dl (Z (v)) , f̂ (Z (v)) , ĉul

(Z (v)) , ĉdl (Z (v))) denotes the unique solution
of the strongly convex optimization problem; and
E (v) =

cp
2

∥∥Qdl −Qdl (v)
∥∥2

+
cf
2 ‖f − f (v)‖2 +

c
cul

2

∥∥cul − cul (v)
∥∥2

+
c
cdl

2

∥∥cdl − cdl (v)
∥∥2

is added to
the objective function to include the quadratic terms in the
Qdl, f, cul and cdl variables in order to make the objective
function strongly convex in Qdl, f , cul and cdl with cp, cf , ccul

and ccdl being arbitrary positive constants.
The SCA scheme summarized in Algorithm 1. It

starts from a feasible point Z (0)
∆
=
(
Qul (0) ;Qdl (0)

)
.

In step 2, the termination criterion is to stop when∣∣E (Qul (v + 1)
)
− E

(
Qul (v)

)∣∣ ≤ δ, where δ > 0 is the
desired accuracy. In this algorithm, a memory in the update
of the iterate Ẑ (Z (v)) is allowed in the form of a con-
vex combination via Z (v). The step size rule is γ (v) =
γ (v − 1) (1− αγ (v − 1)) with γ (0) ∈ (0, 1] and α ∈
(0, 1/γ (0)).

Algorithm 1 Inner SCA Algorithm for (P.1)

1: Initialization: Z (0)
∆
=

(
Qul (0) ;Qdl (0)

)
∈ Z;

{γ (v)}v ∈ (0, 1]; cp, cf , ccul , ccdl > 0; v = 0.
2: If Z (v) satisfies the termination criterion, STOP.
3: Compute Ẑ (Z (v));
4: Set Z (v + 1) = Z (v) + γ (v)

(
Ẑ (Z (v))− Z (v)

)
;

5: v ← v + 1, and return to step 2.

IV. SIMULATION RESULTS

In this section, we present numerical results with the main
aims of validating the performance of the proposed SCA
schemes and of assessing the advantages of the considered
joint optimization across uplink, downlink, backhaul and
computing resources. To this end, we compare the discussed
schemes in which joint optimization is performed, with more
conventional solutions in which the the computing and back-
haul resources are equally allocated to all MUs, that is fin =
1/(NcK) and culin = cdlin = 1/K, while the covariance transmit
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Fig. 2: Minimum average mobile energy consumption versus itera-
tion index.

matrices at the physical layer are optimized using SCA. We
label this scheme in the figures as “fixed (f, cul, cdl)”. We also
consider for reference scenarios in which only the computing
resources or the backhaul resources are equally allocated,
while the rest of the parameters are jointly optimized using
SCA. These schemes are accordingly labeled by the variables
that are kept fixed, i.e., equally allocated.

Throughout, we consider a network composed of two cells
with two users in each cell, i.e. Nc = 2 and K = 2. All
transceivers are equipped with NT = 2 and NR = 2 transmit
and receive antennas, respectively. The channel matrices be-
tween a user and the ceNB in the same cell are generated to
have zero mean complex Gaussian entries with power equal
to 1, whereas the power of the channel coefficients between
a user and ceNBs in different cells is set to 0.5. The power
budget constraints for both uplink and downlink are set to
Pul
in

= P dl
n = 0.8 · 10−4. Other system parameters are set to:

Wul = W dl = 10 MHz, σ2
w = 0.8 · 10−5, BI

in
= BO

in
= 106

bits, Vin = 105 CPU cycles, Cul
n = Cdl

n = 100 Mbits/s,
Fc = 107 CPU cycles/s and Tin = 1.5 seconds unless stated
otherwise.

Fig. 2 illustrates the average minimal sum-energy con-
sumption E

(
Qul

)
versus iteration index v for the different

schemes outlined above. We first observe the fast convergence
of the optimization strategy. Furthermore, it can be seen that
the proposed joint optimization method shows a considerable
gain compared to the equal allocation of computational and
backhaul resources.

Fig. 3 depicts the minimum average mobile energy as a
function of the maximum latency constraints, assumed to be
the same for all MUs. The figure confirms the advantages of
joint optimization, particularly in the region where the latency
constraint is more stringent.

Finally, in order to show the advantage of including the
optimization over the backhaul capacity allocation (cdlin ), Fig.
4 compares the energy performance of both joint optimization
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n .

and of solutions that use an equal backhaul allocation versus
the downlink backhaul capacity, assumed to be the same for
both cells. The figure illustrates the gains of joint optimization,
which are especially pronounced in the regime of small
backhaul capacities in which the backhaul capacity should be
properly allocated among the MUs in each cell.

V. CONCLUSION

In this paper, we formulated the resource allocation problem
in a multiple-cell multiple-users mobile cloud computing net-
work as a joint optimization problem over radio, computational
resources and backhaul resources and in both uplink and
downkink directions. An iterative algorithm based on succes-
sive convex approximations is presented for solving the result-
ing nonconvex problem under latency and power constraints.
Numerical results show the advantates of joint optimization



as compared to more conventional solutions based on fixed
allocations of computing and backhaul resources, particularly
in the relevant regimes of small backhaul capacities and low
latency requirements.
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