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Abstract—The problem of modulation classification for a
multiple-antenna (MIMO) system employing orthogonal fre-
quency division multiplexing (OFDM) is investigated under the
assumptions of unknown frequency-selective fading channels
and signal-to-noise ratio (SNR). The classification problem is
formulated as a Bayesian inference task and a solution is
proposed based on a selection of the prior distributions that
adopts a latent Dirichlet model for the modulation type and on
the Bayesian network formalism. The proposed Gibbs sampling
method converges to the optimal Bayesian solution and the speed
of convergence is shown to improve via annealing and random
restarts. While most of the existing modulation classification
techniques works under the assumptions that the channels are
flat fading and that a large amount of observed data symbols
is available, the proposed approach performs well under more
general conditions. Finally, the proposed Bayesian method is
demonstrated to improve over existing non-Bayesian approaches
based on independent component analysis.

Index Terms—Modulation classification; MIMO-OFDM;
Gibbs sampling.

I. INTRODUCTION

A major task in cognitive radios [1] is the classifica-
tion of the modulation format of unknown received sig-
nals. Modulation classification methods are generally classi-
fied as inference-based or pattern recognition-based [1]. The
inference-based approaches fall into two categories, namely
Bayesian and non-Bayesian methods [2]. Bayesian approaches
model unknown parameters as random variables, which are
assigned some prior distributions, and aim at evaluating the
posterior probability of the modulation type. Non-Bayesian
approaches, instead, model unknown parameters as nuisance
variables that need to be estimated before performing mod-
ulation classification. With pattern recognition-based meth-
ods, specific features are extracted from the received signal
and then used to discriminate among the candidate modula-
tions. Compared to the pattern recognition-based approaches,
inference-based methods generally achieve better classification
performance at the cost of a higher computational complexity
[1].

Many classification algorithms have been developed for
single-antenna (SISO) systems [1]-[4], while only few pub-
lications address multiple-antenna (MIMO) systems [5]-[7].
In [5], a non-Bayesian inference-based approach, referred to
as ICA-PC, is proposed, whereby the channel matrix required
for the calculation of the hypotheses test is estimated blindly

by independent component analysis. Several related pattern
recognition-based algorithms are introduced in [6]-[7]. As
for MIMO systems employing orthogonal frequency division
multiplexing (OFDM), a non-Bayesian approach is proposed
in [8] based on ICA-PC that assumes the invariance of the
frequency-domain channels across the coherence bandwidth.

In this work, we develop a Bayesian modulation classifi-
cation technique for MIMO-OFDM systems operating over
frequency-selective fading channels, assuming unknown chan-
nels and signal-to-noise ratio (SNR). The proposed method
adopt the latent Dirichlet BN introduced in [4] for the selection
of the prior distribution in SISO systems. The adopted BN
model enables the application of Gibbs sampling techniques,
while avoiding the convergence issues associated with the
presence of zeros in the joint distribution (see [3], [4]). Based
on this model, a Bayesian solution is developed based on
Gibbs sampling [9]. Specifically, the proposed Gibbs sampling
method converges to the optimal Bayesian solution and its
speed of convergence is generally improved by multiple ran-
dom restarts and annealing [10], [11]. While the reviewed ex-
isting modulation classification algorithms for MIMO-OFDM
systems work under the assumptions that the channels are flat
fading [5]-[7], and/or that the number of samples is large (as
for pattern recognition-based methods) [6], [7], the proposed
method achieves satisfactory performance under more general
conditions.

Notation: The superscripts T and H denote matrix or vector
transpose and Hermitian, respectively. Lower case bold letters
and upper case bold letters are used to denote column vectors
and matrices, respectively. The notation b�bi, where b =
[b1, ..., bn]

T and i ∈ {1, ..., n}, denotes the vector composed
of all the elements of b except bi. We use an angle bracket
〈·〉� to represent the expectation with respect to the random
variables indicated in the subscript. The notations 1(·) stand
for the indicator function. The cardinality of a set B is denoted
|B|. The notations CN (µ,C) and IG (a, b) represent the the
circularly symmetric complex Gaussian distribution with mean
vector µ and covariance matrix C and the inverse gamma
distribution with shape parameter a and scale parameter b,
respectively.



II. SYSTEM MODEL

Consider a MIMO-OFDM system operating over a
frequency-selective fading channel with N subcarriers, Mt

transmit antennas, Mr receive antennas and a coherence pe-
riod of K OFDM symbols. All frequency-domain transmitted
symbols during the coherence period are taken from a finite
constellation A ∈ A, such as M -PSK or M -QAM, where
A is the (finite) set containing all possible constellations. We
focus on the problem of detecting the constellation A in the
absence of information about the signal-to-noise ratio (SNR),
the transmitted symbols and the fading channel coefficients.

After matched filtering and sampling, assuming that
time synchronization has been successfully performed at
least within the error margin afforded by the cyclic pre-
fix, the frequency-domain received samples y[n, k] =
[y1[n, k], ..., yMr

[n, k]]T , across the Mr receive antennas at
the n-th subcarrier of the k-th OFDM frame, can be expressed
as

y[n, k] = H[n]s[n, k] + z[n, k], (1)

where H[n] is the Mr×Mt frequency-domain channel matrix
associated with the n-th subcarrier; s[n, k] is the Mt×1 vector
composed of the symbols transmitted by the Mt antennas,
i.e., s[n, k] = [s1[n, k], ..., sMr [n, k]]T with smt [n, k] ∈ A
being the symbol transmitted by the mt-th transmit antenna
over the n-th subcarrier of the k-th OFDM symbol; and
z[n, k] = [z1[n, k], ..., zMr

[n, k]]T ∼ CN (0, σ2I) is complex
white Gaussian noise, which is independent over indices n and
k. The frequency-domain channel matrix H[n] can be written
as

H[n] =

 h̃1,1 [n] · · · h̃Mt,1 [n]
...

. . .
...

h̃1,Mr
[n] · · · h̃Mt,Mr

[n]

 , (2)

where h̃mt,mr = [h̃mt,mr [1] , ..., h̃mt,mr [N ]]T denotes the
N × 1 frequency-domain channel vector between the mt-th
transmit antenna and the mr-th receive antenna. Assuming that
the channels for every pair (mt,mr) have at most L symbol
spaced taps, we write h̃mt,mr = Whmt,mr , with hmt,mr
being the L × 1 time-domain channel vector and W being
the N × L matrix composed of the first L columns of the
DFT matrix of size N . Note that the channel is a constant
within the coherence frame of K OFDM symbols.

According to (1) and (2), the NK × 1 received frequency-
domain signals ymr=[ymr [1]T , ...,ymr [K]T ]T at the mr-th
receive antenna is given by

ymr =

Mt∑
mt=1

Dmt h̃mt,mr + zmr , mr = 1, ...,Mr, (3)

where ymr [k] = [ymr [1, k], ..., ymr [N, k]]T ; Dmt =
[Dmt,1, ...,Dmt,K ]T is an NK × N matrix represent-
ing the transmitted symbols with Dmt,k being an N ×
N diagonal matrix whose (n, n) element is smt [n, k];
and zmr = [zmr [1]T , ..., zmr [K]T ]T with zmr [k] =
[zmr [1, k], ..., zmr [N, k]]T .

Let us further define the NKMt × 1 vector s =
[s1, .., sK ]T containing all the transmitted symbols with
sk = [s[1, k]T , ..., s[N, k]T ]T ; the LMtMr × 1 vector
h = [hT1 , ...,h

T
Mr

]T for the time domain channels associated
with all the transmit-receive antenna pairs, where hmr =
[hT1,mr , ...,h

T
Mt,mr ]

T ; and the NKMr×1 receive signal vector
y = [yT1 , ...,y

T
Mr

]T . The task of modulation classification is
for the receiver to correctly detect the modulation format A
given only the received samples y, while being uninformed
about the symbols s, the channel h and the noise power σ2.
Using (1) and (3), the likelihood function p

(
y|A, s,h, σ2

)
of

the observation is given by

p
(
y
∣∣∣A, s,h, σ2

)
=
∏
n,k

p
(
y[n, k]

∣∣∣s[n, k],H[n], σ2
)

=
∏
mr

p
(
ymr

∣∣∣s,hmr , σ2
)
, (4)

with ymr |(s,hmr , σ2) ∼ CN (
∑Mt

mt=1
DmtWhmt,mr , σ

2I)
and y[n, k]|(s[n, k],H[n], σ2)∼CN (H[n]s[n, k], σ2I).

III. PRELIMINARIES

In this section, we review some necessary preliminary
concepts. Specifically, we start by introducing the general task
of Bayesian inference in Sec. III-A; we review the definition
of BN, which is a useful graphical tool to represent knowledge
about the structure of a joint distribution, in Sec. III-B; and,
finally, we review a approximate solution to the Bayesian
inference task, namely, Gibbs sampling in Sec. III-C.

A. Bayesian Inference

Bayesian inference aims at computing the posterior prob-
ability of the variables of interest given the evidence, where
the evidence is a subset of random variables in the model.
Specifically, given the values of some evidence variables
Θe = θe, one wishes to estimate the posterior distribution
of a subset of the unknown variables Θu = [Θ1, ...,ΘG]T .
We assume here for simplicity of exposition that all variables
are discrete with finite cardinality. However, the extension
to continuous variables with pdfs is immediate as it will
be argued. The conditional pmf of Θu given the evidence
Θe = θe is proportional to the product of a prior distribution
p(Θu) on the unknown variables Θu and of the likelihood of
the evidence p(Θe|Θu):

p(Θu|Θe = θe) ∝ p(Θu)p(Θe = θe|Θu). (5)

If one is interested in computing the posterior distribution of
the unknown variable Θj , then a direct approach would be to
write

p(Θj = θj |Θe = θe) =
∑

θu�θj

p(Θu = θu|Θe = θe). (6)

The inference task (6) is made difficult in practice by the mul-
tidimensional summation over all the values of the variables
Θu�Θj . Note also that, if the variables are continuous, the



operation of summation is replaced by integration and a similar
discussion applies. Next, we discuss the BN model.

B. Bayesian Network

A BN is an acyclic graph that can be used to represent useful
aspects of the structure of a joint distribution. Each node in the
graph represents a random variable, while the directed edges
between the nodes encode the probabilistic influence of one
variable on another. Node Θi is defined to be a parent of
Θj , if an edge from node Θi to node Θj exists in the graph.
According to the BN’s chain rule [9], the influence encoded
in a BN for a set of variables Θ = [Θ1, ...,ΘJ ]T can be
interpreted as the factorization of the joint distribution in the
form

p (Θ) =

J∏
j=1

p
(
Θj |PaΘj

)
, (7)

where we use PaΘj to denote the set of parent variables
of variable Θj . Note that (7) encodes the fact that each
variable Θj is independent of its ancestors in the BN, when
conditioning on its parent variables PaΘj . In the following,
we will find it useful to rewrite (7) in a more abstract way as
[9]

p (Θ) =
∏
φ

φ (Bφ) , (8)

where the product is taken over all J factor φ(Bφ) =
p(Θj |PaΘj ) with Bφ = {Θj ,PaΘj}.

C. Gibbs Sampling

Markov chain Monte Carlo (MCMC) techniques provide
effective iterative approximate solutions to the Bayesian infer-
ence task (6) that are based on randomization and can obtain
increasingly accurate posterior distribution as the number of
iterations increases. The goal of these techniques is to generate
M random samples θ(1)

u , ...,θ(M)
u from the desired posterior

distribution p(Θu|Θe = θe). This is done by running a
Markov chain whose equilibrium distribution is p(Θu|Θe =
θe). As a result, the multidimensional summation (or integra-
tion) (6) can be approximated by an ensemble average by the
law of large numbers. In particular, the marginal distribution
of any particular variable Θj in Θu can be estimated as

p (Θj = θj |Θe = θe) ≈
1

M

M∑
m=M0+1

1
(
θ

(m)
j = θj

)
, (9)

where θ(m)
j is the m-th sample for Θj generated by the Markov

chain, and M0 denotes the number of samples used as burn-in
period to reduce the correlations with the initial values [13].

Gibbs sampling is a classical MCMC algorithm that defines
the aforementioned Markov chain by sampling all the variables
in Θu one-by-one. Specifically, the algorithm begins with a set
of arbitrary feasible values for Θu. Then, at step m, a sample
for a given variable Θj is drawn from the conditional distribu-
tion p(Θj |Θu�Θj ,Θe). Whenever a sample is generated for a
variable, the value of that variable is updated within the vector
Θu. It can be shown that the required conditional distributions

p(Θj |Θu�Θj ,Θe) can be calculated by multiplying all the
factors in the factorization (8) that contain the variable of
interest and then normalizing the resulting distribution, i.e.,
we have

p(Θj |Θu�Θj ,Θe) ∝
∏

φ: Θj∈Bφ

φ (Bφ) , (10)

where the right-hand side of (10) is the product of the factors
in (8) that involve the variable Θj .

Remark 1: A sufficient condition for asymptotic correct-
ness of Gibbs sampling is that the conditional distributions
p(Θj |Θu�Θj ,Θe) are strictly positive in their domains for
all j [9, Ch. 12].

Remark 2: When applying Gibbs sampling to practical
problems, in particular those with high-dimensional and mul-
timodal posterior distribution p(Θj |Θu�Θj ,Θe), slow con-
vergence may be encountered due to the local nature of the
updates. One approach to address this issue is to run Gibbs
sampling with multiple random restarts that are initialized
with different feasible solutions [13]. Moreover, within each
run, simulated annealing may be used to avoid low-probability
“traps.” Accordingly, the prior probability, or the likelihood,
may be parametrized by a temperature parameter T , such that
a large temperature implies a lower reliance on the evidence
aimed at exploring more thoroughly the range of the variables.
Samples are generated, starting with a high temperature and
ending with a low temperature [10], [11].

IV. BAYESIAN INFERENCE FOR MODULATION
CLASSIFICATION

In this section, we tackle the problem of detecting the
modulation A ∈ A by adopting a Bayesian inference for-
mulation. First, in Sec. IV-A, we discuss the problem of
selecting a proper prior distribution, and argue that a latent
Dirichlet model inspired by [12] and first used for modulation
classification in [4], provides an effective choice. Then, based
on this prior model, we develop a solution based on Gibbs
sampling in Sec. IV-B.

A. Latent Dirichlet Bayesian Network

According to (5), the joint distribution of the unknown
variables (A, s,h, σ2) may be expressed

p
(
A, s,h, σ2

∣∣∣y) ∝ p(y
∣∣∣A, s,h, σ2

)
p
(
A, s,h, σ2

)
, (11)

where the likelihood function p
(
y|A, s,h, σ2

)
is given in (4),

and the term p
(
A, s,h, σ2

)
stands for the prior information

on the unknown quantities. The prior is assumed to factorize
as

p
(
A, s,h, σ2

)
= p (A)

 ∏
n,k,mt

p (smt [n, k]|A)

×
×
∏

mt,mr

p (hmt,mr ) p
(
σ2
)
, (12)



Figure 1. BN G1 for the modulation classification scheme based on the
factorization (11). The nodes inside the rectangle are repeated NK times.

1) Conventional Prior: A natural choice for the prior
distribution of the unknown variables (A, s,h, σ2) is given
by A ∼ uniform (A), smt [n, k]|A ∼ uniform(A), hmt,mr ∼
CN (0, αI), and σ2 ∼ IG (α0, β0) with fixed parameters
(α, α0, β0) [4]. Recall that the inverse Gamma distribution
is the conjugate prior for the Gaussian likelihood at hand,
and that uninformative priors can be obtained by selecting
sufficiently large α and β0 and sufficiently small α0 [13]. The
BN G1 that encodes the factorization given by (11), along with
(4) and (12), is shown in Fig. 1.

The Bayesian inference task for modulation classification of
MIMO-OFDM is to compute the posterior probability of the
modulation A conditioned on the received signal y, namely

p (A|y) =
∑
s

∫
p
(
A|s,h, σ2|y

)
dhdσ2. (13)

Following the discussion in Sec. III, the calculation in (13)
is intractable because of the multidimensional summation
and integration. Gibbs sampling (Sec. III-C) offer a feasible
solution. However, the prior distribution (12) does not satisfy
the sufficient condition mentioned in Remark 1, since some
of the conditional distributions required for Gibbs sampling
are not strictly positive in their domains. In particular, the
conditional distribution term p(smt [n, k]|A = a) is zero for
all values of smt [n, k] not belonging to the constellation a,
i.e., p(smt [n, k]|a) = 0 for smt [n, k] /∈ a. Therefore, the
Gibbs sampler generally fails to converge to the posterior
distribution.

2) Latent Dirichlet BN: In order to alleviate the problem
outlined above, we propose to adopt a prior distribution
encoded on a latent Dirichlet BN G2 shown in Fig. 2. Ac-
cordingly, each transmitted symbol smt [n, k] is distributed as
a random mixture of uniform distributions on the different
constellations in the set A. Specifically, a random vector pA
of length |A| is introduced to represent the mixture weights,
with pA(a) being the probability that each symbol smt [n, k]
belongs to the constellation a ∈ A. Given the mixture weights
pA, the transmitted symbols smt [n, k] are mutually indepen-
dent and distributed according to a mixture of uniform dis-

tributions, i.e., p (smt [n, k]|pA) =
∑
a: smt [n,k]∈a pA (a) / |a|.

The Dirichlet distribution is selected as the prior distribution
of pA in order to simplify the development of the proposed
solutions, as shown in the following subsections. In particular,
given a set of nonnegative parameters γ = [γ1, · · · , γ|A|]T ,
we have pA ∼ Dirichlet (γ) [9].

Figure 2. BN G2 for the modulation classification scheme based on the
Dirichlet latent variable pA. The nodes inside the rectangle are repeated NK
times.

The BN G2 encodes a factorization of the conditional
distribution p(pA, s,h, σ2|y)

p(pA, s,h, σ
2|y) ∝ p

(
y|pA, s,h, σ2

)
p (pA)

∏
mt,mr

p (hmt,mr ) ∏
n,k,mt

p (smt [n, k]|pA)

 p
(
σ2
)
, (14)

where we have pA ∼ Dirichlet (γ) with a set of nonnegative
parameters γ = [γ1, · · · , γ|A|]T [9], p (smt [n, k]|pA) =∑
a: smt [n,k]∈a pA (a) / |a|, and the other distributions are as

in (4) and (12). The Bayesian inference task for modulation
classification is to compute the posterior probability of the
mixture weight vector pA conditional on the received signal
y, namely

p (pA|y) =
∑
s

∫
p
(
pA|s,h, σ2

∣∣∣y) dhdσ2, (15)

and then to estimate A as the value that maximize the a
posteriori mean of pA:

Â = arg max
a∈A

〈
pA (a) | y

〉
p(pA|y)

. (16)

The proposed approach guarantees that all the conditional
distributions needed for Gibbs sampling based on the BN G2

are non-zero, and therefore the aforementioned convergence
problem for the inference based on BN G1 is avoided.

B. Modulation Classification via Gibbs Sampling

In this subsection, we elaborate on Gibbs sampling for
modulation classification. As explained in Sec. III-C, in or-
der to sample from the joint posterior distribution (14), the



distribution of each variable conditioned on all other variables
is needed. According to (10), we have:

p
(
pA

∣∣∣s,h, σ2,y
)
∼ Dirichlet (γ + c) , (17)

where c =
[
c1, · · · , c|A|

]T
, and ca is the number of samples

of transmitted symbols in constellation a ∈ A;

p
(
smt [n, k]

∣∣∣pA, s�smt [n, k],h, σ2,y
)

∝p (smt [n, k]|pA) p
(
y[n, k]

∣∣∣s[n, k],H[n], σ2
)
, (18)

hmt,mr

∣∣∣ (PA, s,h�hmt,mr , σ
2,y
)

∼CN (ĥmt,mr , Σ̂mt,mr ), (19)

and σ2
∣∣∣pAs,h,y ∼ IG (α, β) , (20)

where we have(
Σ̂mt,mr

)−1

=
1

σ2
WHDH

mt (DmtW) , (21)

ĥmt,mr

=Σ̂mt,mr

 1

σ2
WHDH

mt

ymr −
∑

m′
t 6=mt

Dm′
t
h̃m′

t,mr

 ;

(22)

α = α0 + NKMr and β = β0 +∑
mr

∥∥∥ymr −∑mt
Dmt h̃mt,mr

∥∥∥2

. Note that (17) is a
consequence of the fact that Dirichlet distribution is the
conjugate prior of the categorical likelihood [9]; (19) can
be derived by following from standard MMSE channel
estimation results [4]; and (20) follows the fact that the
inverse Gamma distribution is the conjugate prior for the
Gaussian distribution [13].

Remark 3: When the SNR is high, the convergence speed
is severely limited by the close-to-zero probabilities in the
conditional distribution (18). This is due to the fact that, in
this regime, the samples of σ2 tend to be small making the
relationship between y[n, k] and smt [n, k] almost determinis-
tic. As discussed in Remark 2, the strategy of Gibbs sampling
with multiple random restarts and annealing may be adopted to
address this issue. For simulated annealing, we substitute the
conditional distribution (20) for σ2 with an iteration dependent
prior given as [10]

σ2
∣∣∣pAs,h,y ∼ IG (α′, β) , (23)

where we have α′(m) = (1 − (1 − p0) exp(−m/m0))α,
with m denoting the current iteration index, p0 = 0.1 and
m0 = 0.3M , where M is the total number of iterations. For
multiple restarts, we propose to use the entropy of the pmf〈
pA
〉
p(pA|y)

, estimated in a run as the metric, to choose among
the Nrun runs of Gibbs sampling which one should be used in
(16). Specifically, the run with the minimum entropy estimate

〈
pA
〉
p(pA|y)

is selected. The rationale of this choice is that
an estimate

〈
pA
〉
p(pA|y)

with a smaller entropy identifies a
specific modulation type with low uncertainty than an estimate〈
pA
〉
p(pA|y)

with higher entropy (i.e., closer to a uniform
distribution).

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed
modulation classification schemes for the detection of three
possible modulation formats: QPSK, 8-PSK and 16-QAM
within a MIMO-OFDM system. The performance criterion is
the probability of correct classification assuming that the three
modulations are equally likely. Normalized Rayleigh fading
channels are assumed such that E[‖hmt,mr‖

2
] = 1. We define

the average SNR as 10 log(Mt/σ
2). Unless stated otherwise,

the following conditions are assumed: i) Mt = Mr = 2 anten-
nas; ii) K = 2 OFDM symbols; and iii) L = 5 taps with rel-
ative powers given by [0 dB,−4.2 dB,−11.5 dB,−17.6 dB,
−21.5 dB].

A. Performance of Gibbs Sampling

We first investigate the performance of the proposed Gibbs
sampling algorithms with or without multiple random restarts
and simulated annealing within each run (see Remark 3).
The number of runs in each process of Gibbs sampling with
multiple random restarts is selected to be Nrun = 5, and
the number of iterations in each run is M = 2000, where
M0 = 0.85M initial samples are used as burn-in period.1 All
elements of the vector parameter γ of the prior distribution
pA ∼ Dirichlet (γ) are selected to be equal to a parameter γ.
As also reported in [4], it may be shown, via numerical results,
that the modulation classification performance is not sensitive
to the choice of parameter γ as long as the value of the virtual
observation γ (see Sec. IV-A2) is not very small (γ < 1). For
the numerical experiments in this paper, we select the values
of γ to be equal to 8% of the total number of symbols, e.g.,
in this example γ = [0.08NKMt] = 40.

In Fig. 3, the performance with or without multiple random
restarts and simulated annealing within each run is plotted as a
function of SNR. It can be seen that both strategies of multiple
random restarts and annealing improve the success rate, and
that the best performance is achieved by Gibbs sampling with
both random restarts and annealing. As discussed in Remark
3, annealing is seen to be especially effective in the high-SNR
regime.

B. Comparison of Gibbs Sampling and ICA-PC[8]

Here, we compare the classification results achieved by the
proposed Gibbs sampling scheme with the ICA-PC approach
of [8], which extends to MIMO-OFDM the techniques studied
in [5]. The approach in [8] exploits the invariance of the
frequency-domain channels across the coherence bandwidth to
perform classification. Specifically, the subcarriers are grouped
in sets of D adjacent subcarriers whose frequency-domain

1The samples in the burn-in period are not used to evaluate the average in
(16).



Figure 3. Probability of correct classification using Gibbs sampling versus
SNR (N = 128, Mt = Mr = 2, K = 2 and L = 5).

channel matrices are assumed to be identical. Let us denote
the frequency-domain channel matrix and the received samples
for the i-th group by Hi and yi respectively, i = 1, ..., N/D.
To compute the likelihood function p(yi|A = a,Hi) of
the received samples yi over the subcarriers within group i,
an estimate Ĥi of the channel matrix Hi is first obtained
using ICA-PC, and then the likelihood p(yi|A = a,Hi) is
approximated as p(yi|A = a, Ĥi). Accordingly, the likelihood
function p(y|A = a,H) of all the received samples y is
approximated as p(y|A = a, Ĥ) =

∏
i p(yi|A = a, Ĥi),

where Ĥ = {Ĥi}N/Di=1 . The detected modulation is selected
as Â = arg maxa∈A p(y|A = a, Ĥ).

In Fig. 4, we plot the performance of the approach based
on ICA-PC with different values of D and Gibbs sampling
with random restarts and annealing. The number of runs are
Nrun = 5, and the annealing schedule is (23). It can be
seen from Fig. 4 that Gibbs sampling significantly outperforms
ICA-PC. In this regard, note that, with D = 4, the accuracy in
ICA-PC is poor due to the insufficient number of observed data
samples; while with D = 16, the model mismatch problem
becomes more severe due to the assumption of equal channel
matrices in each subcarrier group.

VI. CONCLUSIONS

In this paper, we have proposed a Bayesian modulation
classification scheme for MIMO-OFDM systems based on a
selection of the prior distributions that adopts a latent Dirichlet
model and on the Bayesian network formalism. The proposed
Gibbs sampling method converges to the optimal Bayesian
solution and its speed of convergence is shown to improve
by multiple random restarts and annealing. The technique is
seen to overcome the performance limitation of state-of-the-
art non-Bayesian schemes based on ICA. In fact, while the
mentioned existing modulation classification algorithms rely
on the assumptions that the channels are flat fading, and/or
that a large amount of samples are available (as for pattern
recognition-based methods), the proposed scheme achieves

Figure 4. Probability of correct classification using Gibbs sampling with
multiple random restarts and annealing and approach of [8] based on ICA-PC
versus SNR (N = 128, Mt = Mr = 2, K = 2 and L = 5).

satisfactory performance under more general conditions. For
example, with Mt = 2 transmit antennas and under frequency
selective fading channels with L = 5 taps, a correct classifica-
tion rate of above 97% may be attained with Mr = 2 receive
antennas and with 256 received samples at each antenna.
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