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Abstract—A multistatic cloud radar system is investigated,
where receive antennas (RAs), or sensors, communicate with a
fusion center (FC) over a multiple-access wireless backhaul. Each
RA receives a measurement of the signal sent by a transmit
antenna (TA) and reflected from target, possibly in the presence
of clutter and interference, amplifies it, and forwards it to the
FC on a wireless fading channel. The FC receives the signals
transmitted by the RAs and determines the presence of a target.
The problem of maximizing the Bhattacharyya distance as the
detection performance metric under power constraints for the
TA and RAs is formulated with respect to the transmitted code
vector and the gains applied at the RAs. A short-term adaptive
design is first considered that leverages the instant gain of the
RAs-to-FC channels, and then a long-term adaptive design is
considered that uses only stochastic channel state information
(CSI). Algorithmic solutions for both scenarios are proposed
based on successive convex approximation and the performance
is evaluated via numerical results.

Index Terms—Multistatic radar, cloud radar, detection, code
design, power allocation.

I. INTRODUCTION

In radar systems, the design of the transmitted waveform

has received significant interest due to its role in determining

detection performance by controlling the response to the

target and to clutter [1], [2]. For monostatic radar systems,

the waveform design in terms of the Neyman Pearson (NP)

criterion is studied in [3]. In a multistatic radar scenario,

however, the performance of the NP optimal detector is

in general too complex to be suitable as a design metric.

As a result, various information-theoretic criteria such as

the Bhattacharyya distance, the Kullback Leibler divergence,

the J-divergence and the mutual information, which can be

shown to provide various bounds to the probability of error

(missed detections and false alarms), have been considered as

alternative design metrics [4]–[7].

In a multistatic radar system, multiple sensors, or receive

antennas (RAs), receive the signal sent by a transmit antenna

(TA), and reflected from a target and clutter. Signals received

at the RAs are communicated to a fusion center (FC), where

target detection is performed. The RAs and FC are connected

via wired or wireless backhaul links, which prior work such

as [5], [6] assume to be ideal. Inspired by the cloud radio

access architecture in cellular communication systems [8], the

concept of multistatic cloud radar is introduced in [7]. In

a multistatic cloud radar, the RAs are connected to the FC

via non-ideal connections. In particular, reference [7] assumes
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Fig. 1. Illustration of the considered multistatic cloud radar system, which
consists of a TA, N RAs, and a FC. All the nodes are configured with a single
antenna. The RAs are connected to the FC via a multiple-access wireless
channel.

orthogonal, finite-capacity RAs-to-FC backhaul links. In order

to comply with such capacity limitation, the RAs quantize the

received baseband signals prior to transmission to the FC. In

[7], significant performance advantages are demonstrated by

jointly optimizing the Bhattacharyya distance criterion over

waveforms implemented as code vectors and the backhaul

quantization strategy.

In this paper, we consider a different implementation of

cloud radar, in which, as shown in Fig. 1, a (non-orthogonal)

multiple-access wireless backhaul channel connects the RAs

and the FC. As in [7], each RA takes noisy measurements

of the signal reflected by target and clutter. However, unlike

[7], in order to communicate over the non-orthogonal wireless

backhaul, each RA amplifies and forwards the received signal

to the FC. A similar set up has been studied in [9], [10],

but only the power allocation of the RAs was optimized

for detection. In contrast, here we jointly optimize the code

vector used at the TA and amplifying gains used at the RAs.

Furthermore, we consider an adaptive design in which the code

vector and gains may depend on the instantaneous gains of the

channel state information (CSI) of the RAs-to-FC channels.

We refer to this approach as short-term adaptive design. A

long-term adaptive design is also proposed, which depends

only on the stochastic CSI of the RAs-to-FC channels. In

another departure from [9], [10], the detection performance,

with the Bhattacharyya distance as its proxy, is the objective

of the optimization, rather than the minimum mean square

error (MMSE) of the estimated signal. The rest of the paper

is organized as follows. In Section II, we present the detection
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problem as well as review the optimal detector. Then, we

formulate the problems of the interest in Section III, and

propose solutions based on successive convex approximations

[11], [12] for both short-term and long-term adaptive designs

in Section IV and Section V, respectively. Numerical results

are provided in Section VI, and finally conclusions are drawn

in Section VII.

II. SYSTEM MODEL

We consider a cloud radar system consisting of a TA, N
sensors, or RAs, and a FC, as illustrated in Fig. 1. The

RAs communicate to a FC over a multiple-access wireless

backhaul. All the nodes are equipped with a single antenna,

and the set of RAs is denoted as N = {1, . . . , N}.

The system aims to detect the presence of a single stationary

target in a homogeneous clutter field. Each RA receives a noisy

version of the signal transmitted by the TA and reflected from

the surveillance area, amplifies it and forwards it to the FC

via a multiple-access wireless channel. It is assumed that ideal

timing information is available at the FC, such that samples

of the received signal may be associated with locations in

some coordinate system. For such a location, and based on all

the amplified signals from the different RAs, the FC makes a

decision about the presence of the target.

A. Signal Model

Let the transmitted waveform be a train of K standard

pulses with complex amplitudes xxx = [x1, . . . , xK ]T . The set of

amplitudes xxx is referred to as a code vector [6], [7]. The pulses

may form a continuous waveform or serve as individual pulses

in a coherent pulse interval. The design of the code vector xxx
determines the range resolution and clutter response, and thus

has a key role in performance of the radar system.

The Swerling I model is assumed for the amplitude of the

target echo, and hence the return has a Rayleigh envelope,

which is fixed during the observation interval. The clutter

is homogeneous and fixed over the observation interval with

a complex-valued Gaussian distribution across the sensors.

The returns are assumed to be independent between RAs and

between target and clutter. Finally, each RA observes time-

correlated complex Gaussian noise that captures the possible

presence of various types of interference and jamming.

Following the discussion above, the K×1 discrete received

signal by RA n, for n ∈ N , after matched filtering and

symbol-rate sampling, is given by [6], [7]

H0 : rrrn = cccn +wwwn, (1a)

H1 : rrrn = sssn + cccn +wwwn, n ∈ N , (1b)

where H0 and H1 represent the hypotheses under which the

target is absent or present, respectively, and sssn denotes the

signal received from the target at RA n given as

sssn = hnxxx, (2)

with hn ∼ CN (0, σ2
t,n) the random complex amplitude of the

target return. The vector cccn represents the clutter contribution,

modeled as

cccn = gnxxx, (3)

with gn ∼ CN (0, σ2
c,n) the random complex amplitude of

the clutter. The term wwwn ∼ CN (000,CCCw,n) represents signal-

independent interference, which includes the contributions of

thermal noise, interference and jamming, and whose temporal

correlation is described by the covariance matrix CCCw,n.

The RA n communicates the received signal rrrn in (1) to

the FC after amplification. The amplified signal received at

the FC is given as

H0 : r̃rr =

N∑
n=1

fnαnrrrn + zzz

=

N∑
n=1

(fnαncccn + fnαnwwwn) + zzz (4a)

H1 : r̃rr =
N∑

n=1

fnαnrrrn + zzz

=

N∑
n=1

(fnαnsssn + fnαncccn + fnαnwwwn) + zzz, (4b)

where fn ∼ CN (0, σ2
fn
) is the complex-valued channel

between RA n and the FC. The channels fn are assumed to

be independent. The gains αn are the subject of the design.

The noise vector zzz ∼ CN (000,CCCz) is temporally correlated with

correlation matrix CCCz .

The variables hn, gn, wwwn, fn and zzz for all n ∈ N
are assumed to be mutually independent. Based on prior

information or measurements, the second-order statistics of the

channel gains between the target and the RAs, and of the noise

terms, namely σ2
t,n, σ2

c,n, CCCw,n and CCCz , are assumed to be

known to the FC for all n ∈ N (see [6] and references therein).

The RAs-to-FC channels fff = [f1 · · · fN ]T are assumed known

at the FC, for example, via training and channel estimation.

Since only the second-order statistics of the channel gains hn,

n ∈ N , are known to the RAs and the FC, no coherent gains

can be achieved by optimizing the amplifying gains, and hence

one can focus, without loss of optimality, only on the RA’s

power gains ppp = [p1 · · · pN ]T , with pn = |αn|2, n ∈ N .

We can write the hypotheses (4) in a standard form by

whitening the signal received at the FC, and consequently the

detection problem can be expressed as

H0 : yyy ∼ CN (000, III), (5a)

H1 : yyy ∼ CN (000,DDDSSSDDD + III), (5b)

where yyy = DDDr̃rr; DDD = (
∑N

n=1(|fn|2pnσ2
c,nxxxxxx

H +

|fn|2pnCCCw,n) +CCCz)
−1/2 is the whitening filter with respect

to the overall additive noise
∑N

n=1 (fnαncccn + fnαnwwwn) + zzz,

and SSS =
∑N

n=1 |fn|2pnσ2
t,nxxxxxx

H is the correlation matrix of

the desired signal part. The detection problem described by

(5) has the standard estimator-correlator solution given by the

test H1

yyyHTTTyyy � γ, (6)

H0

where we have defined TTT = DDDSSSDDD(DDDSSSDDD + III)−1, and the

threshold γ is set based on the tolerated false alarm probability

[13].
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III. PROBLEM FORMULATION

We seek to optimize the detection performance with respect

to the code vector xxx and the power gains ppp, under power

constraints on the TA and RAs. As in [4], [6], [7], we adopt

the Bhattacharyya distance as the performance metric, which

is a suitable and tractable information-theoretic measure of the

performance of the optimal test (6).

The Bhattacharyya distance B between two multivariate

Gaussian distributions, CN (000,ΣΣΣ1) and CN (000,ΣΣΣ2) is given by

B = |0.5(ΣΣΣ1 +ΣΣΣ2)|/
√|ΣΣΣ1||ΣΣΣ2| [4]. From (5a) and (5b), the

Bhattacharyya distance between the distributions (5) under the

two hypotheses H0 and H1 can be calculated as

B(xxx,ppp;fff) = log

(
|III + 0.5DDDSSSDDD|√|III +DDDSSSDDD|

)
= log

1 + 0.5λ√
1 + λ

, (7)

where λ = fffHPPPΣΣΣtfffxxx
H(fffHPPPΣΣΣcfffxxxxxx

H + (fff ⊗ IIIK)H(PPP ⊗
IIIK)CCCw(fff ⊗ IIIK) + CCCz)

−1xxx, ΣΣΣt = diag{σ2
t,1 . . . σ

2
t,N} and

ΣΣΣc = diag{σ2
c,1 . . . σ

2
c,N} are the diagonal matrices whose

components are the second-order statistics of channel am-

plitudes of target return and clutter, respectively, CCCw =
diag{CCCw,1 . . .CCCw,N} ∈ RNK×NK is a block diagonal matrix

containing all the noise covariance matrices at the RAs, and

PPP = diag{ppp} ∈ RN×N is the diagonal matrix that contains

the RA’s power gains. Note that we have made explicit the

dependence of the Bhattacharyya distance B(xxx,ppp;fff) on the

channel gains fff at the FC, as well as on the code vector xxx
and the RAs’ power gains ppp. In the following, we formulate the

problems for short-term (Section III-A) and long-term (Section

III-B) adaptive designs pursuing the system objective.

A. Short-term adaptive design

In this section, we consider the case in which design

of the code vector and of the RAs’ gains depends on the

instantaneous gain of the CSI of the RAs-to-FC channels fff .

Note that this design requires to modify the solution vector

(xxx,ppp) at the time scale at which the channel vector fff varies,

hence entailing a potentially large feedback overhead from the

FC to the RAs and the TA. Defining the maximum powers

available at the TA and across all the RAs as PT and PR,

respectively, the problem of maximizing the Bhattacharyya

distance (7) over the code vector xxx and the power gains ppp
under the power constraints for TA and RAs, is stated as

minimize
xxx,ppp

B̄(xxx,ppp;fff) (8a)

s.t. xxxHxxx ≤ PT , (8b)

111Tppp ≤ PR, (8c)

pn ≥ 0, n ∈ N , (8d)

where we have defined B̄(xxx,ppp;fff) = −B(xxx,ppp;fff) to formulate

the problem as the minimization of the negative Bhattacharyya

distance B̄(xxx,ppp;fff). We observe that the problem (8) can be

easily modified to include individual power constraints at the

RAs, but this is not further explored here. Note also that

the problem (8) is not a convex program, since the objective

function (8a) is not convex.

B. Long-term adaptive design

Here, in order to avoid the possibly excessive feedback

overhead between FC and the TA and RAs of the short-

term adaptive solution, we adopt the average Bhattacharyya

distance, as the performance criterion, where the average

is taken with respect to the distribution of the RAs-to-FC

channels fff . In this way, the code vector xxx and RAs’ gains

ppp have to be updated only at the time scale at which the

statistics of channels and noise terms vary. Then, the problem

for the long-term adaptive design is formulated from problem

(8) by substituting the objective function B̄(xxx,ppp;fff) with

Efff [B̄(xxx,ppp;fff)], yielding

minimize
xxx,ppp

Efff

[B̄(xxx,ppp;fff)] (9a)

s.t. (8b)− (8d). (9b)

Note that the problem (9) is a stochastic program with a non-

convex objective function (9a).

IV. SHORT-TERM ADAPTIVE DESIGN OF CODE VECTOR

AND AMPLIFYING GAINS

In the following, we propose an algorithm to solve the

optimization problem (8). Since the problem is not convex,

and hence it is difficult to obtain a global optimal solution, we

aim to develop algorithms that target local optimal solutions.

To this end, we adopt an alternating optimization scheme

coupled with the MM method. The method solves a sequence

of convex problems alternating over the code vector xxx and over

the power gains ppp. We first present the optimization over the

code vector xxx given the gains ppp via MM algorithm in Section

IV-A, and then describe the optimization over ppp with fixed xxx
via MM algorithm in Section IV-B. The proposed algorithm

is summarized in Table Algorithm 1. Note that we use the

superscript i to identify the iterations of the outer loop of

Algorithm 1, and the superscript j as the index of the inner

iteration of the MM algorithm (e.g., xxx(i,j) indicates the code

vector optimized at the jth iteration of the inner loop of the

MM algorithm and the ith iteration of the outer loop).

A. Optimization over xxx

Here, the goal is to optimize the objective function (8a)

over the code vector xxx(i) given the gains ppp = ppp(i−1). For

this purpose, we apply the MM algorithm. Specifically, at the

jth iteration of the MM algorithm and the ith iteration of the

outer loop, the MM algorithm solves a convex quadratically

constrained quadratic program (QCQP) and obtains a solu-

tion xxx(i,j) by substituting the non-convex objective function

B̄(xxx,ppp;fff) with a tight upper bound U(xxx,ppp;fff |xxx(i,j−1)) around

the current iterate xxx(i,j−1). This bound is obtained by follow-

ing the same steps as in [6, Section III, IV] and is given by

U(xxx,ppp;fff |xxx(i,j−1))

= φ(i,j−1)xxxH
(
(fff ⊗ IIIK)

H
(PPP ⊗ IIIK)CCCw (fff ⊗ IIIK)

+CCCz)
−1

xxx− Re

{(
ddd(i,j−1)

)H
xxx

}
, (10)
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where

φ(i,j−1) =
β

1 + βy(i,j−1)
+ β(1 + 0.5γ)

+
0.5γ

1 + λ(i,j−1)

β(
1 + βy(i,j−1)

)2 ;
ddd(i,j−1) =

(
2β (1 + 0.5γ)

1 + βy(i,j−1) (1 + 0.5γ)
+ 2β (1 + 0.5γ)

)
(
(fff ⊗ IIIK)

H
(PPP ⊗ IIIK)CCCw (fff ⊗ IIIK) +CCCz

)−1

xxx(i,j−1);

β = fffHPPPΣΣΣcfff ;

γ =
fffHPPPΣΣΣtfff

β
;

y(i,j−1) =
(
xxx(i,j−1)

)H (
(fff ⊗ IIIK)

H
(PPP ⊗ IIIK)CCCw (fff ⊗ IIIK)

+CCCz)
−1

xxx(i,j−1); and

λ(i,j−1) = γ − γ

1 + βy(i,j−1)
.

At the jth iteration of the MM algorithm and the ith outer loop,

we evaluate the new iterate xxx(i,j) by solving the following

QCQP problem

xxx(i,j) ← argmin
xxx

U(xxx,ppp;fff |xxx(i,j−1)) (11a)

s.t. xxxHxxx ≤ PT (11b)

The MM algorithm obtains the solution xxx(i) for the ith itera-

tion of the outer loop by solving the problem (11) iteratively

over j until a convergence criterion is satisfied.

B. Optimization over ppp

Here, we consider the optimization of the gains ppp(i),
when the code vector xxx = xxx(i) is given. Similar to the

optimization over xxx(i) in the previous section, we also use

the MM algorithm for the optimization over ppp. Towards

this goal, we obtain the upper bound U(xxx,ppp;fff |ppp(i,j−1)) of

the objective function B̄(xxx,ppp;fff) around the current iterate

ppp(i,j−1). This bound is derived by writing B̄(xxx,ppp;fff) as the

difference of convex functions of PPP given as B̄(xxx,ppp;fff) =
− ln |fffHPPP (0.5ΣΣΣt +ΣΣΣc)fffxxxxxx

H +(fff ⊗IIIK)H(PPP ⊗IIIK)CCCw(fff ⊗
IIIK) +CCCz|+ 0.5 ln |fffHPPP (ΣΣΣt +ΣΣΣc)fffxxxxxx

H + (fff ⊗ IIIK)H(PPP ⊗
IIIK)CCCw(fff⊗IIIK)+CCCz|+0.5 ln |fffHPPPΣΣΣcfffxxxxxx

H+(fff⊗IIIK)H(PPP⊗
IIIK)CCCw(fff ⊗ IIIK) +CCCz|, and by linearizing the difference of

convex functions via the first-order Taylor approximation [11].

The following bound can then be obtained

U(xxx,ppp;fff |ppp(i,j−1)) =

− ln
∣∣∣fffHPPP (0.5ΣΣΣt +ΣΣΣc)fffxxxxxx

H + (fff ⊗ IIIK)
H
(PPP ⊗ IIIK)CCCw

(fff ⊗ IIIK) +CCCz|
+0.5tr

{(
fffHPPP (i,j−1) (ΣΣΣt +ΣΣΣc)fffxxxxxx

H + (fff ⊗ IIIK)
H

(
PPP (i,j−1) ⊗ IIIK

)
CCCw (fff ⊗ IIIK) +CCCz

)−1

(
fffHPPP (ΣΣΣt +ΣΣΣc)fffxxxxxx

H + (fff ⊗ IIIK)
H
(PPP ⊗ IIIK)CCCw

(fff ⊗ IIIK))}
+0.5tr

{(
fffHPPP (i,j−1)ΣΣΣcfffxxxxxx

H + (fff ⊗ IIIK)
H

(
PPP (i,j−1) ⊗ IIIK

)
CCCw (fff ⊗ IIIK) +CCCz

)−1

(
fffHPPPΣΣΣcfffxxxxxx

H + (fff ⊗ IIIK)
H
(PPP ⊗ IIIK)CCCw (fff ⊗ IIIK)

)}
.

(12)

Then, the new iterate ppp(i,j) at the jth iteration of the MM

algorithm and the i iteration of the outer loop can be obtained

by solving the following optimization problem:

ppp(i,j) ← argmin
ppp

U(xxx,ppp;fff |ppp(i,j−1)) (13a)

s.t. 111Tppp ≤ PR, (13b)

pn ≥ 0, n ∈ N . (13c)

By repeating the procedure (13) over j until a convergence

criterion is satisfied, the solution ppp(i) is determined for the ith
outer loop.

C. Proposed Algorithm

In summary, in order to solve problem (8), we propose

a algorithm (described in Table Algorithm 1) that alternates

between the optimization over xxx, described in Section IV-A

and the optimization over ppp, discussed in Section IV-B. In

particular, at the ith iteration of the outer loop, the iterate xxx(i)

is obtained by solving a sequence of convex problems (11) via

the MM algorithm for a fixed ppp = ppp(i−1). Then, the iterate

ppp(i) is found by solving a sequence of convex problems (13)

via the MM algorithm with xxx = xxx(i) attained in the previous

step. According to the the properties of the MM algorithm

[11], the proposed scheme yields a non-increasing objective

function along the outer and inter iterations, hence ensuring

convergence.

Algorithm 1 Short-term adaptive design of code vector and

amplifier gain (8))

Initialization (outer loop): Initialize xxx(0) ∈ CK×1, ppp(0) 	
0 and set i = 0.

Repeat
i ← i+ 1
Initialization (inner loop): Initialize xxx(i,0) = xxx(i−1)

and set j = 0.

Repeat (MM algorithm for xxx(i))
j ← j + 1
Find xxx(i,j) by solving the problem (11) with ppp =

ppp(i−1) (see (11)).

Until a convergence criterion is satisfied.

Update xxx(i) ← xxx(i,j)

Initialization (inner loop): Initialize ppp(i,0) = ppp(i−1)

and set j = 0.

Repeat (MM algorithm for ppp(i))
j ← j + 1
Find ppp(i,j) by solving the problem (13) with xxx =

xxx(i) (see (13)).

Until a convergence criterion is satisfied.

Update ppp(i) ← ppp(i,j)

Until a convergence criterion is satisfied.

Solution: xxx ← xxx(i) and ppp ← ppp(i)
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V. LONG-TERM ADAPTIVE DESIGN OF CODE VECTOR AND

AMPLIFYING GAINS

In order to prevent the possibly excessive feedback overhead

from the FC to the RAs and the TA, we consider a long-term

adaptive design and solve the problem (9). Since the stochastic

program (9) has a non-convex objective function, we apply

the stochastic successive upper-bound minimization method

(SSUM) [12], which minimizes an approximate ensemble

average at each step of a locally tight upper bound of the

objective function. Specifically, based on SSUM, we develop

an alternating optimization scheme similar to the one detailed

in Table Algorithm 1. The proposed method for the problem

(9) solves a sequence of convex problems alternating over the

code vector xxx and over the power gains ppp. We first present

the optimization over the code vector xxx given the gains ppp via

SSUM, and then describe the optimization over ppp with fixed xxx
via SSUM. Here, similar Algorithm 1, we use the superscript i
to identify the iterations of the outer loop, and the superscript

j as the index of the inner iterations of SSUM.

At the jth iteration of SSUM and the ith outer loop, we

optimize the code vector xxx(i,j) given ppp = ppp(i−1) by solving

the following convex problem

xxx(i,j) ← argmin
xxx

1

j

j∑
l=1

U (l)(xxx,ppp;fff (l)|xxx(i,l−1)) (14a)

s.t. xxxHxxx ≤ PT (14b)

where fff (l) denotes a channel vector fff for the FC that is

randomly and independently generated at the lth iteration ac-

cording to the known distribution, and U (l)(xxx,ppp;fff (l)|xxx(i,l−1))
is the locally tight convex upper bound defined in (10) on

the negative Bhattacharyya distance around the point xxx(i,l−1)

obtained at the (l − 1)th iteration. Note that the objective

function (14a) depends on all the realizations of the channel

vectors fff (l) for l = 1, . . . , j. The jth iteration of SSUM

achieves the solution xxx(i) for the ith iteration of the outer

loop by solving the problem (14) iteratively over j, until a

convergence criterion is satisfied.

With the optimized code vector xxx = xxx(i), the SSUM

calculates the iterates ppp(i,j) by solving the following problem

ppp(i,j) ← argmin
ppp

1

j

j∑
l=1

U (l)(xxx,ppp;fff (l)|ppp(i,l−1)) (15a)

s.t. 111Tppp ≤ PR, (15b)

pn ≥ 0, n ∈ N , (15c)

where U (l)(xxx,ppp;fff (l)|ppp(i,l−1)) represents the convex upper

bound (12) on the negative Bhattacharyya distance around

the point ppp(i,l−1). The iterate ppp(i) is obtained by solving the

problem iteratively over j (15) until the convergence. The final

algorithm for long-term adaptive design can be summarized as

in Table Algorithm 1 by substituting (11) and (13) with (14)

and (15), respectively.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

algorithms that perform the joint optimization of the code
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vector xxx and of the amplifying power gains ppp for the short-

term (Section IV) and long-term (Section V) adaptive designs.

For reference, we consider the following schemes; (i) No op-
timization (No opt.): Set xxx =

√
PT /K111K and ppp = PR/N111N ;

(ii) Code vector optimization (Code opt.): Optimize the code

vector xxx as per Algorithm 1 (with (14) in lieu of (11) for

the long-term adaptive design) with ppp = PR/N111N ; and (iii)
Gain optimization (Gain opt.): optimize the gains ppp as per

Algorithm 1 (with (15) in lieu of (13) for the long-term

adaptive design) with xxx =
√

PT /K111K . We set the length

of the code vector to K = 6 and the variances of the target

amplitudes as σ2
t,n = 1 for n ∈ N . Moreover, we model the

noise with covariance matrices [CCCw,n]i,j = (1 − 0.12n)|i−j|

and [CCCz]i,j = (1−0.45)|i−j| [6], [7]. The channel coefficients

fn have unit variance, i.e., σ2
fn

= 1.

Fig. 2 shows the Bhattacharyya distance as a function of

the TA’s power PT , with PR = 10 dB, N = 3, σ2
c,1 = 0.125,

σ2
c,2 = 0.25 and σ2

c,3 = 0.5. For smaller values of PT , optimiz-

ing the code vector is more advantageous than optimizing the

amplifying gains, due to the fact that performance is limited

by the TA-to-RAs connection. In contrast, for sufficiently large

values of PT , the optimization of the RAs’ gains is to be pre-

ferred, since the performance becomes limited by the channels

between the RAs and the FC. Joint optimization significantly

outperforms all other schemes, except in the very low- and

large-power regimes, in which, as discussed, the performance

is limited by either the TA-to-RAs or the RAs-to-FC channels.

In addition, we observe that the long-term adaptive scheme

loses about 10% in terms of the Bhattacharyya distance with

respect to the short-term adaptive design in the high SNR

regime.

Fig. 2 also points to an interesting property of cloud radar:

properties of the communications channel affect the design

of the radar waveform. From the figure, it is observed that

different Bhattacharyya distances are obtained by the code

only optimizations for the short-term versus the long-term
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Fig. 3. Bhattacharyya distance vs. the value of N with PT = 12 dB, PR =
10 dB, σ2

c,1 = 1, σ2
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c,4 = 0.5, σ2

c,5 = 0.35,
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c,6 = 0.25 and σ2

c,7 = 0.125, σ2
c,8 = 0.05.

adaptive designs (particularly at lower values of transmitted

power). This may be explained by noting that the code vector

is designed such that the transmitted power is reduced at fre-

quencies with large interference. Thus, sensors that experience

high interference at some frequencies, have more effect on the

signal design. Now, sensors that experience high interference

and have a high channel gain to the FC, may deliver a

high amount of interference to the decision processing. The

optimization seeks to design the transmitted signal xxx such that

it reduces the power transmitted at these frequencies.

In Fig. 3, the Bhattacharyya distance is plotted versus

the number RAs N with PT = 12 dB, PR = 10 dB,

σ2
c,1 = 1, σ2

c,2 = 0.9, σ2
c,3 = 0.75, σ2

c,4 = 0.5, σ2
c,5 = 0.35,

σ2
c,6 = 0.25, σ2

c,7 = 0.125 and σ2
c,8 = 0.05. Optimizing

the RAs’ power gains is seen to be especially beneficial at

large N , due to the ability to allocate more power to the

RAs with lower measurement noise. For instance, even with

the long-term adaptive design, optimizing the RAs’ power

gains outperforms code optimization with short-term adaptive

design, for sufficiently large N .

Fig. 4 plots the Receiving Operating Characteristic (ROC),

i.e., the detection probability Pd versus false alarm probability

Pfa with PT = 20 dB, PR = 10 dB, N = 3, σ2
c,1 = 0.125,

σ2
c,2 = 0.25 and σ2

c,3 = 0.5. The curve was evaluated

via Monte Carlo simulations by implementing the optimum

test detector (6). It can be observed that the gains observed

in the previous figures directly translate into a better ROC

performance of joint optimization. Note also that power gain

optimization is seen to be advantageous due to large value of

PT predicted based on Fig. 2.

VII. CONCLUSIONS

We have studied a multistatic cloud radar in which, unlike

[7], where the RAs and FC are connected via a non-orthogonal

multiple-access wireless backhaul channel. Each RA amplifies
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Fig. 4. ROC curves with PT = 20 dB, PR = 10 dB, N = 3, σ2
c,1 = 0.125,

σ2
c,2 = 0.25 and σ2

c,3 = 0.5.

and forwards the signal sent by the TA to a FC, which collects

the amplified signals from all the RAs and determines the tar-

get’s presence. The problems of maximizing the Bhattacharyya

distance as performance metric over the TA’s code vector and

RAs’ power gains under the power constraints for the TA and

RAs are formulated for the short-term and long-term adaptive

designs, respectively. Then, algorithmic solutions are proposed

for both cases based on successive convex approximation,

whose performance is verified via numerical results.
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