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Abstract— The open problem of calculating the limiting spec-
trum (or its Shannon transform) of increasingly large random
Hermitian finite-band matrices is described. In general, these
matrices include a finite number of non-zero diagonals around
their main diagonal regardlessof their size.Two differ ent com-
munication setupswhich may bemodeledusingsuchmatricesare
presented:a simple cellular uplink channel, and a time varying
inter-symbol interfer ence channel. Selectedrecent information-
theoretic works dealing dir ectly with suchchannelsare reviewed.
Finally, several characteristics of the still unknown limiting
spectrum of such matrices are listed, and some reflections are
touched upon.

I . PROBLEM DESCRIPTION

Considera linear channelof the form�����
	������� (1)

where � is the ������� zero-meancomplex Gaussianinput
vector ���
���! #"%$'&(*),+ (.- 1, / is the �0�1� output vector,
and 2 denotesthe �3�4� zero-meancomplex Gaussianadditive
noise vector 25�5�6�! 7"8$ ) + ( - , which is independentof �
and 9 + . Accordingly :<;=&( is the transmittedsignal-to-
noiseratio (SNR). In addition,the �5�4��� channelstransfer
matrix 9 + is definedby
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where YLZ\[]$�^H[]$�_H[a` arestatisticallyindependent�6�.� random
row vectors with independentidentically distributed (i.i.d.)
entries b [dc e �gfih , j [kc e �gfml , and n [dc e �of,p . For simplicity,
we assumethat the power momentsof the entries for any
finite orderarebounded.Finally, qr$ts1u�v "%$L�Kw areconstants.

The normalized input-output mutual information of (1)
conditionedon 9 + (also known as the Shannontransform)

1An x
yzx identity matrix is denotedby { 	 .
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where ¢ [  k9 + 9¤£ + - denotesthe ¥ th eigenvalueof the Hermi-
tian five-diagonal matrix 9 + 9<£ + . Furthermore,denotingthe
indicator function by �%Y§¦ ` ,� �* �� ¡  � �8��� |} 	� � � CP¨P© � � � �3	���� 	 �«ª¬�� (4)

is the empiricalcumulative distribution function of the eigen-
values(alsoreferredto as the spectrumor empiricaldistribu-
tion) of 9 + 9<£ + . Fixing � and assumingthat ®,¯   ¯ ¡   ±° -
convergesalmost surely (a.s.) to a unique limiting spectrum® ¯   ¯ ¡   ±° -³²µ´ ¶·´¸�¹+mº¼»
½  k° - , it canbe shown that the expectation

of (3) with respectto (w.r.t.) thedistribution of 9 + converges
as well. This is since (3) is uniformly integrable due to the
Hadamardinequalityandtheboundedpower momentassump-
tion, and hencethe a.s. convergenceimplies convergencein
expectation[1].

In SectionII it will be realizedthat if the channel9 + is
known at the receiver andits variationover time is stationary
andergodic, then the expectationof (3) w.r.t. the distribution
of 9 + is the per-cell sum-ratecapacityof a certaincellular
uplink channelmodel. In anothersetting(seeSectionII), the
same expectation may be interpretedas the capacity of a
certain time variant inter-symbol interference(ISI) channel,
assumingagain that the channelis known at the receiver.

A. Analytical Difficulty

Many recent studies have analyzedthe asymptotic rates
of various vector channelsusing results from the theory of
(large) randommatrix (see[2] for a recentreview). In those
cases,the number of random variables involved is of the
order of the number of elementsin the matrix 9 + , and
self-averagingis strongenoughto ensureconvergenceof the

2Unless explicitly denotedotherwise a natural base logarithm is used
throughoutthis presentation.



empiricalmeasureof eigenvalues,andto derive equationsfor
the limiting spectrum(or its Stieltjestransform).In particular,
this is the caseif the normalizedcontinuouspower profile of9 + , which is definedwith ¾%$t¿ru�v "8$L�#w asÀ 	 � Á �±Âd�mÃ�Ä � � Å �
	�Æ �±Ç È � O �É�Ê |} ª Á¼Ë É} �zÌ Ê |}ÎÍ ª¬Â Ë Ì}�Í � (5)

convergesuniformly to a bounded,piecewisecontinuousfunc-
tion as � ¹ÐÏ , see e.g. [2, Theorem2.50]. In the case
underconsiderationhere,it is easyto verify that for � fixed,ÑÓÒ  k¾%$·¿ - doesnot converge uniformly, and other techniques
are required.
Remark: It is noted that the settingof (1) can be extended
in many ways such as increasingthe number of non-zero
block diagonals,or replacingeach� -dimensionalrandomrow
vector with an Ô���Õ randommatrix. Suchsettingsresult in9 + 9¤£ + which includesmore than five non-zerodiagonals
andarereferredto asHermitianfinite-bandrandommatrices;
theresultingmatricescontainonly zeroentriesoutsidea finite
band(finite numberof non-zerodiagonals)aroundtheir main
diagonalregardlessof � .

To the bestof the authors’knowledge,neitherthe limiting
spectrumof Hermitian finite-bandrandommatrices,nor the
expectationof thenormalizedinput-outputconditionalmutual
information (3), is known in generalexcept for a few special
cases(seeSectionIII). Moreover, even the high-SNRregime
characterization(definedin [3][4]) of the latter is known only
for a few specialcases(seeSectionIII) andremainsan open
problemin general.

I I . MOTIVATION

In this sectionwe presenttwo different multi-accesscom-
munication channels whose channel transfer matrices are
finite-band.

a) Cellular uplink: Motivatedby the fact that a mobile
user in a cellular system effectively “sees” only a finite
number of base-stations,a simplified cellular model family
has been introducedby Wyner in [5] (see also [6] for an
independentearlier work which deals with similar setups).
Accordingto theoriginal linearvariantsetuppresentedin [5],
the � homogenoususersof eachcell are collocatedat the
cell’s center and “see” their local base-stationantennaand
the antennasof the two adjacentbase-stationsonly. While the
signalstravel to the local antennawith no path-loss,the path-
loss to the two adjacentcells’ antennasis characterizedby a
single parameterqÖu¤v "%$>�#w . Wyner assumedthat the users
cannotcooperatein any way andthat all the base-stationsare
connectedto a centralreceiver via an ideal error-free infinite
capacitybackhaulnetwork. With optimal joint processingof
all the received signals,the channelcan be consideredas a
multiple-accesschannelwhosevector representationis given
by (1). Thenon-fadingsetupof [5] wasextendedto includeflat
fading channelsin [7][8]. Consideringan infinite numberof
cellsandassumingthatthechannelstateinformationis known
by the central receiver, the per-cell sum-ratecapacityof the

Wyner model is given by setting s×;�q and fih.;�fml,;�fmp\;f , andaveragingthemutualinformationof (3) over theentries
of 9 + . It is noted that the basicmodel can be extendedto
caseswhereeachmobile “sees”any finite numberof cell-site
antennasand the resulting 9 + 9<£ + is a finite-bandmatrix.
Remark: Usingtheuplink-downlink duality (e.g.[9]), theper-
cell sum-ratecapacityof the Wyner uplink channelis also
an achievableper-cell sum-rate(a lower boundof the per-cell
capacity)of thereciprocalWynerdownlink channel,assuming
thejoint multicell transmitterhasfull channelstateinformation
(CSI) while eachmobile is awareof its own CSI only.

Since its introduction in [5], the Wyner model family has
provided a powerful framework for researchassessingthe
performanceof variousjoint multicell processingschemes(see
[11] and [12] for recentsurveys). Overcomingthe analytical
difficultiesrelatingto thesemodelsandcalculatingthespectra
(or their transforms)of the resulting finite-band matrices,
would greatly enhanceour understandingand insight into
the theoreticalperformanceof future cellular (and wireless)
systems.

b) Time varying ISI channels: Here we consider �
homogenoususerscommunicatingwith a receiver over an Ø -
tap time varying ISI channel.Assumingthat the channeltaps
are i.i.d. betweendifferent usersand also i.i.d. in the time
index it is easily verified that the received signal is given
by (1). Assumingthat ØÖ;ÚÙ , the sum-rateof this multiple
accesschannelis given by averagingthe mutual information
of (3) over the entries of 9 + . This setup may describea
“f ast” multipath fading channelwhere the channeltaps are
independentover the time index. As with the previous setup
for any finite Ø the resulting 9 + 9<£ + is a finite-bandmatrix.
In contrastto the previous model where the entries of the
received signal are in the spatial domain, the entriesof the
received signalhereare in the time domain.

I I I . SELECTED PRIOR WORK

In this sectionwe briefly review selectedprevious works
dealingwith thespectrumof finite-bandmatrices,its Shannon
transform,and relatedissues.The readeris referredto [11]
and[12] for detailedsurveys of relevant information-theoretic
works.

The non-fading (or deterministic) case was analyzedby
Wyner in [5] for the specialcaseof so;gq . Setting b�[dc e>;j�[dc e3;Ûn�[kc e<;Ü� we get that Ý( 9 + 9¤£ + becomesa five-
diagonalToeplitz matrix with non-zeroentries  ±qßÞ�$Óàµqr$Ó�ßáàLqrÞ�$,àµqr$'qßÞ - . Usingwell known resultsregardingthelimiting
spectrumof large Toeplitz matrices(Szegö’s Theorem[13]),
Wyner showed that the per-cell sum-ratecapacityapproaches
as � ¹�Ï toâ � � C� � ���zã | �ä � | �å Mzæ ��ç�� å�èHéR�a� O·ê �ké�ë (6)

It is noted that the result is independentof � as long as
the total transmit power per-cell ì is fixed. The reader is
referredto [14] for a derivation of the Stieltjes transformof
the spectrumfor similar five-diagonalToeplitz matrices.



The infinite linear Wyner model in the presenceof flat
fading channelsis consideredin [8]. For the specialcaseofsí;Úq , fih×;Úfml>;Úfmp¬;Öf and �î;ï� it is shown that
the unorderedeigenvalue distribution Ä � ð �. �� ¡  � converges
weakly to a unique distribution. It is conjecturedthat using
similar methodsthe spectrumcan be proved to converge a.s.
to auniquelimit aswell. In addition,usingastandardweighted
pathssummationover a restrictedgrid, the limiting valuesof
the first several momentsof this distribution were calculated
for the specialcasein which the amplitudeof an individual
fading coefficient is statisticallyindependentof its uniformly
distributed phase(e.g. Rayleigh fading f5;Ö���! #"%$L� - ). For
example,listed below are the first threelimiting moments:ñ CH�ßò O �å�ò OdM Oñ O �ßò S �ó�ò OO M O  � ô ò OO �å�ò S � M Sñ Q'�ßòöõR � ÷ ò Q O  | å�ò O ò S � M O  � ø�÷ ò Q O  | å�ò O ò S � M S � ÷ ò Q O  | å�ò O ò S �å�ò õ � M õ � (7)

where Õ [ is the ¥ -th power momentsof the amplitudeof an
individual fadingcoefficient. It is notedthatthis procedurecan
be extendedin principle, although in a tediousmanner, for
any finite � or alsofor 9 + to includemorethanthreenon-
zeroblockdiagonals.Sincethelimiting momentsof increasing
order are functions of increasingordersof the momentsof
the fading coefficients, it is conjecturedthat the limiting
distributions (and also the spectra)of finite-band matrices
dependon the actual fading distribution and not just on its
few first moments.Focusingon the casein which � is large
while ì is keptconstant,andapplyingthestronglaw of large
numbers(SLLN), theentriesof Ý( 9 + 9¤£ + consolidatea.s.to
their meanvaluesand the latter becomesa Toeplitz matrix.
By applyingSzegö’s Theoremfor � ¹�Ï it is shown in [8]
that the per-cell sum-ratecapacityis given byù ;1ú Ýû3ü ý§þ  7�ßá�ìÿv�� Þ  7�ßá1àLq Þ -á � Õ Ý � Þ  7�ßá1àLq�� ý��  7àµf�� -7- Þ
	��� ��$ (8)

where�tÞ«;�Õ Þ ¸ � Õ Ý � Þ is thevarianceof anindividual fading
coefficient.

An alternativeapproachwhichreplacestheroleof theeigen-
valuesof 9 + 9¤£ + with thediagonalelementsof its Cholesky
decomposition,is presentedby Narula[15]. With q1;
� , s ;" , fih.;�fml\; f , and �0;3� , the resulting9 + 9<£ + is a three-
diagonal matrix (also known as Jacobi matrix). Originally,
Narulahasstudiedthe capacityof a “f ast” time varying two-
tap ISI channel,wherethe channelcoefficientsarei.i.d. zero-
meancomplex Gaussian(i.e. f�;��6�! 7"8$L� - ). Following [15],
the diagonalentries of the Cholesky decompositionapplied
to the covariancematrix ��� 	4�äß�
	���� 	�� ���*	��×	���	 , are
given by���t� | rä×� ���R� O rä×� ���R� O�� | Ê ä � � � T,CK� O� � T,C�� ����� åH�KëKëKëK� } � (9)

with an initial condition  Ý ; �¼á�ì � b Ý � Þ á1ì � j Ý � Þ . Thus,
the diagonal entries Y ! ` form a discrete-timecontinuous

spaceMarkov chain. Remarkably, Narula managedto prove
that this Markov chain possessesa uniqueergodic stationary
distribution, given byé�" � �8��� � ����� �%�$# T&% '(

Ei ã C )* ê,+ä �³�,- | � (10)

where Ei  ±° - ;/. »021436587 9;:=<:  ¿ is the exponential integral
function.Further, it is proven in [15] that the SLLN holdsfor
the sequenceY ü ý�þ !> ` as � ¹ÛÏ , and the channelcapacity
is â �����C � � ���H� �%�a� O # T?% '(

Ei ã C )* ê +ä ����ë (11)

It is noted that Narula’s approachis closely matchedto the
above settingandany attemptsofar to changea key parameter
in this setting(suchasthe entries’distribution, the numberof
usersper-cell, andthenumberof non-zerodiagonals)leadsto
an analytically intractablederivation. This is probablyrelated
to the unique propertiesof Jacobimatriceswhich doesnot
apply to finite-band matrices in general.For example, the
determinantof a Jacobimatrix is equal to a weightedsum
of the determinantsof its two largestprincipal sub-matrices.
In addition,Narula’s analysisprovidesadditionalevidenceto
support the conjecturethat the limiting spectrumof finite-
bandrandommatricesis dependenton thedistribution of their
entries.On thisnote,in [16] anequivalentcellularuplink setup
but with uniform phasefading(

� b [dc e � Þ ;3� and � [dc e ;A@Db [dc e �B v "%$LàLf6w ) known at the joint receiver is considered,and the
per-cell sum-ratecapacityis shown to coincidewith the non-
fadingsetupfor � ¹�Ï . It is worth mentioningthat thelatter
resultholdsonly for the tridiagonalcase.

As an alternative to deriving exact analyticalresults,some
works focus on extracting parametersthat characterizethe
channel capacity under extreme SNR scenarios(see [3] -
[4] for more details on the extreme SNR characterization).
The low-SNR regime is characterizedthrough the minimum
transmit C lED � û that enablesreliable communications,i.e.,C4l D � û6F;G H , andthe low-SNR spectralefficiency slopeI û . As-
sumingfull receiver CSI andno usercooperation,it is shown
in [17] that the derivation of the low-SNR parametersreduces

to thecalculationof �$J�� Ä � � � 	 � 	 � � and �$J � Ä � � � 	 � 	 � O � .

For example,the low-SNR parametersfor the capacityof the
Wyner setuparegiven for � ¹�Ï by [18]K�L} ��M�N O � � ��� åò O � | �å M O �P � � å Í � | �å M O � OQ  Í Ê |  ôP� |  Í � M O �å � Q �å Í � M S � (12)

wherethekurtosisof anindividual fadingcoefficient is defined
as Rg;�ÕTS D  ±Õ Þ - Þ . This result canbe extendedin a straight-
forward yet tediousmannerto generalfinite-bandmatrices.

The high-SNR regime is characterizedthrough the high-
SNR slope I » (also referredto as the “multiplexing gain”)
and the high-SNR power offset U » . Recently [1], the per-
cell capacityhigh-SNR parametersfor a two diagonal 9 +



(�0;3� , q�;3� , and s×;3" ) werecalculatedfor � ¹�Ï and
rathergeneralfadingdistributions:P � � | �WV � � Ê å�XZY�[ � Ä]\�^ � ��� O � ���K��Ä�\�_ � ��� O � ��� ��ë (13)

The main idea is to link the spectralpropertiesof 9 + 9 £ +
with theexponentialgrowth of theelementsof its eigenvectors.
Since9 + 9¤£ + in this caseis anHermitianJacobimatrix,and
henceis tridiagonal,its eigenvectorscan be consideredto be
sequenceswith secondorder linear recurrence.Therefore,the
problem reducesto the study of the exponential growth of
productsof two by two matrices.This is closelyrelatedto the
evaluationof the top Lyapunov exponentof the product;The
explicit link betweenthe Shannontransform(3) and the top
Lyapunov exponentis the Thoulessformula [19]. Moreover,
for arbitraryfinite � , it is shown in [1] that I » ;3� while the
power offset is boundedby a sequenceof explicit upper- and
lower-bounds;thegapbetweenthelowerandtheupperbounds
decreaseswith the bounds’order and complexity. It is noted
thatcalculatingexactexpressionsfor thehigh-SNRparameters
of channelswith general fading distribution and arbitrary
finite � remainsan open problem even for the tridiagonal
case.In addition, (13) also further supportsthe conjecture
maderegarding the dependency of the limiting spectrumof
finite-bandmatriceson their entries’distribution.

Recently[14], the limiting spectrumof ÝÝ
` Þbadc 9 + 9<£ + for
the Wyner setup and complex Gaussianvectors, has been
loosely shown by free probability tools to be approximated
by the Marŏenko-Pastur distribution with parameter� . The
approximation,is shown to fairly well matchthe spectrumby
Monte-Carlosimulationsonly for relatively large valuesof q .
It shouldbe emphasizedthat sucha matchis not guaranteed
for otherfadingdistributionsexcluding the complex Gaussian
distribution (i.e. Rayleigh fading). A possiblereasoningfor
the approximationinaccuracy in the low q regime is that in
the extreme caseof q ; " , the eigenvalues are evidently
exponentially distributed, with no finite support (in contrast
to the Marŏenko-Pasturdistribution).

IV. CONCLUDING REMARKS

The limiting spectrum(or its Shannontransform)of certain
large finite-bandHermitian randommatricesis known for a
few limited casesand remainsan open problem in general.
Moreover, even the high-SNRcharacterizationof their Shan-
non transformsis still unsolved. Due to their specialpower
profile, standardtools from the theory of random matrices
cannotbe usedfor this problem.It is conjecturedthat unlike
“full” random matrices, the limiting spectraof finite-band
random matricesdependon the actual distribution of their
entries. It seemsthat unconventional methodssuch as the
method used by Narula, replacing the role of eigenvalues
with the diagonalelementsof the Cholesky decomposition,
are requiredto shedlight on this problem.Nevertheless,it is
notedthat thetri-diagonal(Jacobimatrices)caseis uniqueand
thesetechniquesmaynotapplyto generalfinite-bandmatrices.
Finally, we note that solving the problem would facilitate
analyticaltreatment,which in turn gainsmuchinsight into the

effect of key systemparameterson theperformanceof certain
cellular uplink channelsand time varying ISI channels.
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