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Abstract— The open problem of calculating the limiting spec-
trum (or its Shannon transform) of increasingly large random
Hermitian finite-band matrices is described. In general, these
matrices include a finite number of non-zero diagonals around
their main diagonal regardlessof their size. Two different com-
munication setupswhich may be modeledusing suchmatrices are
presented:a simple cellular uplink channel, and a time varying
inter-symbol interference channel. Selectedrecent information-
theoretic works dealing dir ectly with such channelsare reviewed.
Finally, several characteristics of the still unknown limiting
spectrum of such matrices are listed, and some reflections are
touched upon.

|. PROBLEM DESCRIPTION
Considera linear channelof the form

y=Hpyx+z, Q)
wherex is the NK x 1 zero-meancomplex Gaussiannput
vectorxz ~ CN(0, %INK) 1,y isthe N x 1 outputvectog
andz denoteghe N x 1 zero-mearcomplex Gaussiaradditve
noise vector z ~ CN(0, I xk), which is independenbf x
and H . Accordingly p = % is the transmittedsignal-to-
noiseratio (SNR). In addition,the N x N K channelgransfer
matrix H y is definedby
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where{a;, b;, c¢;} arestatisticallyindependent x K random
row vectors with independentidentically distributed (i.i.d.)
entriesa; ; ~ Tq, bs; ~ mp, andc; ; ~ m.. For simplicity,
we assumethat the power momentsof the entriesfor ary
finite orderare bounded Finally, o, 5 € [0, 1] are constants.

The normalized input-output mutual information of (1)
conditionedon H y (also known as the Shannontransform)

1An N x N identity matrix is denotedby I .
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Where)\i(HNva) denoteghe ith eigervalue of the Hermi-
tian five-diagonal matrix HNHR,. Furthermoredenaotingthe
indicator function by 1{-},

1 N

Fpnt, (@) =5 > HN(HNH)) < 2}
=1
is the empirical cumulative distribution function of the eigen-
values(alsoreferredto asthe spectrumor empirical distribu-
tion) of HNHR,. Fixing K and assqming_thg? FHNHL (z)
converges almost surely (a.s.)to a unique limiting spectrum
Fy gt () =5 F(z), it canbe shavn thatthe expectation
N N N

of (3) with resagleto (w.r.t.) thedistribution of H 5 converges
aswell. This is since (3) is uniformly integrable due to the
Hadamardnequalityandthe boundedpower momentassump-
tion, and hencethe a.s. corvergenceimplies corvergencein

expectation[1].

In Sectionll it will be realizedthatif the channelH y is
known at the recever andits variationover time is stationary
and ergodic, thenthe expectationof (3) w.r.t. the distribution
of H y is the percell sum-ratecapacityof a certaincellular
uplink channelmodel. In anothersetting(seeSectionll), the
same expectation may be interpretedas the capacity of a
certain time variant inter-symbol interference(ISIl) channel,
assumingagain that the channelis known at the recever.

(4)

A. Analytical Difficulty

Many recent studies have analyzedthe asymptotic rates
of various vector channelsusing resultsfrom the theory of
(large) randommatrix (see[2] for a recentreview). In those
cases,the number of random variablesinvolved is of the
order of the number of elementsin the matrix Hp, and
self-averagingis strongenoughto ensurecornvergenceof the

2Unless explicitly denoted otherwise a natural base logarithm is used
throughoutthis presentation.



empiricalmeasureof eigervalues,andto derive equationsfor
thelimiting spectrum(or its Stieltjestransform).In particular
this is the caseif the normalizedcontinuouspower profile of
H y, which is definedwith r, ¢ € [0,1] as

1 —1 2]1< i (5)

t < W )
convergesuniformly to a boundedpieceavise continuousfunc-
tion as N — oo, seee.q. [2, Theorem2.50]. In the case
underconsideratiorhere, it is easyto verify thatfor K fixed,
P (r, t) doesnot corverge uniformly, and other techniques
are required.

Remark: It is notedthat the setting of (1) can be extended
in mary ways such as increasingthe number of non-zero
block diagonalspr replacingeachK -dimensionatandomrow
vectorwith ann x m randommatrix. Suchsettingsresultin
HNHR; which includes more than five non-zerodiagonals
andarereferredto asHermitianfinite-bandrandommatrices;
the resultingmatricescontainonly zeroentriesoutsidea finite
band(finite numberof non-zerodiagonals)aroundtheir main
diagonalregardlessof V.

To the bestof the authors’knowledge, neitherthe limiting
spectrumof Hermitian finite-bandrandom matrices,nor the
expectationof the normalizedinput-outputconditionalmutual
information (3), is known in generalexceptfor a few special
casegseeSectionlll). Moreover, even the high-SNRregime
characterizatiorfdefinedin [3][4]) of the latteris known only
for a few specialcaseqseeSectionlll) andremainsan open
problemin general.

Il. MOTIVATION

In this sectionwe presenttwo different multi-accesscom-
munication channelswhose channel transfer matrices are
finite-band.

a) Cellular uplink: Motivatedby the fact that a mobile
user in a cellular system effectively “sees” only a finite
number of base-stationsa simplified cellular model family
has been introducedby Wyner in [5] (seealso [6] for an
independentearlier work which deals with similar setups).
Accordingto the original linear variantsetuppresentedn [5],
the K homogenouausersof eachcell are collocatedat the
cell's centerand “see” their local base-statiorantennaand
the antenna®f the two adjacentase-stationsnly. While the
signalstravel to the local antennawith no path-lossthe path-
lossto the two adjacentcells’ antennags characterizedy a
single parametera. € [0, 1]. Wyner assumedhat the users
cannotcooperaten ary way andthatall the base-stationare
connectedo a centralreceier via an ideal errorfree infinite
capacitybackhaulnetwork. With optimal joint processingof
all the receved signals,the channelcan be consideredas a
multiple-accesshannelwhosevector representations given
by (1). Thenon-fadingsetupof [5] wasextendedo includeflat
fading channelsin [7][8]. Consideringan infinite numberof
cellsandassuminghatthe channelstateinformationis known
by the centralrecever, the percell sum-ratecapacityof the

Wyner modelis given by settings = o andn, = 7, = 7,
m, andaveragingthe mutualinformationof (3) overtheentries
of H . It is notedthat the basic model can be extendedto
casesvhereeachmobile “sees”ary finite numberof cell-site
antennasandthe resulting H y H | is a finite-bandmatrix.
Remark: Usingthe uplink-downlink duality (e.g.[9]), theper
cell sum-ratecapacity of the Wyner uplink channelis also
an achiezable percell sum-rate(a lower boundof the percell
capacity)of thereciprocaMynerdownlink channelassuming
thejoint multicell transmittethasfull channektateinformation
(CSl) while eachmobile is aware of its own CSI only.

Sinceits introductionin [5], the Wyner model family has
provided a powerful framevork for researchassessinghe
performancef variousjoint multicell processingchemegsee
[11] and [12] for recentsurweys). Overcomingthe analytical
difficulties relatingto thesemodelsandcalculatingthe spectra
(or their transforms)of the resulting finite-band matrices,
would greatly enhanceour understandingand insight into
the theoreticalperformanceof future cellular (and wireless)
systems.

b) Time varying ISI channels: Here we consider K
homogenousiserscommunicatingwith a recever over an L-
tap time varying ISI channel. Assumingthat the channeltaps
are i.i.d. betweendifferent usersand alsoi.i.d. in the time
index it is easily verified that the recevved signal is given
by (1). Assumingthat L = 3, the sum-rateof this multiple
accesschannelis given by averagingthe mutual information
of (3) over the entriesof H . This setupmay describea
“fast” multipath fading channelwhere the channeltaps are
independenbver the time index. As with the previous setup
for ary finite L the resultingHNHR, is a finite-bandmatrix.
In contrastto the previous model where the entries of the
receved signal are in the spatial domain, the entriesof the
receved signalherearein the time domain.

I1l1. SELECTED PRIOR WORK

In this sectionwe briefly review selectedprevious works
dealingwith the spectrumof finite-bandmatrices its Shannon
transform,and relatedissues.The readeris referredto [11]
and[12] for detailedsuneys of relevantinformation-theoretic
works.

The non-fading (or deterministic) case was analyzedby
Wyner in [5] for the specialcaseof § = «. Settinga; ; =
bi; = ci; = 1 we getthat LHyHY becomesa five-
diagonalToeplitz matrix with non-zeroentries(a?, 2a, 1+
202, 2a, o?). Usingwell known resultsregardingthe limiting
spectrumof large Toeplitz matrices(Szeyd’s Theorem[13]),
Wyner shaved that the percell sum-ratecapacityapproaches
asN — oo to

1
C= / log (14 P(1+ 2acos(2rf))?) df . (6)
0
It is noted that the result is independentof K as long as
the total transmit power percell P is fixed. The readeris
referredto [14] for a derivation of the Stieltjes transformof
the spectrumfor similar five-diagonalToeplitz matrices.



The infinite linear Wyner model in the presenceof flat
fading channelsis consideredn [8]. For the specialcaseof
B =aq mg =m =7 =xmand K = 1 it is shavn that
the unorderedeigervalue distribution JE(FHNH}V) corverges
weakly to a unique distribution. It is conjecturedthat using
similar methodsthe spectrumcan be proved to corverge a.s.
to auniquelimit aswell. In addition,usinga standardveighted
pathssummationover a restrictedgrid, the limiting valuesof
the first several momentsof this distribution were calculated
for the specialcasein which the amplitudeof an individual
fading coeficient is statisticallyindependenof its uniformly
distributed phase(e.g. Rayleighfading # = CA/(0,1)). For
example,listed belov arethe first threelimiting moments:

M1 =mgz + 2maa’®

Mo =my + 8m2a® + (4m§ + 2m4)a4

Ms =me + (6mg + 12m2m4)a2 + (36mg + 12m2m4)a4

+ (6m3 + 12mamy + 2me)a’ |

wherem; is the i-th power momentsof the amplitudeof an
individual fadingcoeficient. It is notedthatthis procedurecan
be extendedin principle, althoughin a tedious manner for

ary finite K or alsofor H y to include morethanthreenon-
zeroblock diagonalsSincethelimiting momentsof increasing
order are functions of increasingordersof the momentsof

the fading coeficients, it is conjecturedthat the limiting

distributions (and also the spectra)of finite-band matrices
dependon the actual fading distribution and not just on its

few first moments.Focusingon the casein which K is large
while P is kept constantandapplyingthe stronglaw of large
numbergSLLN), the entriesof %HNH}V consolidatea.s.to

their meanvaluesand the latter becomesa Toeplitz matrix.

By applying Szego's Theoremfor N — oo it is shovn in [8]

that the percell sum-ratecapacityis given by

(@)

1
C:/ log (14 P[ o?(1+2a%)
0
+maf? (1 + 20 Cos(27r9))2D 9, (8)

whereg? = mg— |m1|2 is the varianceof anindividual fading
coeficient.

An alternatve approactwhichreplacegherole of theeigen-
valuesof HNHEv with the diagonalelementsof its Cholesk
decompositionjs presentedy Narula[15]. With o =1, § =
0, 7q =mp =m, andK =1, the resultingHNHjV is athree-
diagonal matrix (also known as Jacobi matrix). Originally,
Narula hasstudiedthe capacityof a “fast” time varying two-
tap ISI channelwherethe channelcoeficientsarei.i.d. zero-
meancomple Gaussiar(i.e. 7 = CN/(0,1)). Following [15],
the diagonal entries of the Cholesk decompositionapplied
to the covariancematrix <1N + PHNHEV) = LnyDnUy, are
given by

2
dn = 14+P|an|*+P b (1—P—> ,n=2,...,N, (9

m—1

with an initial conditiond, = 1 + Pa;|* + P |b1|*. Thus,
the diagonal entries {d,,} form a discrete-timecontinuous

spaceMarkov chain. Remarkably Narula managedto prove
that this Markov chain possessea unique ergodic stationary
distribution, given by

(10)

where Ei(z) = [ 2=t is the exponential integral
function. Further it is provenin [15] thatthe SLLN holdsfor
the sequencglogd, } as N — oo, andthe channelcapacity
is

o= [7 loste)e ? o
. E(R)P

It is notedthat Narulas approachis closely matchedto the
above settingandary attemptsofar to changea key parameter
in this setting(suchasthe entries’ distribution, the numberof
userspercell, andthe numberof non-zerodiagonals)eadsto
an analytically intractablederivation. This is probablyrelated
to the unique propertiesof Jacobi matriceswhich doesnot
apply to finite-band matricesin general. For example, the
determinantof a Jacobimatrix is equalto a weighted sum
of the determinantf its two largest principal sub-matrices.
In addition, Narulas analysisprovides additionalevidenceto
supportthe conjecturethat the limiting spectrumof finite-
bandrandommatricesis dependenbn the distribution of their
entries.On this note,in [16] anequivalentcellularuplink setup
but with uniform phasefading(la; ;|* = 1 andé; ; = £a; ; ~
UJ0,2x]) known at the joint recever is consideredand the
percell sum-ratecapacityis shavn to coincidewith the non-
fadingsetupfor N — co. It is worth mentioningthatthe latter
resultholdsonly for the tridiagonalcase.

As an alternatve to deriving exact analyticalresults,some
works focus on extracting parameterghat characterizethe
channel capacity under extreme SNR scenarios(see [3] -
[4] for more details on the extreme SNR characterization).
The low-SNR regime is characterizedhroughthe minimum
transmit £, /Ny that enablesreliable communications,.e.,
Ey/No,,;,,» andthe low-SNR spectralefficiengy slopeS,. As-
sumingfull receizer CSl andno usercooperationijt is shovn
in [17] thatthe derivation of the low-SNR parameterseduces

2
to the calculationof tr (JE(H}VHN)) andtr (]E (HjVHN) 2
e

For example,the low-SNR parameterdor the capacityof t
Wyner setupare given for N — oo by [18]

(11)

By,
NO min

log 2
ma(1l + 2a2)
12
2K (1 + 2a%)? (12)

So = K+K-1+41+K)a? +2(K +2K)a* ’

wherethe kurtosisof anindividual fadingcoeficientis defined
asK = my/(mz)?. This resultcanbe extendedin a straight-
forward yet tediousmannerto generalfinite-bandmatrices.
The high-SNR regime is characterizedhrough the high-
SNR slope S, (alsoreferredto as the “multiplexing gain”)
and the high-SNR power offset £.,. Recently[1], the per
cell capacity high-SNR parameterdor a two diagonal H y



(K =1, a =1, and 3 = 0) were calculatedfor N — oo and
rathergeneralfading distributions:

So =1 ; Lo =—2max (Eg, log,|z|,Er, log,|z]) . (13)

The main ideais to link the spectralpropertiesof HNHR,
with theexponentialgrowth of theelementof its eigervectors.
SinceHNHR, in this caseis an Hermitian Jacobimatrix, and
henceis tridiagonal,its eigervectorscan be consideredo be
sequencewith secondorderlinear recurrenceTherefore the
problem reducesto the study of the exponential gronth of
productsof two by two matrices.This is closelyrelatedto the
evaluationof the top Lyapunw exponentof the product; The
explicit link betweenthe Shannontransform(3) and the top
Lyapunw exponentis the Thoulessformula [19]. Moreover,
for arbitraryfinite K, it is shavnin [1] thatS,, = 1 while the
power offsetis boundedby a sequencef explicit upper and
lower-boundsthegapbetweerthelowerandtheupperbounds
decreasesvith the bounds’order and compleity. It is noted
thatcalculatingexactexpressiongor the high-SNRparameters
of channelswith geneal fading distribution and arbitrary
finite K remainsan open problem even for the tridiagonal
case.In addition, (13) also further supportsthe conjecture
maderegarding the dependeng of the limiting spectrumof
finite-bandmatriceson their entries’ distribution.

Recently[14], the limiting spectrumof 1+%HNH}\, for
the Wyner setup and complex Gaussianvectors, has been
loosely shavn by free probability tools to be approximated
by the Mardenlo-Pastur distribution with parameterk. The
approximationjs shawvn to fairly well matchthe spectrumby
Monte-Carlosimulationsonly for relatively large valuesof «.
It shouldbe emphasizedhat sucha matchis not guaranteed
for otherfadingdistributions excluding the complex Gaussian
distribution (i.e. Rayleigh fading). A possiblereasoningfor
the approximationinaccurag in the low « regime is that in
the extreme caseof a = 0, the eigervalues are evidently
exponentially distributed, with no finite support(in contrast
to the Mardenlo-Pasturdistribution).

IV. CONCLUDING REMARKS

The limiting spectrum(or its Shannortransform)of certain
large finite-band Hermitian randommatricesis known for a
few limited casesand remainsan open problemin general.
Moreover, even the high-SNR characterizatiorof their Shan-
non transformsis still unsohed. Due to their specialpower
profile, standardtools from the theory of random matrices
cannotbe usedfor this problem.It is conjecturedthat unlike
“full” random matrices, the limiting spectraof finite-band
random matricesdependon the actual distribution of their
entries. It seemsthat uncorventional methodssuch as the
method used by Narula, replacing the role of eigervalues
with the diagonal elementsof the Cholesk decomposition,
are requiredto shedlight on this problem.Neverthelessit is
notedthatthetri-diagonal(Jacobimatrices)caseis uniqueand
thesetechniquesnaynotapplyto generafinite-bandmatrices.
Finally, we note that solving the problem would facilitate
analyticaltreatmentwhich in turn gainsmuchinsightinto the

effect of key systemparametersn the performanceof certain
cellular uplink channelsandtime varying ISI channels.

ACKNOWLEDGMENT

Theresearclwassupportedn partby a Marie Curie Outgo-
ing InternationalFellonvshipandthe NEWCOM-++ network of
excellenceboth within the 6th EuropeanCommunity Frame-
work Programme by the U.S. National ScienceFoundation
underGrantsCNS-06-25637and CNS-06-26611andalsoby
the REMON Consortium.

REFERENCES

[1] N. Levy, O. Somekh,S. Shamai,and O. Zeitouni, “On certain large
randomhermitianjacobi matriceswith applicationsto wirelesscommu-
nications. Submittedto the IEEE Trans. Inform. Theory Oct. 2007.

A. M. Tulino and S. Verdl, “Random matrix theory and wireless
communication$, in Foundationsand Trendsin Communicationsand
InformationTheory vol. 1, (Hanover, MA, USA), Now Publishers2004.
S. Shamai(Shitz) andS. Verdl, “The impactof frequeng-flat fadingon
the spectralefficiency of CDMA,” IEEE Trans.Inform. Theory vol. 47,
pp. 1302—-1327May 2001.

A. Lozano, A. Tulino, and S. Verdl, “High-SNR power offset in
multi-antennacommunicationd, IEEE Trans. Inform. Theory vol. 51,
pp. 4134-4151Dec. 2005.

A. D. Wyner, “Shannon-theoreticapproachto a Gaussian cellu-
lar multiple-accesschannel, IEEE Trans. Inform. Theory vol. 40,
pp. 1713-1727Nov. 1994.

S.V. HanlyandP. A. Whiting, “Information-theoretiacapacityof multi-
recever networks, TelecommunSyst, vol. 1, pp. 1-42,1993.

S. Shamai(Shitz) and A. D. Wyner, “Information-theoreticconsidera-
tionsfor symmetric,cellular, multiple-acces$adingchannels Partsl &
II,” IEEE Transactionson Information Theory vol. 43, pp. 1877-1911,
Nov. 1997.

0. Somekhand S. Shamai (Shitz), “Shannon-theoreticapproachto
a Gaussiancellular multi-accesschannelwith fading; IEEE Trans.
Inform. Theory vol. 46, pp. 1401-1425 July 2000.

P. ViswanathandD. N. C. Tse,“Sum capacityof the vector Gaussian
broadcastchanneland uplink-downlink duality” IEEE Trans. Inform.
Theory vol. 49, pp. 1912-1921 Aug. 2003.

O. Somekh,O. Simeone)Y. BarNess,A. M. Haimovich, U. Spagnolini,
and S. Shamai(Shitz), “An information theoreticview of distributed
antenngrocessingn cellularsystems, in Distributed AntennaSystems:
OpenArchitecture for Future WirelessCommunicationsAuerbachPub-
lications, CRC PressMay 2007.

S. Shamai(Shitz), O. Somekh,and B. M. Zaidel, “Multi-cell commu-
nications:An information theoreticperspectie; in Proceedingsof the
Joint Workshopon Communicationsnd Coding (JWCC'04) (Donnini,
Florence,ltaly), Oct.14-17,2004.

R. M. Gray, “On the asymptotic eigervalue distribution of Toeplitz
matrices, IEEE Trans. Inform. Theory vol. IT-18, pp. 725-730,Nov.
1972.

N. Letzepis,GaussianCellular Multiple AccessChannels Ph.d.disser
tation, Institute for Telecommunication&®kesearchUniversity of South
Australia, Mawson Lakes, Australia, 2006.

A. Narula, Information Theoetic Analysisof Multiple-AntennaTrans-
missionDiversity. PhD thesis, Massachusettnstitute of Technology
(MIT), Boston,MA, Junel997.

S.Jing,D. N. C. Tse,J. Hou, J. Soriag, J. E. Smee,andR. Padovani,
“Downlink macro-dversity in cellular networks; in Proceedingsf the
IEEE Intl. Symp.on Inform. Theory(ISIT'07), (Nice, France),pp. 1-5,
Jun.2007.

S. Verdl, “Spectral efficiengy in the widebandregime; IEEE Trans.
Inform. Theory vol. 48, pp. 1329-1343,June2002.

O. Somekh,B. M. Zaidel, and S. Shamai(Shitz), “Spectral efficiency
of joint multiple cell-site processorgor randomly spreadDS-CDMA
system$, |IEEE Trans. Inform. Theory vol. 53, pp. 2625-2636,Jul.
2007. For detailed derivations see also : —, CCIT Report, #480,
Technion- Israel Institute of Technology Apr., 2004.

R. Carmonaand J. Lacroix, Spectal theory on random Scrodinger
opemtors. Probability and its Applications, Boston, MA: Birkhauser
Bostonlinc., 1990.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

(10]

(11]

(12]

(13]

(14]

(18]

(16]

(17]

(18]



