
Cloud-Aided Wireless Networks with Edge
Caching: Fundamental Latency Trade-Offs in Fog

Radio Access Networks
Ravi Tandon

Department of ECE
University of Arizona, Tucson, AZ

tandonr@email.arizona.edu

Osvaldo Simeone
CWCSPR, ECE Department

New Jersey Institute of Technology
osvaldo.simeone@njit.edu

Abstract—Fog Radio Access Network (F-RAN) is an emerging
wireless network architecture that leverages caching capabilities
at the wireless edge nodes, as well as edge connectivity to the cloud
via fronthaul links. This paper aims at providing a latency-centric
analysis of the degrees of freedom of an F-RAN by accounting for
the total content delivery delay across the fronthaul and wireless
segments of the network. The main goal of the analysis is the
identification of optimal caching, fronthaul and edge transmission
policies. The study is based on the introduction of a novel
performance metric, referred to as the Normalized Delivery Time
(NDT), which measures the total delivery latency as compared
to an ideal interference-free system. An information-theoretically
optimal characterization of the trade-off between NDT, on the
one hand, and fronthaul and caching resources, on the other,
is derived for a class of F-RANs with two edge nodes and two
users. Using these results, the interplay between caching and
cloud connectivity is highlighted, as well as the impact of both
caching and fronthaul resources on the delivery latency.

Index Terms—Cloud Radio Access Network (C-RAN), caching,
5G, degrees of freedom, latency.

I. INTRODUCTION

Edge processing and virtualization are two of the key
emerging trends in the evolution of 5G networks [1], [2].
Edge processing refers to the localization of storage and
computing resources at the network edge. Notably, edge nodes
(ENs), such as base stations, can be equipped with local
caches to store popular content, with the aim of reducing the
delivery latency by limiting the need to communicate with
remote content servers [1]. In a dual manner, virtualization
allows the implementation of network functionalities at a
centralized cloud processor. An important example is given
by the Cloud Radio Access Network (C-RAN) architecture, in
which the ENs are connected to a cloud processor by so called
fronthaul links, so as to enable, among other performance
gains, enhanced interference management capabilities thanks
to the joint baseband processing in the cloud [2], [3].

Bridging the gap between these two complementary trends,
the Fog Radio Access Network (F-RAN) architecture has been
recently advocated that combines the benefits of both edge
and cloud processing (see, e.g., [4]). In this architecture, as
illustrated in Fig. 1, ENs may be endowed with caching capa-
bilities, so as to serve local data requests of popular content
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Fig. 1. Information-theoretic model for F-RAN.

with low latency, while at the same time being controllable
from a central cloud processor, in order to serve arbitrary data
requests with stronger interference management properties and
less stringent delay constraints.

The design of F-RANs involves the following intertwined
design questions: (a) What to cache?; (b) How to utilize the
limited capacity available on the fronthaul links?; and (c)
How to deliver the requested content on the downlink wireless
channel? In this work, we set out to obtain fundamental
insights into these questions by means of an information-
theoretic approach. The proposed framework aims at providing
a latency-centric analysis of the degrees of freedom of an F-
RAN by accounting for the total content delivery delay across
the fronthaul and wireless segments of the network.

Related Work: Questions (a) and (c) were recently tackled
from an information-theoretic viewpoint by Maddah-Ali and
Niesen in [5], [6], for a cache-aided scenario that allows for
edge caching but not for cloud processing. Specifically, for a
scenario with M = 3 ENs and K = 3 users, these works
present an upper bound on the inverse of the number of
achievable degrees of freedom (DoF). In [7], instead, a lower



bound is presented that proves the optimality of the caching
and transmission schemes proposed in [5], [6] for a given
range of values of the cache storage capacity and under the
constraint that no inter-file coding is allowed.

Main Contributions: In contrast to the mentioned prior
research, in this paper, we focus on the F-RAN architecture
in Fig. 1, which allows for both edge caching and cloud
processing by means of fronthaul connections. To this end,
we first present an information-theoretic model of F-RANs
that succinctly captures its new design aspects and constraints.
We also develop a new performance measure, which we
refer to as the Normalized Delivery Time (NDT). The NDT
captures the worst-case latency incurred over the fronthaul and
wireless access segments of the network for content delivery
as compared to an ideal interference-free system in the high
signal-to-noise ratio (SNR) regime. For the case of a caching-
only system, with no fronthaul links, the NDT is related to
the inverse of the DoF metric studied in [5], [6], as discussed
in [7]. Under the constraint of uncoded inter-file caching, we
characterize the optimal trade-off between NDT and caching
and fronthaul resources for an F-RAN with M = 2 ENs and
K = 2 users (see Fig. 3).

II. INFORMATION THEORETIC MODELING OF F-RAN

As illustrated in Fig. 1, we consider an F-RAN architecture
with M edge nodes (ENs), which can serve a set of K
users over a shared wireless channel. Note that, in Sec. IV,
we will specialize the set-up for our main results to the
case M = K = 2, but we present here the model in its
full generality in order to highlight more general research
questions and open problems. We assume the presence of a
library of N files, which represent the content that may be
requested by the users, where each file is of size L bits. Time
is organized into transmission intervals, as shown in Fig. 1
and Fig. 2 and further discussed below. The system model,
notation and main assumptions are summarized as follows.
• The library of N contents, or files, that may be requested is
denoted by F = {F1, F2, . . . , FN}, where each file is of size
L bits. This library is assumed to be constant across many
transmission intervals. At each transmission interval t, users
issue a vector of requests D(t) = (D1(t), . . . , DK(t)), where
Dk(t) ∈ {1, . . . , N} indicates that file FDk(t) is requested by
user k at time t. We make no assumption on the nature of the
time-variability of the demands made by the users.
• Each EN has a cache which can store µNL bits, where
µ ∈ [0, 1] represents the fractional cache size.
• The cloud has access to all N files, and each EN is connected
to the cloud via a fronthaul link. The fronthaul capacity is
given by CF bits per symbol for each EN, where a symbol
refers to a channel use of the downlink wireless channel. The
capacity CF is assumed to be fixed, reflecting conventional
scenarios in which fronthaul links correspond to dedicated
wired connections (see, e.g., [2], [3]).
• The collective time-varying wireless channel state in-
formation (CSI) at transmission interval t is defined as
H(t) = {{Hm,k(t)}Kk=1}Mm=1, where Hm,k(t) denotes the

channel coefficients that characterize the propagation between
the mth EN and the kth user. The channel coefficients are
assumed to be drawn in an independent identically distributed
(i.i.d.) manner from a continuous distribution (as in [5], [6]).

Next, we define the caching-fronthaul-transmission policy.
We focus on the case in which, in each transmission interval t,
the ENs and cloud are aware of the channel realization H(t),
as well as of the users’ demand vector D(t), but not of any
future channel realizations and demands H(t′) and D(t′) with
t′ > t. As detailed below, the caching-fronthaul-transmission
policy decides each ENs’ cache composition, which is kept
fixed for many transmission intervals, as well as the duration
and content of the transmissions across fronthaul and wireless
segments for each transmission interval, as shown in Fig. 2.

Definition 1. (Caching-Fronthaul-Transmission Policy) A
caching-fronthaul-transmission policy π = (πC , πF , πE) is
characterized by the following three encoding functions.
a) Caching policy πC: The caching policy is defined by a
function F → {S1, S2, . . . , SM}, which maps the set F of files
into the cache content Sm of the mth EN for m = 1, ...,M ,
which in turn cannot exceed µNL bits. For the scope of this
paper, we focus on the practically relevant class of caching
policies that do not allow for inter-file coding but do include
arbitrary intra-file coding. Within this class, the cache content
Sm of the mth EN can be partitioned into N independent
sub-caches, i.e., Sm = (SmF1

, SmF2
, . . . , SmFn

), where SmFn

can be any arbitrary function of file Fn, for n = 1, . . . , N .
We emphasize that the caching policy is kept fixed for many
transmission intervals and is only a function of the library F
of files.
b) Fronthaul policy πF : The fronthaul policy
is defined by a function {F , D(t), H(t)} →
{TF (t), U

TF (t)
1 (t), U

TF (t)
2 (t), . . . , U

TF (t)
M (t)}, which maps

the set of files F , instantaneous demands and channels to the
duration TF (t) of the fronthaul transmission (see Fig. 2) and
to the message UTF (t)

m (t), of duration TF (t), sent on the mth
link. In keeping with the definition of the fronthaul capacity
CF , all time intervals, including TF (t), are normalized
to the symbol transmission time on the downlink wireless
channel. Accordingly, the fronthaul message cannot exceed
TF (t)CF bits. We emphasize that the fronthaul policy, as
well as the transmission policy discussed below, adapts to the
instantaneous demands and to the CSI in each transmission
interval t, unlike the caching policy.
c) Edge transmission policy πE: The edge transmission pol-
icy, or transmission policy for short, is defined by the
collection of functions πE = (πE0

, πE1
, πE2

, . . . , πEM
),

which characterize the transmission on the wireless down-
link channel as a function of the current demands and
CSI and of the fronthaul messages. Specifically, the function
πE0

: {F , D(t), H(t), U
TF (t)
1 (t), . . . , U

TF (t)
M (t)} → TE(t)

selects the transmission duration, in number of symbols, on
the downlink wireless channel for all the ENs (see Fig.
2). Instead, the M local transmission functions πEm :

{Sm, D(t), H(t), TE(t), U
TF (t)
m (t)} → X

TE(t)
m (t), one for



each EN, determine the codeword X
TE(t)
m (t), of duration

TE(t) symbols, sent on the wireless channel by the mth EN,
under an average power constraint given by the parameter P .

Fig. 2. Illustration of transmission intervals and of the definition of latency.

Upon the transmission by the ENs at a transmission interval
t, the kth user receives the signal

Y
TE(t)
k (t) =

N∑
m=1

Hm,k(t)XTE(t)
m (t) +N

TE(t)
k (t), (1)

on each channel use of the wireless downlink channel, where
Hm,k(t) is the channel coefficient between the kth user and
the mth EN; NTE(t)

k (t) denotes the additive noise at the kth
user, which is assumed to be complex Gaussian with unitary
power, i.i.d. over time and users and also independent of the
channel coefficients. Each user k maps its received signal
Y
TE(t)
k (t) to an estimate F̂Dk(t) of the demanded file (i.e.,
FDk(t)), incurring a probability of error P(F̂Dk(t) 6= FDk(t)).
The probability of error of the policy π is then defined for the
worst-case request vector as

Pe = max
D(t)

max
k∈{1,...,K}

P(F̂Dk(t) 6= FDk(t)). (2)

A policy π is said to be feasible if, for almost all realizations
H(t) of the channel, i.e., with probability 1, we have Pe → 0
when L→∞.

III. LATENCY-CENTRIC DOF ANALYSIS: NORMALIZED
DELIVERY TIME (NDT)

We now define the proposed delivery metric by first intro-
ducing the notion of delivery time per bit.

Definition 2. (Delivery time per bit) For a given fractional
cache size µ, fronthaul capacity CF , and an EN power con-
straint P , consider a sequence of feasible policies π indexed
by the file size L. Denote as T

(D,H,L)
F and T

(D,H,L)
E the

durations of the fronthaul transmission and edge transmission
as in Definition 1 when D(t) = D and H(t) = H for a file
size L. The average achievable delivery time per bit for a
given sequence of feasible policies is then defined as

∆(µ,CF , P ) = max
D

lim
L→∞

1

L
EH

(
T

(D,H,L)
F + T

(D,H,L)
E

)
(3)

where the expectation is over the channel realizations H .

The delivery time per bit (3) captures the latency within
each transmission interval, which is depicted in Fig. 2, as
evaluated for the worst-case users’ requests and on average
over the channel distribution. It is noted that, in order to obtain

vanishing probabilities of error, as required by Definition 2,
the latencies T (D,H,L)

F and T
(D,H,L)
E need to scale with L,

and it is this scaling that is measured by (3). We also observe
that the definition of delivery time per bit in (3) is akin to
the completion time studied in [8], [9] for standard channel
models, such as broadcast and multiple access.

The optimal latency performance is in principle obtained
by minimizing the delivery time per bit (3) over all possible
policies π. This optimization is generally prohibitive and it
is also dependent on all parameters (µ,CF , P ). With the
aim of obtaining analytical insights, we next propose a novel
tractable metric that retains the key dependence of latency on
cache size and fronthaul capacity while adopting a high-SNR
approximation in the vein of the by now standard DoF analysis
of interference networks [10]. To this end, we let the fronthaul
capacity scale with the SNR parameter P as CF = r log(P ),
where r is a parameter that measures the multiplexing gain of
the fronthaul links.

Definition 3. (NDT) For any achievable ∆(µ,CF , P ), with
CF = r log(P ), the normalized delivery time (NDT)

δ(µ, r) = lim
P→∞

∆(µ, r log(P ), P )

1/ log(P )
(4)

is said to be achievable. For a given pair (µ, r) the minimum
NDT is defined as

δ∗(µ, r) = inf{δ(µ, r) : δ(µ, r) is achievable}. (5)

In (5), the delivery time per bit (3) is normalized by the
term 1/ log(P ), which measures for the delivery time per
bit, at high SNR, of a baseline system with no interference
and unlimited caching, in which each user can be served
by a dedicated EN that has all files. As such, an NDT of
δ∗ indicates that the worst-case time required to serve any
possible request is δ∗ times larger than the time that would
be needed by the baseline system.

Based on the definitions above, our goal is to characterize
the novel metric NDT, δ∗(µ, r) that captures the interplay
between the normalized cache storage µ and the fronthaul
multiplexing gain r. We note that the minimum NDT (5)
generally depends on the number N of files, although we do
not make this dependence explicit to simplify the notation.
We close this section with a key property of NDT that lends
further evidence to its suitability as a performance metric for
the analysis of F-RANs.

Remark 1 (Time Sharing between Policies and Convexity
of Minimum NDT). Consider two (sequences of) policies π1
and π2, requiring caching and fronthaul resources (µ1, r1) and
(µ2, r2) and achieving NDTs δ∗(µ1, r1) and δ∗(µ2, r2), re-
spectively. An F-RAN is now given with caching and fronthaul
resources characterized as (µ, r) = (αµ1 + (1− α)µ2, αr1 +
(1−α)r2) for some parameter α ∈ [0, 1]. On this F-RAN, one
could then operate with policy π1 on a fraction α of the cache
storage, fronthaul capacity and spectral resources (i.e., time
or frequency), and with policy π2 on the remaining parts. It
can be readily shown, based on additivity arguments, that this



“time- and memory-sharing” strategy achieves an NDT equal
to the convex combination αδ∗(µ1, r1) + (1 − α)δ∗(µ2, r2),
which is lower bounded by δ∗(µ, r), i.e.,

δ∗(αµ1 + (1− α)µ2, αr1 + (1− α)r2)

≤ αδ∗(µ1, r1) + (1− α)δ∗(µ2, r2). (6)

The above argument demonstrates that the NDT performance
measure δ∗(µ, r) is jointly convex in (µ, r). We note that a
similar observation was made in [5], [6] for a system with
caching only (i.e., r = 0). This observation motivated the
authors of [5], [6] to study the inverse of the DoF metric,
instead of the DoF itself, as the performance criterion of
interest, since the DoF is shown not to have the same convexity
properties (see [7, Remark 2]).

IV. OPTIMUM NDT TRADE-OFF FOR M = K = 2

In this section, we present the optimum NDT as introduced
in Definition 3 for the special case of M = 2 and K = 2.

Theorem 1. The optimal NDT trade-off for the M = 2-EN,
K = 2-user F-RAN with number of files N ≥ 2 is given as

δ∗(µ, r) =

{
max

(
1 + µ+ 1−2µ

r , 2− µ
)

for 0 ≤ r ≤ 1

1 + 1−µ
r for r > 1.

(7)

As illustrated in Fig. 3, the NDT trade-off analysis in
Theorem 1 identifies two distinct regimes in terms of the
fronthaul capacity, namely a low-fronthaul capacity regime
with r ≤ 1 and a high-fronthaul capacity regime with r > 1. In
the latter case, the use of both fronthaul and caching resources
is necessary in order to obtain the optimal NDT performance,
while, in the former, if the cache capacity is sufficiently large,
namely if µ ≥ 1/2, it is sufficient to leverage the caching
resources to achieve the optimal performance. We next discuss
the caching-fronthaul-transmission policies that achieve the
NDT trade-off in Theorem 1. For the converse, we refer to
Appendix A.

A. Achievability of Minimum NDT

Here we describe the specific policies that achieve the NDT
trade-off curve in Fig. 3. Without loss of generality, we focus
on the corner points in both low-fronthaul and high-fronthaul
capacity regimes. This is because all the remaining points on
the trade-off curve can be achieved by time- and memory-
sharing between the policies corresponding to the corner points
as per Remark 1.
• Achieving δ∗(µ, r) = 1 for µ = 1: With µ = 1, each EN
can cache all files. This enables full cooperation between
the ENs, since each EN can cache the entire library. Thus,
the set of ENs forms a virtual multiple-input single-output
(MISO) broadcast channel, and zero-forcing beamforming
yields parallel interference-free channels to the two users.
Therefore, the latency equals the time needed by the mentioned
reference interference-free channel with full caching, resulting
in the achievable NDT δ = 1.
• Achieving δ∗(µ, r) = 3/2 for µ = 1/2: With µ = 1/2, each
EN can only cache at most half of each file. The caching
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µ
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Fig. 3. Optimal NDT trade-off for the M = 2-EN, K = 2-user F-RAN
as a function of µ (fractional cache size per EN) and for fronthaul capacity
CF = r log(P ). The trade-off has distinct regimes of operations: (a) low-
fronthaul capacity regime, with r ≤ 1; (b) high-fronthaul capacity regime,
with r > 1.

policy is to split each file Fi into two equal sized sub-files,
i.e., Fi = (Fi1, Fi2) for i = 1, . . . , N . EN1 stores the first
sub-file, Fi1, i = 1, . . . , N , and EN2 stores the second sub-
file Fi2, for all files i = 1, . . . , N . For any request of distinct
files, say Fi by user 1, and Fj by user 2, the transmission
problem on the wireless channel is then equivalent to an X-
network with four virtual messages, namely Fi1, Fj1 available
at EN1, and Fi2, Fj2 available at EN2. Thus, we can use
the interference alignment scheme proposed in [11], which
achieves an equal rate of 2/3 log(P ) towards each of the
two users, ignoring o(log(P )) terms. The delivery time is,
neglecting o(log(P )) terms, given by the edge transmission
time TE = 3L/2 log(P ), and the delivery time per bit in
Definition 2 is then approximately ∆ = 3/(2 log(P )), yielding
an achievable NDT of δ = 3/2. Interestingly, as shown in
Theorem 1, in the low-fronthaul regime when r ≤ 1, if
µ ≥ 1/2, the usage of the fronthaul resource cannot further
reduce the NDT and this scheme achieves the minimum NDT.
• Achieving δ∗(µ, r) = 1 + 1/r for µ = 0: The case µ = 0
corresponds to the setting in which the ENs have no caching
capability. A finite NDT can hence only be achieved by using
the fronthaul resources. The fronthaul links can be utilized in
two distinct ways, referred to here as hard- and soft-transfer
modes. With the hard-transfer mode, the cloud can directly
transmit both requested files to each EN, and then the ENs
can use the same fully cooperative zero-forcing approach
adopted above for µ = 1. Since the fronthaul links have
capacities CF = r log(P ) each, the fronthaul delivery time
is TF = 2L/(r log(P )), while the edge transmission time,
following the same arguments as for the first corner point, is
approximately TE = L/ log(P ). This yields an approximate



total delivery time per bit of ∆ = (1 + 2/r)/(log(P )), and
hence the achievable NDT δ = 1+2/r. However, hard transfer
turns out to be suboptimal in this scenario. The optimal NDT is
in fact achieved through a soft-transfer mode approach typical
of C-RAN (see, e.g., [3]): the cloud implements zero-forcing
beamforming and quantizes the resulting baseband signals
[12]. Using a resolution of log(P ) bits per downlink baseband
sample, it can be shown that the effective SNR in the downlink
scales proportionally to the power P (see [12, Eq. (5)]). As a
result, this scheme entails a fronthaul latency TF that equals
the edge latency TE of the zero-forcing beamforming scheme,
namely TE = L/(log(P )), multiplied by the time needed
to carry each baseband sample on the fronthaul link, namely
log(P )/(r log(P )), yielding the NDT δ = 1 + 1/r (see also
Appendix B for details).

V. CONCLUSIONS

In this paper, we presented an information-theoretic anal-
ysis of Fog Radio Access Networks (F-RANs), an emerging
wireless architecture that encompasses both edge caching and
cloud processing. The study aims at providing a latency-centric
understanding of the degrees of freedom, in the high-SNR
regime, of F-RAN networks by accounting for the available
limited resources in terms of fronthaul capacity, cache storage
sizes, as well as power and bandwidth on the wireless channel.
We detailed a general model and a novel performance metric,
referred to as Normalized Delivery Time (NDT), which cap-
tures the worst-case delivery latency with respect to an ideal
interference-free system. For the special case of M = 2 edge
nodes and K = 2 users, we fully characterized the trade-off
between the NDT and the fronthaul and caching resources
of the system. This result reveals optimal caching-fronthaul-
transmission policies as a function of the system resources.
Ongoing work focuses on extending the NDT trade-off to the
more general setting introduced here.
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VI. APPENDIX A: LOWER BOUNDS ON NDT (CONVERSE)

In this Appendix, we settle the optimality of the NDT trade-
off in Theorem 1 by proving a matching lower bound on
the achievable NDT. We recall that S1 and S2 denote the
contents of the caches of EN1 and EN2, respectively. As in
Sec. II, we also denote UTF

1 and UTF
2 the outputs sent on

the fronthaul links and Y TE
1 and Y TE

2 denote the vector of
channel outputs (1) at the users. Since we focus on a given
transmission interval t, we thus drop index t throughout this
section. The goal here is to obtain an information theoretic
lower bound on TE + TF for any given sequence of feasibile
policies, from which we can then bound δ∗(µ, r). We consider
first the case with N = 2 files, and a demand vector in which
user 1 requests file F1, and user 2 requests file F2. We detail
later how to extend the proof for N ≥ 2 files.

The converse is based on the idea of considering subsets
of information resources across the caching, fronthaul and
wireless segments of the F-RAN, with the property that the
information in each subset is sufficient to decode one or
more of the requested files for any sequence of feasible
policies in the high-SNR regime. In particular, the first subset
encompasses caching, fronthaul and wireless resources and
yields a lower bound on a linear combination of (TE , TF ) as
a function of µ and r. The second subset concerns the caching
and fronthaul resources of F-RAN, yielding a lower bound on
TF as a function of µ and r. The third subset pertains only to
the wireless segment of F-RAN and yields a lower bound on
TE . The resulting lower bounds are then subsequently used
to obtain the lower bound on NDT presented in Theorem
1. Throughout this appendix, we denote as εL any function
that vanishes for L → ∞, and as εP any function such
that εP / log(P ) → 0 as P → ∞ (i.e., εP is any o(log(P ))
function).
We now consider an information subset containing the fol-
lowing subset of wireless, cache, and fronthaul resources
{Y TE

1 , S2, U
TF
2 }. The following sequence of bounds holds for

any sequence of feasible policies:

2L = H(F1, F2)

= I(F1, F2;Y TE
1 , S2, U

TF
2 ) +H(F1, F2|Y TE

1 , S2, U
TF
2 )

= I(F1, F2;Y TE
1 , S2, U

TF
2 )

+H(F1|Y TE
1 , S2, U

TF
2 ) +H(F2|Y TE

1 , F1, S2, U
TF
2 )



≤ I(F1, F2;Y TE
1 , S2, U

TF
2 )

+ LεL +H(F2|Y TE
1 , F1, S2, U

TF
2 ) (8a)

= I(F1, F2;Y TE
1 , S2, U

TF
2 )

+ LεL +H(F2|Y TE
1 , F1, X

TE
2 , S2, U

TF
2 ) (8b)

= I(F1, F2;Y TE
1 , S2, U

TF
2 )

+ LεL +H(F2|Y TE
2 , Y TE

1 , F1, X
TE
2 , S2, U

TF
2 ) + TEεP

(8c)

≤ I(F1, F2;Y TE
1 , S2, U

TF
2 ) + LεL + TEεP , (8d)

where (8a) follows from Fano’s inequality by noticing
that file F1 must be decoded based on Y TE

1 ; equal-
ity (8b) follows due to the fact that XTF

2 is a func-
tion of (S2, U

TF
2 ); equality (8c) follows from the equality

I(F2;Y TE
2 |Y TE

1 , F1, X
TE
2 , S2, U

TF
2 ) = TEεP since XTE

1 , and
then Y TE

2 , can be reconstructed from (Y TE
1 , XTE

2 ) subject
to additional noise whose variance does not scale with P
(also see Lemma 2 in [7] for a similar derivation). Finally,
(8d) follows from Fano’s inequality using the decodability
requirement of file F2 from Y TE

2 .
Now, we bound the first term in (8d) as

I(F1, F2;Y TE
1 , S2, U

TF
2 )

≤ I(F1, F2;Y TE
1 , F1, S2, U

TF
2 )

= I(F1, F2;Y TE
1 , F1) + I(F1, F2;S2, U

TF
2 |Y TE

1 , F1)

= I(F1, F2;Y TE
1 ) + I(F1, F2;F1|Y TE

1 )

+ I(F1, F2;S2, U
TF
2 |Y TE

1 , F1)

≤ TE log(P ) + TEεP + LεL + I(F1, F2;S2, U
TF
2 |Y TE

1 , F1)
(9a)

≤ TE log(P ) + TEεP +H(S2, U
TF
2 |Y TE

1 , F1) + LεL

≤ TE log(P ) + TEεP +H(S2, U
TF
2 |F1) + LεL

= TE log(P ) + TEεP +H(S2F1
, S2F2

, UTF
2 |F1) + LεL

(9b)

= TE log(P ) + TEεP +H(S2F2
, UTF

2 |F1) + LεL

≤ TE log(P ) + TEεP +H(S2F2
, UTF

2 ) + LεL

≤ TE log(P ) + TEεP +H(S2F2
) +H(UTF

2 ) + LεL

≤ TE log(P ) + (TE + TF )εP + µL+ rTF log(P ) + LεL,
(9c)

where (9a) follows by bounding the first mutual information
by TE log(P ) + TEεP (see Lemma 1 in [7] for a similar
derivation) and the second term by Fano’s inequality; (9b)
follows from the uncoded caching assumption, i.e., cache of
EN2 can be expressed as S2 = (S2F1

, S2F2
), where S2F1

is a
function of file F1, and S2F2

is a function of file F2; and, in
(9c), we invoked the caching storage constraint and the fact
that the fronthaul capacity is bounded by r log(P ). Plugging
(9c) into (8d) and rearranging the resulting inequality, we
obtain a bound on a linear combination of (TE , TF ):

(TE + rTF ) log(P ) + (TE + TF )εP ≥ (2− µ)L− LεL.
(10)

We now consider a second subset of resources that include
only caching and fronthaul, namely {S1, S2, U

TF
1 , UTF

2 }.
Again, the following sequence of inequalities holds for any
sequence of feasible policies:

2L ≤ I(F1, F2;S1, S2, U
TF
1 , UTF

2 ) + LεL (11a)

≤ H(S1, S2, U
TF
1 , UTF

2 ) + LεL

≤ H(S1) +H(S2) +H(UTF
1 ) +H(UTF

2 ) + LεL

≤ 4µL+ 2rTF log(P ) + LεL, (11b)

where (11a) follows from Fano’s inequality, in a manner
similar to (8b), since the channel inputs of both the ENs can
be obtained from (S1, S2, U

TF
1 , UTF

2 ) and the ENs must be
able to collectively decode the files; and (11b) follows from
the cache storage constraint and the constraint on fronthaul
capacity. The above inequality gives a lower bound on TF as

TF log(P ) ≥ (1− 2µ)L

r
− LεL

r
. (12)

Finally, we consider the subset that includes only the
wireless resource consisting of the received signal Y TE

1 , from
which file F1 must be decodable, yielding the inequalities

L = H(F1) ≤ I(F1;Y TE
1 ) + LεL ≤ TE log(P ) + LεL,

(13)

which gives the bound TE log(P ) ≥ L− LεL.
To summarize, we have the following three inequalities

corresponding to the three mentioned information subsets:

• Inequality 1:

(TE + rTF ) log(P ) + (TE + TF )εP ≥ (2− µ)L− LεL;
(14)

• Inequality 2:

TF log(P ) ≥ (1− 2µ)L

r
− LεL

r
; (15)

• Inequality 3:

TE log(P ) ≥ L− LεL. (16)

We next show how to use the above three inequalities to obtain
a lower bound on NDT, which matches Theorem 1.
(a) For the low-fronthaul capacity regime, i.e., r ≤ 1, we
combine the inequalities above as (Inequality 1) + (1 − r)×
(Inequality 2), which yields

(TE + TF ) log(P )

= (TE + rTF ) log(P ) + (1− r)TF log(P ) (17)

≥ L
(

1 + µ+
1− 2µ

r

)
− (LεL/r + (TE + TF )εP ) . (18)

From the above, we thus have the following:

(TE + TF ) log(P )

L
≥
(
1 + µ+ 1−2µ

r

)
− εL/r

1 + εP / log(P )
(19)



obtain a lower bound on NDT as follows

δ∗(µ, r) = lim
P→∞

lim
L→∞

(TE + TF ) log(P )

L

≥ lim
P→∞

lim
L→∞

(
1 + µ+ 1−2µ

r

)
− εL/r

1 + εP / log(P )

= 1 + µ+
1− 2µ

r
. (20)

For r ≤ 1, we also use Inequality 1 as follows:

(TE + TF ) log(P ) ≥ (TE + rTF ) log(P ) (21)
≥ (2− µ)L− LεL − (TE + TF )εP (22)

leading to

(TE + TF ) log(P )

L
≥ (2− µ)− εL

1 + εP / log(P )
. (23)

Using the above inequality, we obtain a lower bound on NDT
as follows

δ∗(µ, r) = lim
P→∞

lim
L→∞

(TE + TF ) log(P )

L

≥ lim
P→∞

lim
L→∞

(2− µ)− εL
1 + εP / log(P )

= 2− µ. (24)

Hence, for r ≤ 1, the NDT is compactly lower bounded as
the minimum of the above two lower bounds:

δ∗(µ, r) ≥ max

(
1 + µ+

1− 2µ

r
, 2− µ

)
. (25)

It can be readily seen that the first bound is active when µ ≤
1/2, whereas the second one is active for µ > 1/2.
(b) For the low-fronthaul capacity regime, i.e., r > 1, we use
(Inequality 1) + (r − 1)× (Inequality 3) to obtain

r(TE + TF ) log(P )

= (TE + rTF ) log(P ) + (r − 1)TE log(P )

≥ (2− µ)L+ (r − 1)L− (rLεL + (TE + TF )εP )

= (r + 1− µ)L− (rLεL + (TE + TF )εP ),

which implies

(TE + TF ) log(P )

≥ (r + 1− µ)L

r
− (LεL + (TE + TF )εP /r), (26)

and hence

δ∗(µ, r) ≥ 1 +
1− µ
r

. (27)

In conclusion, we obtained the lower bound on the NDT

δ∗(µ, r) ≥
{

max
(
1 + µ+ 1−2µ

r , 2− µ
)

r ≤ 1

1 + 1−µ
r r > 1.

(28)

While this bound has been proved above under the assumption
of N = 2 files, we conclude the proof by noting that the same
bound holds to the more general case of N > 2 files. To this
end, we can use the fact that all files are independent of each

other, and hence, in the very first steps used to obtain the
Inequalities 1-3, we can introduce the remaining (N −2) files
in the conditioning, i.e., H(F1, F2) = H(F1, F2|F3, . . . , FN ).
All the remaining steps follow directly, by adding the remain-
ing files (F3, . . . , FN ) in the conditioning in all the entropy
and mutual information expressions.

VII. APPENDIX B: ACHIEVABLE NDT UNDER THE
SOFT-TRANSFER FRONTHAUL MODE

In this Appendix, we present achievability results regarding
the NDT that can be obtained by means of soft-transfer
mode fronthauling for a general F-RAN with M ENs and
K users. Specifically, we discuss the NDT performance of
a scheme that uses fronthaul and wireless channels in the
standard serial fashion that is adopted, for instance, in the
CPRI fronthaul interface in C-RAN [2], [3]. In this scheme,
the cloud quantizes the encoded baseband samples, and the
all the ENs simultaneously transmit the quantized baseband
signals.

Lemma 1. The NDT

δ(µ, r) =
K

min{M,K}

(
1 +

1

r

)
(29)

is achievable by means of soft-transfer fronthauling for any
fractional cache size µ ≥ 0 and any r > 0.

To interpret (29), we note that the NDT δ =
K/min{M,K} can be achieved by means of zero-forcing
beamforming in an ideal system in which there is either full
caching, i.e., µ = 1, or no fronthaul capacity limitations, i.e.,
r →∞. In fact, in such systems, full cooperation is possible at
the ENs for any users’ demand vector, including the worst case
in which users request distinct files, and hence transmission
at the maximum per-user multiplexing gain min{M,K}/K
can be attained. The achievable NDT (29) hence shows a
multiplicative penalty term equal to 1 + 1/r due to fronthaul
capacity limitations.

The proof of Lemma 1 relies on the use of the following
fronthaul and transmission policies. Note that caching is not
used, in accordance with the assumption that µ may be zero.
The cloud encodes the signals using zero-forcing beamform-
ing under a power constraints smaller than P that will be
specified below. The resulting baseband signals are quantized
and sent to the ENs on the fronthaul links. The ENs transmit
simultaneously the respective received quantized samples on
the wireless channel. Reception at the users is affected by the
fronthaul quantization noise, as well as by the channel noise. If
the quantization rate is properly chosen, it can be proved that
the achievable NDT is (29), where the term K/min{M,K}
captures the latency on the wireless channel, which is the same
as for the ideal zero-forcing scheme, and K/(rmin{M,K})
accounts for the delay on the fronthaul. A more detailed
discussion is provided next.

In the cloud-based scheme under study, the cloud performs
zero-forcing precoding, producing signal X̄i for each ENi with



power constraint P̄ = E[|X̄i|2]. The signal X̄i is quantized to
obtain the signal Xi that is to be transmitted by ENi as

Xi = X̄i + Zi, (30)

where Zi ∼ CN (0, σ2) represents the quantization noise with
variance σ2. In order to satisfy the power constraint P , we
enforce the condition

P = P̄ + σ2. (31)

Furthermore, denoting as B the number of bits used on the
fronthaul link for each baseband sample, from rate-distortion
arguments and (30), we obtain the condition I(Xi; X̄i) =
log2(1 + P̄ /σ2) = B, and hence we have

σ2 =
P̄

2B − 1
. (32)

Therefore, from (31) and (32), we obtain the mentioned power
constraint on the precoded signal as

P̄ = P (1− 2−B) (33)

and the quantization noise power as

σ2 = P2−B . (34)

The quantization noise terms Zi for all ENs i = 1, ...,M
contribute to raising the noise level at each user. In particular,
for any user k, the power of the effective noise on the received
signals in (1) is given by E[|Nk|2]+σ2

∑N
m=1 |Hm,k|2 = 1+

σ2G, where G =
∑N
m=1 |Hm,k|2. Normalizing the received

signal (1) so that the variance of the effective noise is one, we
hence obtain, using (33) and (34), an equivalent signal model
in which the effective power constraint is

P̄

1 + σ2G
=

P (1− 2−B)

1 + P2−BG
. (35)

Now, setting B = log(P ), as indicated in the text, the effective
power becomes (P − 1)/(1 +G), which scales proportionally
to P .

Dropping the dependence on D, H and L in order to
simplify the notation, we denote as TE the edge transmission
latency for this scheme. It follows that the fronthaul latency
is TF = BTE/CF , since BTE bits need to be sent on each
fronthaul link at rate CF = r log(P ) to represent the quantized
signals. It follows that the total latency of this scheme is

TE + TF = TE

(
1 +

B

CF

)
= TE

(
1 +

1

r

)
, (36)

where we have used the choice B = log(P ). Furthermore, we
have the following limit

lim
P→∞

lim
L→∞

TE log((P − 1)(1 +G))

L
=

K

min{M,K} , (37)

due to the achievability of the NDT K/min{M,K} in the
ideal zero-forcing system mentioned above and to the effective

power (P − 1)/(1 +G) for the scheme at hand.
We now conclude the proof by computing the NDT

lim
P→∞

lim
L→∞

(TE + TF ) log(P )

L

=

(
1 +

1

r

)
lim
P→∞

lim
L→∞

TE log(P )

L

=

(
1 +

1

r

)
K

min{M,K} ,

where the second equality follows due to (37).


