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Abstract—In various wireless systems, such as sensor RFID
networks and body area networks with implantable devices, the
transmitted signals are simultaneously used both for information
transmission and for energy transfer. In order to satisfy the
conflicting requirements on information and energy transfer,
this paper proposes the use of constrained run-length limited
(RLL) codes in lieu of conventional unconstrained (i.e., random-
like) capacity-achieving codes. The receiver’s energy utilization
requirements are modeled stochastically, and constraints are
imposed on the probabilities of battery underflow and overflow
at the receiver. It is demonstrated that the codewords’ structure
afforded by the use of constrained codes enables the transmission
strategy to be better adjusted to the receiver’s energy utilization
pattern, as compared to classical unstructured codes. As a result,
constrained codes allow a wider range of trade-offs between the
rate of information transmission and the performance of energy
transfer to be achieved.

Index Terms—Energy transfer, constrained codes, energy har-
vesting.

I. INTRODUCTION

Various modern wireless systems, such as sensor RFID
networks and body area networks with implantable devices,
challenge the conventional assumption that the energy received
from an information bearing signal cannot be reused. This
has motivated recent research activity on the optimal resource
allocation in the presence of information and energy transfer
for various network topologies, see, e.g., [1]-[6].

Unlike [1]-[6] and references therein, this work focuses on
the code design for systems with joint information and energy
transfer. We focus on a point-to-point link as shown in Fig.
1, in which the receiver’s energy requirements are modeled
as a random process. The statistics of this process generally
depend on the specific application to be run at the receiver,
e.g., sensing or radio transmission. The performance in terms
of energy transfer is measured by the probabilities of overflow
and underflow of the battery at the receiver. The probability
of overflow measures the efficiency of energy transfer by
accounting for the energy wasted at the receiver. Instead, the
probability of underflow is a measure of the fraction of the
time in which the application run at the receiver is in outage
due to the lack of energy.
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Fig. 1. Point-to-point link with information and energy transfer (SC: Super-
capacitor).

Classical codes, which are designed with the only aim
of maximizing the information rate, are unstructured (i.e.,
random-like). As a result, they do not allow to control the
timing of the energy transfer, and hence to optimize the
probability of overflow and underflow. With this in mind, here
it is proposed to adopt constrained run-length limited (RLL)
codes [7] in lieu of conventional unconstrained codes.

Constrained RLL codes have been traditionally studied for
applications related to magnetic and optical storage [7]. The
application to the problem at hand of energy transfer has
been previously studied in the context of point-to-point RFID
systems in [8], although no analysis of the information-energy
trade-off was provided. In contrast, in this work, a thorough
analysis is provided of the interplay between information
rate and energy transfer in terms of probabilities of battery
overflow and underflow. The analysis reveals that, by properly
choosing the parameters that define RLL codes depending
on the receiver’s utilization requirements, constrained codes
allow to greatly improve the system performance in terms of
simultaneous energy and information transfer.

II. SYSTEM MODEL

We consider the point-to-point channel illustrated in Fig. 1.
We assume that at each discrete time 7, the transmitter can
either send an “on” symbol X; = 1, which costs one unit
of energy, or an “off” signal X; = 0, which does not require
any energy expenditure. The receiver either obtains an energy-
carrying signal, which is denoted as Y; = 1, or receives no
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Fig. 2. Energy utilization model at the receiver.

useful energy, which is represented as Y; = 0. The channel is
memoryless, and has transition probabilities as shown in Fig.
1. Accordingly, p1o represents the probability that energy is
lost when propagating between transmitter and receiver!. At
the receiver side, upon reception of an energy-carrying signal
Y, = 1, the energy contained in the signal is harvested. The
harvested energy is temporarily held in a supercapacitor and,
if not used in the current time interval ¢, is stored in a battery,
whose capacity limited to By,,x energy units.

The receiver’s energy utilization is modeled as a stochastic
process Z; € {0,1}, so that Z; = 1 indicates that the receiver
requires one unit of energy at time ¢, while Z; = 0 implies that
no energy is required by the receiver at time . This process
is not known at the transmitter and evolves according to the
Markov chain shown in Fig. 2. The probability that Z; = 0
when in state Uy is referred to as go and the probability that
Z; =1 in state U; is denoted as ¢;.

Due to the finite capacity of the battery, there may be battery
overflows and underflows. An overflow event takes place when
energy is received and stored in the supercapacitor (i.e., Y; =
1), but is not used by the receiver (i.e., Z; = 0) and the battery
is full (i.e., B; = Bpax), so that the energy unit is lost; instead,
an underflow event occurs when energy is required by the
receiver (i.e., Z; = 1) but the supercapacitor and the battery
are empty (i.e., B; = 0 and Y; = 0). In the rest of this section
we define all the parts of the system in Fig. 1 in detail.

A. Transmitter

The transmitter aims at communicating a message M, uni-
formly distributed in the set [1 : 2"R} , reliably to the decoder,
while at the same time guaranteeing desired probabilities of
battery overflow and underflow (see Sec. II-B). Note that n is
the codeword length and R represents the information rate in
bits per channel use, while the constraints on the probabilities
of overflow and underflow represent the requirements on
energy transfer.

The codewords z™(m), with m € [1:2"%], of a type-
i RLL code satisfy run-length constraints on the number of
consecutive symbols i, where ¢ = 0 or ¢ = 12. To elaborate,
let d and k be integers such that 0 < d < k. We say that a
finite length binary sequence x™ (m) satisfies the type-0 (d, k)-
RLL constraint if the following two conditions hold (see Fig.

A more general model would allow also for a non-zero probability po1 of
receiving energy when no energy is transmitted. This could be interpreted as
the probability of harvesting energy from the environment (see [5]). We do
not consider this extension in this work.

2(Classical RLL codes as discussed in, e.g., [7] are type-0, but here we find
it useful to extend the definition to include also type-1 RLL codes.

QOQQ

Fig. 3. The codewords of a type-0 (d, k)-RLL code must be outputs of the
shown finite-state machine.

3): (i) the runs of 0’s have length at most k; and (ii) the runs of
0’s between successive 1’s have length at least d; note that the
first and last runs of O’s are allowed to have lengths smaller
than d.

Therefore, a type-0 (d, k)-RLL code is such that the code-
words include sufficiently long stretches of zero-energy sym-
bols 0, via the selection of d, thus limiting battery overflow, but
not too infrequently, via k, thus partly controlling also battery
underflow. As a result, type-0 (d, k)-RLL codes are suitable
for overflow-limited regimes in which controlling overflow
events is most critical. A type-1 (d, k)-RLL code is defined
in the same way, upon substitution of all “0” for “1” and
vice versa in the definition above, and is hence well suited for
underflow-limited regimes. We focus here on type-0 codes; a
more general treatment can be found in [9].

B. Receiver

The received signal Y™ is used by the decoder both to de-
code the information message M encoded via the constrained
code at the transmitter and to perform energy harvesting. Let
B; denote the number of energy units available in the battery
at time ¢. At the ¢th time period, the decoder first receives
signal Y;, and stores its energy (if ¥Y; = 1) temporarily in
a supercapacitor (see Fig. 1). Then, if Z; = 1, the receiver
attempts to draw one energy unit from the supercapacitor or,
if the latter is empty, from the battery. If the energy in the
supercapacitor is not used, it is stored in the battery in the
next time slot. As a result, the amount of energy in the battery
evolves as

Bi+1 = min (B7r1,ax7 (Bz +Y; - Zi)Jr) ) (D

where (o) = max (0,a).

When the receiver harvests a unit of energy, ¥; = 1, no
energy is used, Z; = 0, and the battery is full, B; = Bz,
we have an overflow event. To keep track of the overflow
events, we define a random process O; such that O; = 1 if the
event {B; = Bz, Y; =1, and Z; = 0} occurs and O; = 0
otherwise. This can be expressed as

O; =1{B; = Bpas,Yi =1 and Z; = 0}. 2)

When the receiver wishes to use a unit of energy, Z; = 1,
and both the supercapacitor and the battery are empty, Y; =
0 and B; = 0, we have an underflow event. To describe
underflow events, we introduce a random process U; such that
U; = 1 if the event {B; =0,Y; =0 and Z; = 1} takes place
and U; = 0 otherwise. This can be expressed as

Ui=1{B;=0,Yi=0and Z; = 1}. 3)
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We define the probability of underflow as Pr{U} =
limsup,, ., £ 3" | E[U;], and the probability of overflow
as Pr{O} = limsup,,_, %Z?:l E[O;]. We note that the
expectation is taken over the distribution of the message M,

of the channel and of the receiver’s energy utilization process
zZm.

C. Performance Criteria and Problem Formulation

The point-to-point link under study will be evaluated in
terms of its performance for both information and energy
transfer. A triple (R, P,¢, P, ) of information-energy require-
ments is said to be achievable by an encoder-decoder pair
if the information transfer at rate R is reliable, i.e., if we
have lim sup,,_, . Pr [M # M| = 0, where M is the decoded
message, and if the energy transfer fulfill the constraints

Pr{O} < P,;, and Pr{U} < P,y. “)

We are interested in investigating the set of achievable triples
(R, P,y, P,s) for different classes of codes, namely uncon-
strained and (d, k)-RLL constrained. To obtain further insight,
in Sec. V, we will consider the problem

minimize max(Pps, Pyy)

subject to (R, P,f, P,y) is achievable, 5)

where R is fixed and the minimization is done over all codes
belonging to a certain class.

III. UNCONSTRAINED CODES

In this section, we study the information-energy transfer
performance of classical unconstrained codes. To this end, we
assume that the codewords ™ (m), m € [1: 2"%], are gener-
ated independently as i.i.d. Bernoulli process with probability
Pr[X = 1] = p, and evaluate the corresponding performance
on average over the code ensemble. The maximum information
rate R achieved by this code is given as

R=1(X;Y) = H(py) -

y
1= pro H(p1o), (6)
where we have defined the probability p, 2 Prly; =
1] = p.(1 — p1o) and the binary entropy function H(a) £
—alogya — (1 —a)logy(1 —a).

We now turn to the evolution of the performance in terms
of energy transfer. In order to simplify the analysis and
obtain some insight, we first assume the special case for then
receiver’s energy utilization model in which the process Z" is
i.i.d. and hence ¢; = 1—qp £ ¢. Note that ¢ is the energy usage
probability, in that we have ¢ = Pr[Z, = 1]. The extension
of the analysis to the Markov model in Fig. 2 follows along
similar lines and is discussed in [9], while related numerical
results are reported in Sec. V. If the process Z" is i.i.d., the
battery state evolves according to the birth-death Markov chain
shown in Fig. 4. Using standard considerations and recalling
(2) and (3), we can then calculate the probability of overflow
and underflow respectively, as

Pr{O} = mp,.py(1—q) = 0(py), (7)
and Pr{U{} = mo(1—py)q= Ulpy), ®)

p,q+d-p)1-q)

q+(1-p,)(1-q) . . . I-q+pq
Qo) () (2 () (=D

(I-py)q (I-pyq (I-pyq

Fig. 4. The birth-death Markov process defining the battery state evolution
along the channel uses with unconstrained (i.i.d.) random codes and i.i.d.
receiver’s energy usage process Z™ (i.e., ¢ = q1 = 1 — qo).

where 7; is the steady-state probability of state i € [0, Byax]
for the Markov chain in Fig. 4. This can be easily calculated
as

Ai
- 9
i 1+ A+ ... + ABmax’ ©)
where A = ’()’filpﬂ)];. The following lemma summarizes our

conclusions so far.

Lemma 1. Given an i.i.d. receiver energy usage process
with energy usage probability q, the information-energy triple
(R, P,¢, Puy) is achievable with unconstrained (i.i.d.) codes

if there exist probability p, € [0,1 — pio)] that satisfy
p
R < Hpy) = 1= —H(pw) (10)
— P10
Pof > O(py)vpuf ZU(py)a (11)

where O(py) and U(p,) are defined in (7) and (8), respec-
tively.

Remark 1. The region (10) is in general not convex, but it can
be convexified if one allows for time sharing between codes
with different values of p,.

In order to get further insight into the performance of
unconstrained codes, we now assume that the channel is
noiseless, i.e., p1op = 0 and, as a result, we have Y; = X;
for all + = 1,...,n and p, = p,. Moreover, the solution of
problem (5) is summarized in the following lemma.

Lemma 2. The optimal solution p, of problem (5) is given

as
g if R<H(q) (12a)
HY(R) ifR>H(q) and q < % (12b)
1-HY(R) if R > H(q) and q > % (12¢)

where H™Y(R) is the inverse of the entropy function
in the interval [0,1/2]. Moreover, the optimal value
max (O (p%), U (pk)) of the problem (5) is given by

(1-9)q

B 41 if R<H(qg) (13a)
OHYR)) if R>H(q) and q < % (13b)
U(1-HY(R)) if R>H(q) and q> % (13¢c)
Proof: Please see [9]. |
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Remark 2. Lemma 2 suggests that, when the rate is sufficiently
small, i.e., when R < H(q), problem (5) is solved by "match-
ing" the code structure to the receiver’s energy utilization
model. This is done, under the given i.i.d. assumption on codes
and receiver’s energy utilization, by setting p; = ¢. Instead,
when the rate constraint is the limiting factor, one is forced to
allow for a mismatch between code properties and receiver’s
energy utilization model (by setting p # ¢). Specifically,
Lemma 2 identifies two regimes, namely the overflow-limited
regime, defined by the condition ¢ < 1/2, and the underflow-
limited regime, where we have ¢ > 1/2. In the former regime,
the rate constraint forces p, to be larger than ¢, and we have
max (O (pz), U(pz)) = O (p.). In contrast, in the underflow-
limited regime, the rate constraint forces p, to be smaller
than ¢, and we have max (O (p,),U (p;)) = U (p,). These
ideas will be useful when interpreting the gains achievable by
constrained codes discussed in Sec. I'V.

IV. CONSTRAINED CODES

In this section, we study the performance of (d,k)-RLL
codes. To this end, as with unconstrained codes, we adopt
a random coding approach. Specifically, we take the code-
words to be generated independently according to a stationary
Markov chain defined on the finite state machine in Fig. 3.
It is known that this choice is optimal in terms of capacity
(see, e.g., [7], [8]). A stationary Markov chain on the graph
of Fig. 3 is defined by the transition probabilities where P =
{Pd;Dd+1, ---s Pk—1} on its edges. We define as C; the state of
the constrained code at time ¢, prior to the transmission of Xj.
Then, the transition probability p; =Pr[C; = j+1|Ci—1 = j],
for j =d, ...,k —1 and ¢ > 1. Barring degenerate choices for
P, it is easy to see that the Markov chain is irreducible, and
hence one can calculate the unique steady-state distribution
m; = Pr[C; = j] for j € [0, k] (see, e.g., [7]).

A. Information Rate

In [11, Lemma 5], it was proved that an achievable rate
R with (d,k)-RLL codes is given as R = I1(Cy;Y2|Cy).
Evaluating this expression for type-0 (d, k)-RLL constrained
codes leads to

R=H(Y>|C:) — H(Y2|C1, C5)
k—1

:ZWJ' {H((1=p;)(1=p10)1—p;)H(p10)} -

i=d

(14)

B. Energy Transfer

To calculate the probabilities of battery underflow and
overflow, namely Pr{l/} and Pr{O}, we focus at first on
the special case in which the energy usage process Z” is
ii.d. with energy usage probability g. We refer to [9] for the
analysis of the extension to the Markov model in Fig. 2 , which
follows along similar lines, and to Sec. V for the corresponding
numerical results.

We use a renewal-reward argument (see, e.g., [10]). We re-
call that a renewal process is a random process of inter-renewal
intervals Iy, Io, ... that are positive i.i.d. random variables. For

our analysis, it is convenient to define the renewal event as
{C; = 0}, so that a renewal takes place every time the state
of the constrained code C; is equal to 0. This is equivalent
to saying that, in the channel use before a renewal event, the
transmitted signal X; equals 1 for type-0 (d, k)-RLL codes.
Based on the above, the renewal intervals I;, for ¢ > 1, are
i.i.d. integer random variables with distribution p; (i) that can
be calculated, given P, as py(i) =0if i <d and i > k+1;
pr(i) = 1—pgifi=d+1 p(i) = 1 —pic) [[_5p if
d+1 < i <k;and p;(i) = H;:dlpl if 1 = k+ 1. Moreover, it
is useful to define a Markov chain B’i that defines the evolution
of the battery as evaluated at the renewal instants (i.e., for
values of i for which C; = 0). We refer to the steady-state
probability of this Markov chain as 7, with b € [0, Biax]-
Finally, we define as Ob the random variable that counts the
number of overflow events in a renewal that starts with a
battery with capacity b € [0, Bmax|, and, similarly, we define
as Ub the random variable that counts the number of underflow
events in a renewal that starts with a battery with capacity
b € [0, Bmax)- R

The transition probabilities for the process B; are reported
in [9], from which the steady state probabilities 7, can be
calculated (see, e.g., [10]). The next proposition summa-
rizes the main result of the analysis. We use the definition
p(niivg) = (1)g"(1 — ¢)'™ with n = 0,...,4, for the
probability distribution of a binomial random variable with
parameters (i, q).

Proposition 1. Given an i.i.d. receiver energy usage process
with energy usage probability q, the information-energy triple
(R, Py, P,s) is achievable with type-0 (d,k)-RLL codes if
there exist transition probabilities P = {pd, Pd+1, ---» Pk—1}
that satisfy

k—1
R <> i{H(A—p)A—p10))—A—p)H(pro}, (15)
j=d

T Bunax B [OB,W}

P,y > 1
of = E[I] ’ ( 6)
B]nax ~
SV AE [Ub}
p. > b=0 1
and P,y > 7] , 17)
where we have defined E[I] = Zf:dlﬂ i-pr(i), along with
) k+1 i—b—1
E[0] = Y pi(0) {(1—pm > p(l+bi—1.q)
i=d+1 =1
i—b
+p10Y_p(l + b, q)} ; (18)
=1
) ket 1
and E|Op,..|= 3 pr@)(1—puo)p(0:ig).  (19)
i=d+1
Proof: Please see [9]. |

Remark 3. The right-hand side of (16) evaluates the prob-
ability of overflow as the ratio of the average numbers of
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Fig. 5. Maximum between probability of underflow P, ; and overflow P, f as
per problem (5) for unconstrained and type-0 constrained codes versus go with
q1 = 0 (see Fig. 2) and R = 0.1. To simplify the numerical optimization,
the curve for £ = 10 has been obtained by optimizing only over po, p1, p2,
p3 and pg in P = {po, p1, ..., po} and setting p3 = p4 = p5 = ... = ps.

overflow events in a renewal interval over the average length
of a renewal interval. The right-hand side of (17) can be
similarly interpreted. Note that, by the given definition of
renewal events, in order to have an overflow, the initial battery
state Bi must be in state B,,.x, Whereas underflow events can
potentially happen for all states b € {0,..., Byax}. This is
reflected by the numerators of (16) and (17).

V. NUMERICAL RESULTS

In this section, we compare the performance of uncon-
strained and constrained codes using problem (5) as the
benchmark. Fig. 5 shows the optimal value of max(P, s, P,f)
for a noiseless channel, i.e., p1g = 0 in Fig. 1, when R = 0.1
and g; = 0 versus o (recall Fig. 2). With ¢; = 0, the energy
usage process Z" is such that a single energy request (i.e.,
Z; = 1) is followed by an average of 1/(1 — qg) instants
where no energy is required (i.e., Z; = 0). Therefore, as qg
increases from 0.1 to 0.9, the average length of an interval
with no energy usage increases from around 1 to 10. Similar
to the discussion in Remark 2 for unconstrained codes, when
neglecting the rate constraint, problem (5) is observed to be
optimized by matching the code structure to the receiver’s
energy utilization model. When ¢ is sufficiently small, this
can be easily accomplished with type-0 (d, k)-RLL codes with
a small k. This is because k defines the maximum possible
number of zero symbols X; sent before a symbol X; = 1.
As qq increases, and hence the average length of the bursts
of zeros grows in the process Z;, the value of k£ must be
correspondingly increased. This is confirmed by Fig. 5, which
shows the significant gain achievable by the use of RLL codes
when properly selecting the code parameters.

The impact of the information rate R is illustrated in Fig. 6
for go = ¢1 = 0 and p;o = 0. Following the discussion above,
when the rate is small, with ¢o = ¢; = 0, it is sufficient to

10
(1,3)-RLL
%—(0,1)-RLL
< 10"}  Unconstrained / -
N
< ! / .
&
[ (0,2)-RLL
g 2
10 ] ]
(0,3)-RLL
-3
10

0 01 02 03 04 05 06 07 08 09
Rate

Fig. 6. Maximum between probability of underflow and overflow as per
problem (5) for unconstrained and type-O constrained codes versus the
information rate R with go = q1 = 0 (see Fig. 2).

choose a type-0 or type-1 (d, k)-RLL code, since this code
matches the statistics of the energy usage process. However,
as the rate grows larger, one needs to increase the value of k,
while keeping d as small as possible [7, Table 3.1].

VI. CONCLUSIONS

We have investigated the use of constrained run-length
limited (RLL) codes with the aim of enhancing the achievable
performance in terms of simultaneous information and energy
transfer. The analysis has demonstrated that constrained codes
enable the transmission strategy to be better adjusted to the
receiver’s energy utilization pattern as compared to classical
unstructured codes. Interesting future work includes the inves-
tigation of non-binary codes and multi-terminal scenarios.
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