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Where Are We Now?

[Neocific]

Evolution to 4G
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Where Are We Now?

[ETSI]

Work in progress on a 5G standard…
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Where Are We Now?

[Qualcomm ‘17]

Work in progress on a 5G standard…
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Where Are We Now?

Work in progress on a 5G standard…
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Where Are We Now?

[Qualcomm ‘17]7



Where Are We Now?
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Where Are We Now?

[Brinton and Chiang ‘17]9



How Did We Get Here?

Quiz: When was the word “bit” invented?
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How Did We Get Here?
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How Did We Get Here?

[B. Rimoldi, Principles of Digital Communications, Cambridge University Press]12
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How Did We Get Here?

• Pre-cellular mobile systems:

• 1948: Mobile Telephone 

Service from Bell Telephone

• Analog voice

• FDMA

• $330 + per-call cost

https://smartphones.gadgethacks.com/news/from-backpack-transceiver-
smartphone-visual-history-mobile-phone-0127134/
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How Did We Get Here?

• Pre-cellular mobile systems: 

• 1956:  Mobile System A (MTA) 

from Ericcson

• Analog voice

• FDMA

• Weighs as much as 300 

iPhones!

https://smartphones.gadgethacks.com/news/from-backpack-transceiver-
smartphone-visual-history-mobile-phone-0127134/

14



How Did We Get Here?

• Pre-cellular mobile systems: 

• 1964:  Improved Mobile 

Telephone Service (IMTS)

• Analog voice

• FDMA

https://smartphones.gadgethacks.com/news/from-backpack-transceiver-
smartphone-visual-history-mobile-phone-0127134/
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How Did We Get Here?

• Enter cellular networks

[Brinton and Chiang ‘17]16



How Did We Get Here?

[Qualcomm ‘17]17



What Is This Course About?
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What Is This Course About?

[Rodriguez and Guillemin ‘17]
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[MathWorks]

What Is This Course About?

20



What Is This Course About?

• Overview

• 1. One-shot digital communications: Fundamentals

• 2. One-shot digital communications: Passband Systems

• 3. Stream digital communications

Main reference

- J. Cioffi, Lecture notes, Stanford Univ., Chapters 1, 2, 3

Additional reference

- B. Rimoldi, Principles of Digital Communications, Cambridge 

University Press 21

http://web.stanford.edu/group/cioffi/


Expectations of inclusive behaviour

The Department of Informatics is committed to providing an inclusive learning and 

working environment.

Staff and students are expected to behave respectfully to one another – during lectures, 

outside of lectures and when communicating online or through email. 

We won’t tolerate inappropriate or demeaning comments related to gender, gender 

identity and expression, sexual orientation, disability, physical appearance, race, religion, 

age, or any other personal characteristic.

If you witness or experience any behaviour you are concerned about, please speak to 

someone about it. This could be one of your lecturers, your personal tutor, a programme 

administrator, the Informatics equality & diversity lead (Elizabeth Black), or any other 

member of staff you feel comfortable talking to.

The College also has a range of different support and reporting procedures that you might 

find helpful: kcl.ac.uk/harassment

kcl.ac.uk/harassment
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What Is This Course About?

• Overview

• 1. One-shot digital communications: Fundamentals

• 2. One-shot digital communications: Passband Systems

• 3. Stream digital communications

Main reference

- J. Cioffi, Lecture notes, Stanford Univ., Chapters 1, 2, 3

Additional reference

- B. Rimoldi, Principles of Digital Communications, Cambridge 

University Press 3

http://web.stanford.edu/group/cioffi/


What Is One-Shot Digital Digital Communication? 

• The transmitter (TX) selects one 

message from a finite set (e.g., a 

bit string) and sends a 

corresponding signal (or 

“waveform”) through the 

communication channel via 

coding and modulation.

• The receiver (RX) decides the 

message sent by observing the 

channel output via 

demodulation and decoding.

• Optimum detection minimizes 

the probability of an erroneous 

receiver decision.
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What Does the Transmitter Do? 

• Encoder: Message m ∈ {0, … ,𝑀 = 2𝑏 − 1} (b bits) → symbol (real 
vector) 𝒙𝑚 in the signal space 

• Modulator: Symbol 𝒙𝑚 → transmitted waveform (analog and 
continuous-time) 𝑥𝑚(𝑡) of duration T seconds and bandwidth B Hz

m
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What Does the Transmitter Do? 

• Symbol rate: 1/T messages per second

• Number of bits per symbol: 𝑏 = log𝟐𝑀

• Data rate: R = b/T bits per second

m

𝒙𝑚 N-dim.
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• A  modulator uses a bandwidth B to encode R bit/s 

• Spectral efficiency

𝜂 =
𝑅

𝐵
(bit/s/Hz)

• Ex.: If R=10 Mb/s and B=10 MHz, the spectral efficiency is 𝜂 = 1.

• The spectral efficiency ranges from values smaller than 1 (wireless 

channels with low SNR) to values larger than 10 (e.g., wireless 

broadcasting).

What Does the Transmitter Do? 
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What Is the Channel?

8

• Adds noise due to interference and receiver circuitry.

• Attenuates the signal.



What Is the Channel?

http://www.wica.intec.ugent.be/research/propagation/physical-radio-channel-models
9

• Adds noise due to interference and receiver circuitry.

• Attenuates the signal.

• Distorts the signal due to multiple propagation paths.



What Is the Channel?

• Frequency selectivity: Non-uniform frequency response

• Time selectivity: Time-variability
10



What Does the Receiver Do? 

• Demodulator: Channel output waveform (analog and continuous-
time) y(t) → channel output vector y in the signal space

• Decoder: Channel output vector y → estimate ෝ𝑚 of the message m (b 
bits)

m

𝒙𝑚 N-dim.
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How Much Power to Transmit? 

• A basic question in the design of transmitter and receiver is: how much 

power should the transmitter use in order to ensure a given reliability 

(probability of correct detection)?

• This is known as link budget.

• The starting point is that the receiver needs to be guaranteed a certain 

signal-t0-noise ratio (SNR)

SNR = 
received power (mW)

noise power (mW)
=

𝑃𝑟 (mW)

σ2 (mW)

despite the attenuation caused by the channel. 

12



• If the channel gain is L ≤ 1, then the received power is

𝑃𝑟 = 𝐿 × 𝑃𝑥

where 𝑃𝑥 is the transmitted power.

• Therefore, the required transmitted power is given as 

SNR =
𝑃𝑟

σ2
=

𝐿 ×𝑃𝑥

σ2

 𝑃𝑥 = σ2
SNR

𝐿

How Much Power to Transmit? 
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How Much Power to Transmit? 

• Ex.:  If SNR = 100, L=10−8, and σ2 = 10−11 mW, then the required 

power is 

𝑃𝑥 = 10−11 × 100 × 108 = 0.1 mW 

• These are realistic values and demonstrate the need to deal with large 

numbers (e.g., 108) and very small numbers (e.g., 10−11).

• To this end, communication engineers work with decibel (dB) measures.

14



How Much Power to Transmit? 

• The decibel (symbol: dB) is a unit of measurement used to express a ratio of 

powers on a logarithmic scale: 

power ratio (dB) = 10 log10(power ratio)

15



• Link budget calculations can be carried out fully in the logarithmic scale. 

• Key properties: log 𝑎 × 𝑏 = log 𝑎 +log 𝑏

log 𝑎/𝑏 = log 𝑎 -log 𝑏

(note that log 𝑏𝑐 =clog 𝑏 and hence the second property follows from the   

first)

16

How Much Power to Transmit? 



• Link budget calculations can be carried out fully in the logarithmic scale. 

• Key properties: log 𝑎 × 𝑏 = log 𝑎 +log 𝑏

log 𝑎/𝑏 = log 𝑎 -log 𝑏

(note that log 𝑏𝑐 =clog 𝑏 and hence the second property follows from the   

first)

• To this end, powers are measured in dBm: 

Power (dBm) = 10 log10(
power (mW)

1mW
)

and we have 

17

How Much Power to Transmit? 

𝑃𝑥 dBm = σ2 dBm + SNR 𝑑𝐵 − 𝐿 (𝑑𝐵)



• Ex.: For the same example above, working in the logarithmic scale, 

we have:

• If SNR = 100 = 20 dB, 

L =10−8 = −80 dB, 

and σ2 = 10−11 mW = -110 dBm, then the required power is 

18

How Much Power to Transmit? 

𝑃𝑥 dBm = σ2 dBm + SNR 𝑑𝐵 − 𝐿 (𝑑𝐵)
= -110 + 20 + 80 = -10 dBm



• In wireless channels, the attenuation is given as a function of the 

distance d (m) between transmitter and receiver as

𝐿 dB = 𝐿1 dB − 𝛾 10 log10(𝑑)

where 𝐿1 is the attenuation at 1 m and 𝛾 is the path loss exponent     

(between 2 and 5 depending on the environment).             

19
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• In wireless channels, the attenuation is given as a function of the 

distance d (m) between transmitter and receiver as

𝐿 dB = 𝐿1 dB − 𝛾 10 log10(𝑑)

where 𝐿1 is the attenuation at 1 m and 𝛾 is the path loss exponent     

(between 2 and 5 depending on the environment).             

• In wired channels, e.g., fiber optics cables, the attenuation can be 

typically written as                    

𝐿 dB = 𝐿0
𝑑𝐵

𝑘𝑚
× 𝑑

where L0 is the attenuation in dB per km (e.g., -0.1 dB/km for fiber).
20
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• Ex.: Indoor WLAN (e.g., Wi-Fi)

Assuming 𝛾=2 and 𝐿1=-50 dB, and σ2 = −110 dBm, what is the

maximum distance at which can we ensure an SNR of 10 dB if the 

transmitted power is 0 dBm?

21
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• Ex.: Indoor WLAN (e.g., Wi-Fi)

Assuming 𝛾=2 and 𝐿1=-50 dB, and σ2 = −110 dBm, what is the

maximum distance at which can we ensure an SNR of 10 dB if the 

transmitted power is 0 dBm?

In order to ensure SNR = 10 dB,  the channel gain must be at least

and hence the maximum distance satisfies -50 - 20 log10(𝑑)=-100

log10(𝑑) = 50/20=2.5    𝑑 = 102.5 = 316 m
22

How Much Power to Transmit? 

𝑃𝑥 dBm = σ2 dBm + SNR 𝑑𝐵 − 𝐿 𝑑𝐵
0  = -110 + 10 −𝐿 𝑑𝐵
 𝐿 𝑑𝐵 = -100 dB



• Ex.: Fiber optics cable

Assuming 𝐿0=-1.5 dB/km, and σ2 = −110 dBm, what is the

maximum distance at which can we ensure an SNR of 10 dB if the 

transmitted power is 0 dBm?

In order to ensure SNR = 10 dB,  the channel gain must be at least 

𝐿 𝑑𝐵 = -100 dB, and hence the minimum distance is

 𝑑 = 100/1.5=67 km

23

How Much Power to Transmit? 

-1.5d = -100
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How to Encode and Decode Information?

m
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• Why is the performance dependent on the SNR? 

• How much information can be transferred for a given SNR?

• How is the information encoded and decoded?



How to Encode?

• Encoder:

message m ∈ {0, … ,𝑀 − 1} → symbol (real vector) 𝒙𝑚 =

𝑥𝑚,1

𝑥𝑚,2

⋮
𝑥𝑚,𝑁

• The signal space is R𝑁

• The set of all symbols 𝒙𝑚, m=1,…,M, is the signal constellation

• We expect that a constellation with symbols that are further apart will lead 

to a smaller probability of error.

25



How to Encode?

M=2 (b=1)
Binary Phase Shift Keying (BPSK)

Examples: N=1

M=4 (b=2)
4-Pulse Amplitude Modulation (PAM)

x0=-1 x1=1 x0=-3 x1=-1 x2=1 x3=3

m=0 m=1 m=0 (00) m=2 (10)m=1 (01) m=3 (11)

26



How to Encode?

https://en.wikipedia.org/wiki/Constellation_diagram

M=8 (b=3)
8-Phase Shift Keying (PSK)

Examples: N=2

M=16 (b=4)
16-Quadrature Amplitude Modulation (QAM)

27



How to Encode?

Examples: N=2

M=64 (b=6)
64-QAM

M=256 (b=8)
256-QAM

28



How to Encode?

• Average energy of a constellation: If each message m is selected with 

probability 𝑝𝑚, the average energy of a constellation {𝒙𝑚} is defined as

where

is the energy of the mth symbol

• Average power:

29



How to Encode?

• When M=2 (or b=1), the energy per bit is 

Eb=Ex

• More generally, we have

Ex=bEb

• Eb is an important metric, since it relates cost (energy) to performance (bit 

rate).

• Note: Ex  is also often referred to as the symbol energy (and denoted as Es).

30



What Happens When the Energy Increases/ Decreases?

• Quiz: BPSK energy

31

If N=1, M=2, the symbols are equally likely and the average 
energy is Eb<1, what are valid constellations?

A) -1,+1

B) - Eb, + Eb

C) 0, + 2Eb
D) −2 Eb, +2 Eb,



What Happens When the Energy Increases/ Decreases?

• Quiz: BPSK energy

32

Considering that the distance between constellation points determines 
the probability of error, which constellation would you choose?

A) - Eb, + Eb,

B) 0,+ 2Eb



What Happens When the Energy Increases/ Decreases?

• If all symbols have the same probability, we have the condition

1

𝑀


𝑚=0

𝑀−1

𝒙𝑚
2 = 𝑏𝐸𝑏

• Examples:

x0=- 𝐸𝑏 x1= 𝐸𝑏

x0=-3
2

5
𝐸𝑏 x1=-

2

5
𝐸𝑏 x2=

2

5
𝐸𝑏 x3=3

2

5
𝐸𝑏

BPSK

4-PAM

8-PSK

33
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What Does the Transmitter Do? 
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• Encoder: Message m ∈ {0, … ,𝑀 = 2𝑏 − 1} (b bits) → symbol (real 
vector) 𝒙𝑚 in the signal space 

• Modulator: Symbol 𝒙𝑚 → transmitted waveform (analog and 
continuous-time) 𝑥𝑚(𝑡) of duration T seconds and bandwidth B Hz



Why Modulation?

• To adapt transmitted signals to the channel

• Note that the probability of error depends on the distance between 

symbols in the constellation after the distortion caused by the channel 

(to be discussed).

35



How Does the Modulation Adapt to the Channel? 

Example:

• Channel frequency response: passband in the interval 100 Hz 

and 200 Hz  with 150 Hz having the largest gain

• b=1, or equivalently M=2 (binary transmission)

• Encoder: 0 → 𝑥0 = −1 and 1 → 𝑥1 = 1

• Modulator: 𝑥0 → 𝑥0 𝑡 = −1 and 𝑥1 → 𝑥1 𝑡 = 1 for all t

• Quiz: Is this a good choice for the modulator? 

H(f)

100    150    200       f [Hz]
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How Does the Modulation Adapt to the Channel? 

Example:

• Channel frequency response: passband in the interval 100 Hz 

and 200 Hz  with 150 Hz having the largest gain

• Quiz: Which waveforms are suitable to be chosen by the 

modulator for this channel?

A) x0(t)=-cos(2*pi*t) and x1(t)=cos(2*pi*t)

B) x0(t)=-cos(300*pi*t) and x1 (t)=cos(300*pi*t)

C) x0(t)=-cos(100*pi*t) and x1 (t)=cos(100*pi*t)

D) x0(t)=-cos(240*pi*t) and x1 (t)=cos(240*pi*t)

H(f)

100    150    200       f [Hz]

37



How to Modulate?

• Modulator: 

symbol 𝒙𝑚 → (analog and continuous-time) waveform 𝑥𝑚(𝑡) of 

duration T seconds (symbol period)

• The corresponding set of modulated waveforms {𝑥𝑚(𝑡)}, 𝑚 = 0,… ,𝑀 −

1, is a signal set.

• To map symbol to waveform, 

we need to associate each axis 

of the signal space RN with a basis

function in a set of orthonormal 

basis functions.

38



Some Math

• Inner product or correlation:

- between real vectors

- between real functions

39



Some Math

• Squared Euclidean norm or energy:

- for a real vector

- for a real function

40



Some Math

• Orthogonality:

- for real vectors: vectors v and u are orthogonal if

- for real functions: functions v(t) and u(t) are orthogonal if

41



How to Modulate?

Preliminaries:

• In RN the vectors defining the coordinate axes are em, m=1,…N. 

• em contains all zeros except for a 1 in the mth position, i.e., em,m=1 
and em,n=1 for m different from n. 

42

e1

e2 

e3 



How to Modulate?

Preliminaries:

• These vectors constitute an orthonormal basis:

43

e1  

e2 

e3 



How to Modulate?

Preliminaries:

• In RN we can write 

• Ex.:

44

e1

e2 

e3 



• A set of N function {𝜑𝑚(𝑡)}, m = 1,… ,𝑁 is an N-dimensional 
orthonormal basis (and the functions are orthonormal basis 
functions) if it satisfies the conditions

How to Modulate?

45



How to Modulate?

• Quiz: Which ones of the sets below is an orthonormal basis? 

46



How to Modulate?

47

• General block diagram of a modulator:

xm,1

xm,2

xm,3

xm(t)



How to Modulate?

x0=-1 x1=1

m=0 m=1

• Example: N=1
𝜑1 𝑡

Constellation (Eb=1)

normalized basis function

48

1/ 𝑇

−1/ 𝑇



How to Modulate?

x0=-1 x1=1

m=0 m=1

• Example: N=1
𝜑1 𝑡

signal set

49

1/ 𝑇

−1/ 𝑇

−1/ 𝑇

1/ 𝑇



How to Modulate?

• Example: N=2

constellation (Eb=1)

orthonormal basis functions

1-1

-1

1

50

2/𝑇

2/𝑇

−1/ 2

1/ 2

1/ 2

−1/ 2

0

0



How to Modulate?

• Example: N=2

signal set

-1

51

2/𝑇

− 2/𝑇

− 2/𝑇

2/𝑇

−1/ 2

1/ 2

-1/ 2
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1/ 𝑇

−1/ 𝑇



How to Modulate?

• Example: N=2

signal set

-1

52

2/𝑇

− 2/𝑇

− 2/𝑇

2/𝑇

−1/ 2

1/ 2

1/ 2

1/ 𝑇
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1/ 𝑇
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1/ 𝑇
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1/ 𝑇

−1/ 𝑇

Note that the same signal set can be obtained from different pairs of
constellation and orthonormal basis



How to Modulate?

1-1

-1

1

orthonormal basis functions

• Example: N=2

53

−1/ 2

1/ 2

1/ 2

−1/ 2

constellation (Eb=1)



How to Modulate?

1-1

-1

1

signal set

• Example: N=2
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Some Math

• Invariance of the inner product:

55

Correlation in signal space = correlation between modulated signals



Is the Energy Modified by Modulation?

• Energy of the mth constellation point: 𝐸𝑥 = ||𝒙𝑚||
2

• Modulation does not change the energy:

56



How to Modulate?

• The signals in the previous examples do not have good spectral 

properties for typical band-limited channels.

• Bandlimited channel: Channel that passes only a limited range of 

frequencies

• In fact, consider 

𝜑1 𝑡 =
1

𝑇
rect

𝑡

𝑇

The Fourier transform is 𝑇sinc 𝑓𝑇 , which has an infinite bandwidth.

57

1
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Background: Fourier Transform

𝑥 𝑡 = න
−∞

+∞

𝑋(𝑓) 𝑒𝑗 2𝜋𝑓𝑡𝑑𝑓

|𝑋(𝑓)|

𝑓

• The Fourier transform represents any (energy-limited) signal as the 
sum of an infinite sum of complex sinusoidal signals

with different amplitudes and phases 

𝑒𝑗 2𝜋 𝑓𝑡 = cos 2𝜋𝑓𝑡 + 𝑗 sin 2𝜋𝑓𝑡

arg(𝑋(𝑓))

𝑓
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Background: Fourier Transform

• We will be mostly interested in the energy spectrum 𝐺x 𝑓 = 𝑋 𝑓 2, 
which describes how the energy of a signal is distributed in the 
frequency domain.

• Rayleigh theorem

𝐸𝑥 = ∞−
+∞

𝑥 𝑡 2 𝑑𝑡 ∞−=
+∞

𝐺x 𝑓 𝑑𝑓

• Computation of the Fourier transform

𝑋 𝑓 = ∞−
+∞

𝑥(𝑡) 𝑒−𝑗 2𝜋𝑓𝑡𝑑𝑡 = ℱ 𝑥 𝑡

• The Fourier transform of non-energy limited signals can also be 
defined by using the impulse function.
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Background: Fourier Transform

60

• Example:

𝑥 𝑡 = 𝑒𝑗 2𝜋𝑓𝑐𝑡+𝜃

𝑋(𝑓)
𝑋 𝑓 = 𝑒𝑗𝜃𝛿 𝑓 − 𝑓𝑐

𝑡0

𝛿(𝑡 − 𝑡0 )
𝛿 𝑡 − 𝑡0 = 0 for all t ≠ 𝑡0

න
−∞

+∞

𝑓(𝑡) 𝛿 𝑡 − 𝑡0 𝑑𝑡 = 𝑓(𝑡0 )

Recall: Impulse function

(sifting property)

𝑒𝑗𝜃

(check by substituting in 𝑥 𝑡 =

∞−
+∞

𝑋(𝑓) 𝑒𝑗 2𝜋𝑓𝑡𝑑𝑓 and using the 

sifting property)



• Example:

Background: Fourier Transform

𝑥 𝑡 = cos 2𝜋𝑓𝑐𝑡 + 𝜃 = 
1

2
𝑒𝑗 2𝜋𝑓𝑐𝑡+𝜃 +

1

2
𝑒−𝑗 2𝜋𝑓𝑐𝑡+𝜃

1

2
𝑒−𝑗𝜃

−𝑓𝑐 𝑓𝑐

𝑋(𝑓) 1

2
𝑒𝑗𝜃

𝑋 𝑓 =
1

2
𝑒𝑗𝜃𝛿 𝑓 − 𝑓𝑐 +

1

2
𝑒−𝑗𝜃𝛿 𝑓 + 𝑓𝑐
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Note that 

sin 2𝜋𝑓𝑐𝑡 = cos 2𝜋𝑓𝑐𝑡 −
𝜋

2



• Example:

𝑥 𝑡 = rect
𝑡

𝑇

𝑋(𝑓) = න
−𝑇/2

𝑇/2

𝑒−𝑗 2𝜋𝑓𝑡𝑑𝑡 = 𝑇 sinc(𝑓 𝑇)

Background: Fourier Transform

1

𝑇/2
𝑡

𝑥 𝑡

𝑓1

𝑇𝑃

2

𝑇𝑃

3

𝑇𝑃
−
3

𝑇𝑃
−

2

𝑇𝑃
−

1

𝑇𝑃

𝑇2
𝐺𝑥(𝑓) = 𝑇2(sinc 𝑓𝑇 )2
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−𝑇/2



Background: Fourier Transform

[Banelli et al ‘14]

• The energy spectrum is typically measured in dB/Hz:

Gx(f)|dB = 10log10Gx(f)
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• Example:

Background: Fourier Transform

𝑥 𝑡 = sinc 𝐴𝑡

𝑋 𝑓 =
1

𝐴
rect

𝑓

𝐴

𝑥(𝑡)

−
3

𝐴
−
2

𝐴
−
1

𝐴

1

𝐴

2

𝐴

3

𝐴

𝑋(𝑓)

𝑓

−
𝐴

2

𝐴

2

64• Mnemonic trick: Energy of a sinc = squared value at peak × time of first zero

1

1

𝐴



Properties:

1) Hermitian symmetry: If 𝑥(𝑡) is real

𝑋(𝑓) = 𝑋∗(−𝑓) or equivalently:

ቊ
𝑋(𝑓) = 𝑋(−𝑓)

arg 𝑋(𝑓) = −arg(𝑋(−𝑓))

Ex.: Rectangular function, sinc

Background: Fourier Transform

Hermitian symmetry
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Background: Fourier Transform

2) Frequency translation:

ℱ 𝑥 𝑡 𝑒𝑗 2𝜋𝑓𝑐𝑡 = 𝑋(𝑓 − 𝑓𝑐)

2’) Corollary: ℱ 𝑥 𝑡 cos(2𝜋𝑓𝑐𝑡) =
1

2
(𝑋 𝑓 − 𝑓𝑐 + 𝑋 𝑓 + 𝑓𝑐 )

Proof (corollary): cos(2𝜋𝑓𝑐𝑡)=
1

2
(𝑒𝑗 2𝜋𝑓𝑐𝑡 + 𝑒−𝑗 2𝜋𝑓𝑐𝑡)
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Background: Fourier Transform

𝑥 𝑡 = sinc(𝑡)

𝑥 𝑡

𝑡

1 2 3−3 − 2 − 1

𝑡

1

−1−2−3 321

𝑥 𝑡 cos 2𝜋𝑓𝑐𝑡
1

Example:
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Background: Fourier Transform

−
1

2

𝑓1

2

0

1

𝑓𝑐 −
1

2
𝑓𝑐 +

1

2

𝑓𝑐
𝑓

1

ℱ 𝑥 𝑡 𝑒𝑗 2𝜋𝑓𝑐𝑡

ℱ 𝑥 𝑡

ℱ 𝑥 𝑡 cos(2𝜋𝑓𝑐𝑡)

𝑓𝑐 −
1

2
𝑓𝑐 +

1

2

𝑓𝑐
𝑓

1/21/2

−𝑓𝑐 −
1

2
−𝑓𝑐 +

1

2

−𝑓𝑐
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How to Modulate?

• We now provide examples of practically used waveforms over 
bandlimited channels.

• Baseband signals with N=1:

𝜑1 𝑡 =
1

𝑇
sinc

𝑡

𝑇

Bandwidth limited to B=1/(2T).

69

B=
1

2𝑇
-
1

2𝑇

𝐺𝜑1(f)

f

𝑇



How to Modulate?

• We now provide examples of practically used waveforms over 
bandlimited channels.

• Passband signals with 𝑁 = 1 and carrier frequency 𝑓𝑐 ≫
1

𝑇
:

𝜑1 𝑡 =
2

𝑇
sinc

𝑡

𝑇
cos 2𝜋𝑓𝑐𝑡

Bandwidth limited to B=1/T around carrier frequency fc.
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𝑓𝑐 −
1

2𝑇
𝑓𝑐 +

1

2𝑇

𝑓𝑐
𝑓

𝑇/2𝑇/2

−𝑓𝑐 −
1

2𝑇
−𝑓𝑐 +

1

2𝑇

−𝑓𝑐

𝐺𝜑1(f)



• Passband signals with N=2 and carrier frequency 𝑓𝑐 ≫
1

𝑇

𝜑1 𝑡 =
2

𝑇
sinc

𝑡

𝑇
cos 2𝜋𝑓𝑐𝑡

𝜑2 𝑡 =
2

𝑇
sinc

𝑡

𝑇
sin 2𝜋𝑓𝑐𝑡

Bandwidth limited to B=1/T around carrier frequency fc.

How to Modulate?

71
𝑓𝑐 −

1

2𝑇
𝑓𝑐 +

1

2𝑇

𝑓𝑐
𝑓

𝑇/2𝑇/2

−𝑓𝑐 −
1

2𝑇
−𝑓𝑐 +

1

2𝑇

−𝑓𝑐

𝐺𝜑1(f)=𝐺𝜑2(f)



• Passband signals with N=2 and carrier frequency 𝑓𝑐 ≫
1

𝑇

𝜑1 𝑡 =
2

𝑇
sinc

𝑡

𝑇
cos 2𝜋𝑓𝑐𝑡

𝜑2 𝑡 =
2

𝑇
sinc

𝑡

𝑇
sin 2𝜋𝑓𝑐𝑡

Bandwidth limited to B=1/T around carrier frequency fc.

How to Modulate?

72
𝑓𝑐 −

1

2𝑇
𝑓𝑐 +

1

2𝑇

𝑓𝑐
𝑓

1/2𝑇1/2𝑇

−𝑓𝑐 −
1

2𝑇
−𝑓𝑐 +

1

2𝑇

−𝑓𝑐

𝐺𝜑1(f)=𝐺𝜑2(f)

Note: The cos and sin carriers are orthogonal and said to be in 
quadrature. More generally, we can choose any two carriers whose 
phases differ by 𝜋/2. 



How to Modulate?

• Passband waveforms with any N: 

Orthogonal Frequency Division Multiplexing (OFDM), used in 4G, Wi-Fi,…

𝜑𝑚 𝑡 =
2

𝑇
rect

𝑡

𝑇
cos 2𝜋(𝑓𝑐 +

𝑚−1

𝑇
−

𝑁

4𝑇
)𝑡 form=1,…,N/2 and

𝜑𝑚 𝑡 =
2

𝑇
rect

𝑡

𝑇
sin 2𝜋(𝑓𝑐 +

𝑚−(
𝑁

2
+1)

𝑇
−

𝑁

4𝑇
)𝑡 form=N/2+1,…,N
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How to Modulate?

• Passband waveforms with any N: 

Orthogonal Frequency Division Multiplexing (OFDM), used in 4G, Wi-Fi,…

𝜑𝑚 𝑡 =
2

𝑇
rect

𝑡

𝑇
cos 2𝜋(𝑓𝑐 +

𝑚−1

𝑇
−

𝑁

4𝑇
)𝑡 form=1,…,N/2 and

𝜑𝑚 𝑡 =
2

𝑇
rect

𝑡

𝑇
sin 2𝜋(𝑓𝑐 +

𝑚−(
𝑁

2
+1)

𝑇
−

𝑁

4𝑇
)𝑡 form=N/2+1,…,N

f

1

𝑇

𝐵 ≈
𝑁

2𝑇

74𝑓𝑐-
𝑁

4𝑇
𝑓𝑐-

𝑁

4𝑇
+

3

𝑇𝑓𝑐



How to Modulate?

f

1

𝑇

Remark: OFDM also includes a cyclic prefix that allows it to simplify the 
operation over frequency selective channels 

75

Note: Carriers spaced by 1/T in the frequency domain are orthogonal.

• Passband waveforms with any N: 

Orthogonal Frequency Division Multiplexing (OFDM), used in 4G, Wi-Fi,…

𝜑𝑚 𝑡 =
2

𝑇
rect

𝑡

𝑇
cos 2𝜋(𝑓𝑐 +

𝑚−1

𝑇
−

𝑁

4𝑇
)𝑡 form=1,…,N/2 and

𝜑𝑚 𝑡 =
2

𝑇
rect

𝑡

𝑇
sin 2𝜋(𝑓𝑐 +

𝑚−(
𝑁

2
+1)

𝑇
−

𝑁

4𝑇
)𝑡 form=N/2+1,…,N



How to Modulate?

• Passband waveforms with any N: 

filtered-OFDM (f-OFDM), candidate waveform for 5G

𝜑𝑚 𝑡 = 𝜑𝑚
OFDM 𝑡 ∗ ℎ(t)

http://www.sharetechnote.com/html/5G/5G_Phy_Candidate_fOFDM.html
76



How to Modulate?

• It can be proven that the maximum number of orthogonal dimensions 

that can be accommodated in a bandwidth B over a time T is 

N=2BT

• It follows that, except for φ1 𝑡 =
2

T
sinc

t

T
cos 2πfct (N=1), the 

presented orthonormal basis functions use the available bandwidth and 

time in the most efficient way.

• In practice, it is generally preferable to choose orthonormal basis 

functions with N<2BT that are easier to realize (the sharp spectral 

transitions of the sinc can only be approximated.)
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How to Modulate?

• Quiz:

Which of the following functions are suitable for transmission on a  

passband channel that has a bandwidth of 1 MHz around a center 

frequency of 1 GHz?
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• Recall that the spectral efficiency is defined as

𝜂 =
𝑅

𝐵
(bit/s/Hz)

• Ex.: The modulator uses the waveform 𝜑1(𝑡)=1/√𝑇 sinc(𝑡/𝑇) with a 

bandwidth of 1 MHz and the encoder uses either BPSK or 4-PAM. 

What is the spectral efficiency?

How Effectively Is Bandwidth Used by a Transmitter?

79



• Recall that the spectral efficiency is defined as

𝜂 =
𝑅

𝐵
(bit/s/Hz)

• Ex.: The modulator uses the waveform 𝜑1(𝑡)=1/√𝑇 sinc(𝑡/𝑇) with a 

bandwidth of 1 MHz and the encoder uses either BPSK or 4-PAM. 

What is the spectral efficiency?

• We have

𝜂 =
𝑅

𝐵
=

𝑏/𝑇

1/2𝑇
= 2𝑏

and hence 𝜂 = 2 for BPSK and 𝜂 = 4 for 4-PAM with this choice of 

waveform. 

How Effectively Is Bandwidth Used by a Transmitter?
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How Long Does It Take to Transmit a File?

• Ex.: Assume that we would like to transmit a file of size 2 Gbits. The 

modulator uses the baseband waveform 𝜑1 𝑡 =
1

𝑇
sinc

𝑡

𝑇
with a 

bandwidth of 1 MHz and the encoder uses either BPSK or 4-PAM. How 

long does it take to complete transmission of the file (assuming that 

there are no errors)?
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How Long Does It Take to Transmit a File?

• Ex.: Assume that we would like to transmit a file of size 2 Gbits. The 

modulator uses the baseband waveform 𝜑1 𝑡 =
1

𝑇
sinc

𝑡

𝑇
with a 

bandwidth of 1 MHz and the encoder uses either BPSK or 4-PAM. How 

long does it take to complete transmission of the file (assuming that 

there are no errors)?

The symbol period is T = 1/(2B) =0.5 × 10-6 s. The time need to 

download the file is  given as 

file size

𝑅
=

2×109

𝑏/𝑇
= 

103

𝑏

Hence, it takes 1000 seconds to download with BSK and 500 seconds 

with 4- PAM.
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How Long Does It Take to Transmit a File?

• Ex.: Assume that we would like to transmit a file of size 2 Gbits. The 

modulator uses the passband waveform 𝜑1 𝑡 =
2

𝑇
sinc

𝑡

𝑇
cos 2𝜋𝑓𝑐𝑡

with a bandwidth of 1 MHz and the encoder uses either BPSK or 4-

PAM. How long does it take to complete transmission of the file 

(assuming that there are no errors)?
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How Long Does It Take to Transmit a File?

• Ex.: Assume that we would like to transmit a file of size 2 Gbits. The 

modulator uses the passband waveform 𝜑1 𝑡 =
2

𝑇
sinc

𝑡

𝑇
cos 2𝜋𝑓𝑐𝑡

with a bandwidth of 1 MHz and the encoder uses either BPSK or 4-

PAM. How long does it take to complete transmission of the file 

(assuming that there are no errors)?

The symbol period is T = 1/B = 10-6 s. The time need to download 

the file is  given as 

file size

𝑅
=

2×109

𝑏/𝑇
= 

2×103

𝑏

Hence, it takes 2000 seconds to download with BSK and 1000 seconds 

with 4- PAM.
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What Does the Receiver Do? 

• Demodulator: (continuous-time analog) channel output signal y(t) →
channel output vector y in the signal space

• Detector: channel output vector y → estimate ෝ𝑚 of the message m
85

m

𝒙𝑚 N-dim.
vector

𝑥𝑚(𝑡)

Modulator

Encoder

Channel

T
ra

n
sm

it
te

r

Demodulator

R
eceiv

er

Decoder

message ෝ𝑚

waveform

𝒚

𝑦(𝑡)



What Does the Receiver Do? 

• Useful observations:

1) vector projection: for a vector 

the nth component can be obtained via correlation with the basis vector
en (projection of x into en)
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What Does the Receiver Do? 

• Useful observations:

1) vector projection: for a vector 

the nth component can be obtained via correlation with the basis vector
en (projection of x into en)

2) modulating en yields 𝜑𝑛(𝑡)

3) invariance of inner product: correlation is equal in the signal 
space and on the modulated signals

87



How Can the Message Be Recovered Without Noise?

• Assume that the received signal y(t) is noiseless and hence

• Therefore, recovering each constellation coordinate 𝑥𝑛 is equivalent to 

projecting y(t) into 𝜑𝑛(𝑡)



How Can the Message Be Recovered Without Noise?

• Assume that the received signal y(t) is noiseless and hence

• The demodulator can recover the symbol x as follows:

correlative demodulator 89



How Can the Message Be Recovered Without Noise?

• Proof:

90



How Can the Message Be Recovered Without Noise?
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How Can the Message Be Recovered Without Noise?
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How Can the Message Be Recovered Without Noise?
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How Can the Message Be Recovered Without Noise?
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Filters (Linear Time Invariant Systems)

Filter
(ℎ(𝑡), 𝐻(𝑓))

input signal 
𝑥(𝑡)

impulse 
response

frequency  
response

: 𝐻 𝑓 = ℱ{ℎ 𝑡 }

output signal 
𝑦(𝑡)
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Filters (Linear Time Invariant Systems)

𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ 𝑡 = න
−∞

+∞

𝑥 𝜆 ℎ 𝑡 − 𝜆 𝑑𝜆

= න
−∞

+∞

ℎ 𝜆 𝑥 𝑡 − 𝜆 𝑑𝜆

= ℎ 𝑡 ∗ 𝑥(𝑡)

• In time domain: 

convolution

• In frequency domain

𝑌 𝑓 = 𝐻 𝑓 𝑋 𝑓

and hence

𝐺𝑦 𝑓 = 𝐻 𝑓 2𝐺𝑥 (𝑓)

output energy 
spectral density

input energy 
spectral density 96



Filters (Linear Time Invariant Systems)

a) ℎ 𝑡 = 𝛿 𝑡 𝐻 𝑓 = 1 𝑌 𝑓 = 𝑋(𝑓)

𝑦 𝑡 = 𝑥(𝑡)

b)

Examples:

and 𝑦 𝑡 = 2 sinc(2𝑡)

𝑥 𝑡 = 4 sinc(4𝑡)

𝑌 𝑓 = 𝐻 𝑓 𝑋(𝑓)

(low-pass filter)

𝐻 𝑓

𝑓

𝑋 𝑓

𝑓
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c) Same low-pass filter as above, but with input 𝑥 𝑡 = cos(4𝜋𝑡)

d) Repeat for 𝑥 𝑡 = cos(𝜋𝑡)

Filters (Linear Time Invariant Systems)

𝑌 𝑓 = 𝐻 𝑓 𝑋 𝑓 = 0
𝑦 𝑡 = 0

𝑌 𝑓 = 𝑋 𝑓
𝑦 𝑡 = 𝑥(𝑡)

𝑋 𝑓

𝑓

𝑋 𝑓

𝑓

98



How Can the Message Be Recovered Without Noise?

• Instead of using correlations, the demodulator can use the matched 

filter-based architecture.

• A filter with impulse response

ℎ(𝑡) = 𝜑(−𝑡)

is said to be matched to the waveform 𝜑 𝑡 .
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How Can the Message Be Recovered Without Noise?

• Why “matched”?

• Hence, at t=0 (symbol peak), the matched filter recovers the energy of 

the pulse
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How Can the Message Be Recovered Without Noise?

101

matched filter demodulator

𝜑1 (−𝑡)

𝜑2 (−𝑡)

𝜑𝑁 (−𝑡)

t=0



How Can the Message Be Recovered Without Noise?

• Proof of equivalence between the two demodulators
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How Can the Message Be Recovered Without Noise?

• Quiz: Evaluate the matched filters for the waveforms below.

103

2/𝑇

2/𝑇

0

0



• Consider first the vector (or discrete) channel model

• The channel is described by the conditional probability distribution 

𝑝(𝒚|𝒙)

How to Detect on a Noisy Channel?

104

𝑝(𝒚|𝒙)

m

𝒙𝑚 N-dim.
vector

Encoder

Channel

Decoder

message ෝ𝑚

𝒚



• Consider first the vector (or discrete) channel model

• The channel is described by the conditional probability distribution 

𝑝(𝒚|𝒙)

• Ex.: Gaussian channel, N=1

with

How to Detect on a Noisy Channel?

𝑝(𝒚|𝒙)

m

𝒙𝑚 N-dim.
vector

Encoder

Channel

Decoder

message ෝ𝑚

𝒚
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Gaussian Distribution

The spread of the distribution depends
on the standard deviation 𝜎:

𝑓 𝑥
𝑓 𝑥

• Gaussian distribution

• Probability density function: 𝑓 𝑥 =
1

2𝜋𝜎
𝑒
−
(𝑥−𝑚)2

2𝜎2

• Computing probabilities:  

𝑋~𝑁(𝑚, 𝜎2)

distributed as
Gaussian 
(Normal)

mean

variance
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Gaussian Distribution

• Tail probabilities:  

න
−∞

𝛽

𝑓 𝑥 𝑑𝑥 = 𝑄
𝑚 − 𝛽

𝜎

න
𝑎

+∞

𝑓 𝑥 𝑑𝑥= Q
𝑎 −𝑚

𝜎
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Gaussian Distribution

• Q function  

[B. Rimoldi, Principles of Digital Communications, Cambridge University Press]
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Gaussian Distribution

• Q function  

[B. Rimoldi, Principles of Digital Communications, Cambridge University Press]
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Digression: How to Design a Fire Alarm?

• Sensor measuring temperature

• If temperature > threshold 𝛾 -> alarm;

if temperature < threshold 𝛾 -> no alarm

110



Digression: How to Design a Fire Alarm?

• Define m=0/1 (no fire/fire) and y=temperature

• Conditional probability density function (pdf)

• Conditional probability of error:

x1

y

𝑝 𝑦 𝑚 = 1
x1 = average temperature 

when there is fire

x1

𝑝 𝑦 𝑚 = 1

x1
𝛾

y

111



Digression: How to Design a Fire Alarm?

• Conditional probability of error:

• We are interested in the overall probability of error.

• By the law of total probability

𝑝 𝑦 𝑚 = 0 x0 = average temperature 
when there is no fire

y
x0 𝛾
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Digression: How to Design a Fire Alarm?

𝜸

• Minimizing Pe is equivalent to minimizing the colored area

• Intuitive arguments show that the optimal threshold should be such 
that the two curves take the same value.

Pr[𝑚 = 1]𝑝 𝑦 𝑚 = 1

Pr[𝑚 = 0]𝑝 𝑦 𝑚 = 0

x0 𝛾 x1 y
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Digression: How to Design a Fire Alarm?

• This yields the optimal rule

𝜸

Pr[𝑚 = 1]𝑝 𝑦 𝑚 = 1

Pr[𝑚 = 0]𝑝 𝑦 𝑚 = 0

x0 𝛾 x1 y
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Digression: How to Design a Fire Alarm?

• Optimal rule

a priori probabilities
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Digression: How to Design a Fire Alarm?

• Optimal rule

a priori (from prior knowledge) × likelihood (from data)

a priori probabilitieslikelihood of each message 
for the received data y
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Digression: How to Design a Fire Alarm?

• Optimal rule

log-prior (from prior knowledge) + log-likelihood (from data)

log-a priori probabilitieslog-likelihood of each message 
for the received data y
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Digression: How to Design a Fire Alarm?

• The derived optimal rule is known as Maximum a Posterior (MAP).

• Posterior probability of the message given the received signal (Bayes 
theorem)

• The optimal rule can be then equivalently expressed as

which justifies the name MAP.
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Digression: How to Design a Fire Alarm?
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Digression: How to Design a Fire Alarm?
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How to Detect on a Noisy Channel?

• Problem: Choose a decision rule y ෝ𝑚 that minimizes the probability 
of error

121
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m
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Encoder
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message ෝ𝑚
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How to Detect on a Noisy Channel?

• Using again the law of total probability, we have

• And hence the optimal decoding rule is
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How to Detect on a Noisy Channel?

• It follows that the decision that minimizes the probability of error Pe is the MAP 
rule

where the posterior probability of m is

• As seen above, the rule can also be written in terms of log –probabilities.

a priori (from prior knowledge) × likelihood (from data)
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• When p(m)=1/M, the MAP rule reduces to the Maximum Likelihood (ML) rule

How to Detect on a Noisy Channel?

likelihood (from data)
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How to Detect on a Noisy Channel?

• Both ML and MAP rules partition the space of the received signal y

into decision regions, one for each message m

MAP:
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How to Detect on a Noisy Channel?

• Both ML and MAP rules partition the space of the received signal y

into decision regions, one for each message m

ML:
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How to Detect on a Noisy Channel?

• Consider now the important case of the additive Gaussian noise channel

127
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How to Detect on a Noisy Channel?

• Consider now the important case of the additive Gaussian noise channel

m

𝒙𝑚
N-dim.
vector

Encoder Decoder

message ෝ𝑚

𝒚

𝒛

with                                     i.i.d. 
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How to Detect on a Gaussian Channel?

• The likelihood of the message m for data y is

and hence the log-likelihood is
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How to Detect on a Gaussian Channel?

• For the Gaussian channel, the ML rule is simply a minimum distance 

rule

and hence the decision regions are
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How to Detect on a Gaussian Channel?

M=2
BPSK

Examples: N=1

M=4
4-PSK

N=2

x0=- 𝐸𝑏 x1= 𝐸𝑏 - 𝐸𝑏x1= 𝐸𝑏 𝐸𝑏

𝐸𝑏

− 𝐸𝑏
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Example: N=1, M=4 (4-PAM)

Example: N=2, M=16 (16-QAM)

How to Detect on a Gaussian Channel?

2𝐸𝑏
5

2𝐸𝑏
5

𝐷0𝐷1

3
2𝐸𝑏
5

−3
2𝐸𝑏
5

𝐷2𝐷3

𝜑1

𝜑1

𝜑2
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Matlab: Implementing an ML Threshold Detector 

BPSK transmission

%parameters

Eb=1;

N0=0.01;%noise variance – try changing this parameter!

L=1000; %number of bits

%simulation

m=randi(2,L,1)-1; %generate independent bits

x=sqrt(Eb)*2*(m-1/2); %generate signal vector

plot(x,zeros(size(x)),'o'); %plot transmitted constellation points

z=randn(L,1)*sqrt(N0/2); %generate noise

y=x+z; %received signal

hold on; plot(y,zeros(size(y)), 'x');

mhat=(sign(y)+1)*1/2; %decoded bits

error_rate=sum(m~=mhat)/L 133



Matlab: Implementing an ML Threshold Detector 

134

error_rate =

0



Matlab: Implementing an ML Threshold Detector 
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error_rate =

0

N0=0.1



Matlab: Implementing an ML Threshold Detector 
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error_rate =

0.0630

N0=1



How to Detect on a Gaussian Channel?

• For the Gaussian channel, the MAP rule is

and the decision regions are accordingly defined.

• Example: For BPSK, the new threshold becomes (try to prove it!) 
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How to Detect on a Gaussian Channel?

• Using the equality 

we can rewrite the MAP rule also in terms of correlations only as

where
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How to Detect on a Gaussian Channel?

• Block diagram of a MAP decoder

y1

y2

yN

.

.

.

correlative decoder
139

compute
correlations

max



Matlab: Implementing an ML Correlative Decoder

8-PSK transmission

%parameters

Eb=1;

N0=1;%noise variance – try changing this parameter!

L=1000; %number of symbols

%simulation

m=randi(8,L,1)-1; %generate independent symbols

x(:,1)= sqrt(3*Eb)*cos(pi*(2*m+1)/8); 

x(:,2)= sqrt(3*Eb)*sin(pi*(2*m+1)/8); 

%generate signal vector

plot(x(:,1),x(:,2),'o'); %plot transmitted constellation points

z=randn(L,2)*sqrt(N0/2); %generate noise

y=x+z; %received signal

hold on; plot(y(:,1),y(:,2), 'x');
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Matlab: Implementing an ML Correlative Decoder

Xmat(:,1)= sqrt(3*Eb)*cos(pi*(2*[0:7]+1)/8); 

Xmat(:,2)= sqrt(3*Eb)*sin(pi*(2*[0:7]+1)/8); 

for l=1:L %for each transmitted symbol

score=Xmat*y(l,:)'; %compute the score

[smax,imax]=max(score); %find the maximum score

mhat(l)=imax-1;

end

error_rate=sum(m~=mhat')/L
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Matlab: Implementing an ML Correlative Decoder

142

error_rate =

0.3440



How to Detect on a Gaussian Channel?
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How to Detect on a Gaussian Channel?
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How to Detect on a Gaussian Channel?
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How to Detect on a Gaussian Channel?
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How to Detect on a Gaussian Channel?
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Additive White Gaussian Noise Channel (AWGN)

148
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Additive White Gaussian Noise Channel (AWGN)

m

𝒙𝑚 N-dim.
vector

𝑥𝑚(𝑡)

Modulator

Encoder
T

ra
n

sm
it

te
r

Demodulator

R
eceiv

er

Decoder

message ෝ𝑚

waveform

𝒚

𝑦(𝑡)

𝑧(𝑡)

with WGN z(t):
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Random Processes

• A random process 𝑋(𝑡) is a collection of random variables indexed by 

time t.

• Another way to thinking about is in terms of random functions.

• We will be interested in stationary random processes: the probabilistic 

description of the process does not change with time.

a realization of a
random process

𝑋(𝑡)

𝑡
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Random Processes

• Two key quantities that characterize a stationary random process 

𝑋(𝑡) are:

1) Correlation Function

• 𝑅𝑥 𝜏 = 𝐸 𝑋 𝑡 𝑋 𝑡 − 𝜏

𝑋(𝑡 − 𝜏)

𝑋(𝑡)

𝑡 − 𝜏 𝑡

𝜏

𝑡

• 𝑅𝑥(𝜏) tells us how predictable 𝑋(𝑡) is based on 𝑋 𝑡 − 𝜏 :

↑ 𝑅𝑥 𝜏 → ↓ "randomness"
151



Random Processes

2) Power spectral density

• 𝑆𝑥 𝑓 = ℱ 𝑅𝑥 𝜏

• Real and positive

• Symmetric 𝑆𝑥(𝑓) = 𝑆𝑥(−𝑓)

152



• White Noise:

Uniform power spectral density

and impulsive correlation function

Random Processes

𝑅𝑥 𝜏 = const × 𝛿(𝜏)

153



Additive White Gaussian Noise Channel (AWGN)

m

𝒙𝑚 N-dim.
vector
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𝑧(𝑡)

with WGN z(t):
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How to Demodulate on an AWGN Channel?

y(t)

correlative demodulator

y1

y2

yN

.

.

.
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How to Demodulate on an AWGN Channel?

matched filter demodulator

y1

y2

yN

.

.

156

𝜑1 (−𝑡)

𝜑2 (−𝑡)

𝜑𝑁 (−𝑡)

t=0



How to Demodulate on an AWGN Channel?

• Demodulated signal vector:

• Noise components are zero-mean Gaussian (linear combinations of 
Gaussian variables are Gaussian) with correlation: 
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How to Demodulate on an AWGN Channel?
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How to Demodulate on an AWGN Channel?

m
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𝑧𝑛 m

𝒙𝑚
N-dim.
vector
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message ෝ𝑚
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𝒛

with                                     i.i.d. 

correlative/ matched 
filter demodulator
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• As a result, the cascade of optimal demodulator and decoder at the 
receiver can be summarized as

or equivalently with the matched filter demodulator in lieu of the correlative 
demodulator.

How Does an Optimal Receiver Work?

160

compute
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How Does an Optimal Receiver Work?

• Using invariance property of the inner product, the optimal cascade of 

demodulator and decoder can also be implemented directly as 

• Note that this architecture requires M, which is typically much larger 

than N, analog correlators or matched filters. 
161
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Are we Forgetting Anything?

• The demodulator captures the signal in full in the sense that

but this is not the case for the noise component since 

• Can any other noise component obtained from 

be useful for decoding the signal?
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Are we Forgetting Anything?

• The short answer is: No, because the other noise components are 

independent of the signal and of the noise components z that affect the 

signal.

• The longer answer follows.
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Which Parts of the Received Signal Can Be Neglected?

• Partition the received signal vector components into two parts as 

• If 

then y2 is said to be irrelevant for the estimate of x when y1 is given,        

while y1 is said to be a sufficient statistic for x.

• Irrelevant components can be neglected with no loss of optimality, or, 

equivalently, the detector can focus solely on sufficient statistics.

• Proof: 
chain rule of prob.
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Which Parts of the Received Signal Can Be Neglected?

• As an application of the previous result, consider the discrete channel 

below:

• We have

and hence y2 is irrelevant and can be neglected.

n1 and n2 are mutually 
independent and independent 
of x

independence of n2 and (x,n1)

independence of y2 and (y1)
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Which Parts of the Received Signal Can Be Neglected?

• As another application, show that y2 is irrelevant also for the discrete 

channel below.

n1 and n2 are mutually 
independent and independent 
of x
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Are we Forgetting Anything?

• No, because ǁ𝑧(𝑡) is independent of σ𝑛=1
𝑁 𝑧𝑛𝜑𝑛 (𝑡) and of x(t), and hence 

any component extracted from it is irrelevant.

• Proof: We need to show that ǁ𝑧(𝑡) is independent of σ𝑛=1
𝑁 𝑧𝑛𝜑𝑛 (𝑡):
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How Do We Design a Coding Scheme?

• In order to design the constellation, we need to evaluate the 
performance of a given constellation in the presence of an optimal 
receiver.

• As seen, we can concentrate on the discrete-time additive Gaussian 
model

m

𝒙𝑚
N-dim.
vector

Encoder Decoder

message ෝ𝑚

𝒚

𝒛

with                                    

i.i.d. 
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How Do We Design a Coding Scheme?

• We will focus on the case of equiprobable messages for which MAP 

(optimal decoder) equals ML.
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x0 x1= 𝐸𝑏x1

How Do We Evaluate the Performance of a Coding 

Scheme?

• Consider first N=1 and M=2 (binary communications)

• dij = distance between constellation points xi and xj
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How Do We Evaluate the Performance of a Coding 

Scheme?

𝑝 𝑦 𝑚 = 0 = 𝑁 𝑥0,
𝑁0

2

y

171

x0                                   x1
d01/2

• Consider first N=1 and M=2 (binary communications)



How Do We Evaluate the Performance of a Coding 

Scheme?

• Consider first N=1 and M=2 (binary communications)

x0
x1

𝑝 𝑦 𝑚 = 1 = 𝑁 𝑥1,
𝑁0

2

y

d01/2
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How Do We Evaluate the Performance of a Coding 

Scheme?

• The probability of error with N=1 and M=2 is hence given by
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How Do We Evaluate the Performance of a Coding 

Scheme?
• As we have seen, the distance depends on the transmission energy

• Recall: Eb = energy per bit

• Ex.: BPSK

• The probability of error is hence

𝐸𝑏− 𝐸𝑏

= 2 𝐸𝑏
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How Do We Evaluate the Performance of a Coding 

Scheme?
• Ex.: On-Off Keying (OOK)

• Since we need double 𝐸𝑏 to obtain the same probability of error, ON-

OFF keying has a loss of 3dB (= 10log102) with respect to the optimal 

modulation
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Matlab: Plotting the Probability of Bit Error

BPSK and OOK

EbN0dB=linspace(-5,10,100); %x axis in dB

EbN0=10.^(EbN0dB./10); %x axis in linear scale

for s=1:length(EbN0)

E=EbN0(s);

Pebpsk(s)=qfunc(sqrt(2*E));

Peook(s)=qfunc(sqrt(E));

end

semilogy(EbN0dB,Pebpsk);

hold on

semilogy(EbN0dB,Peook,'--'); 176



How Do We Evaluate the Performance of a Coding 

Scheme?

𝑃𝑒

BPSK

OOK

𝐸𝑏
𝑁0

𝑑𝐵

3 dB
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How Do We Evaluate the Performance of a Coding 

Scheme?

• Generalizing to any N, if M=2 (b=1), the probability of error is given by

where 

for any N.

• Illustration:

D0

D1

178



• Note that, by the invariance of the inner product, we can compute the 

distance directly between the analog waveforms:

• Ex.: BPSK

How Do We Evaluate the Performance of a Coding 

Scheme?

d01=d10=2

179
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How Far Can You Go From a Wi-Fi Access Point?

• Ex.:  Consider a Wi-Fi access point with a transmission power 𝑃𝑥 =

0 dBm operating over a channel with attenuation at 1 m equal to 𝐿1 =

− 50 dB and path loss 𝛾 = 2. Assume that the access point uses BPSK or 

OOK with modulator 𝜑1(𝑡)=√(2/𝑇) sinc(𝑡/𝑇) cos(2𝜋𝑓𝑐 𝑡) (N=1) with 

bandwidth 1 MHz  and that the power spectral density of the noise is 𝑁0 =

− 170 dBm/Hz. How far can you be if you wish to receive at a probability 

of error no larger than 10−2?
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How Far Can You Go From a Wi-Fi Access Point?

181

𝑃𝑒

BPSK
OOK

𝐸𝑏
𝑁0

𝑑𝐵

𝐸𝑏
𝑁0

= 4.3 dB

• From the plot, using tables, or qfuncinv in MATLAB, we compute the 
required Eb/N0:

𝐸𝑏
𝑁0

= 7.3 dB



• It follows that the required received energy per bit is

• The required received power is

• The maximum distance is obtained as 

𝑃r = 𝑃𝑥 +𝐿1 dB − 𝛾 10 log10 𝑑 = 𝑃𝑥 − 50 − 20 log10 𝑑
= 0 − 50 − 20 log10 𝑑 = −50 − 20 log10 𝑑

and so 𝑑=609.5 m for BPSK and so 𝑑=431.5 m are the maximum distances.

How Far Can You Go From a Wi-Fi Access Point?

182

𝐸b = 4.3 − 170 = −165.7 dBm for BPSK

𝐸b = 7.3 − 170 = −162.7 dBm for OOK

𝑃r =
𝐸b
𝑇/𝑏

=
𝐸b
𝑇
= −165.7 − −60 = −105.7 dBm for BPSK

𝑃r =
𝐸b
𝑇/𝑏

=
𝐸b
𝑇
= −162.7 − −60 = −102.7 dBm for OOK



How Do We Evaluate the Performance of a Coding 

Scheme?
• Let’s consider now any M

• Probability of error:

where 
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How Do We Evaluate the Performance of a Coding 

Scheme?
• Computing 

is generally difficult.

• We hence consider instead an upper bound that is easy to compute

• The upper bound is obtained by assuming that only messages m and m’

exist, and hence the system is binary.

• Having an upper bound is useful, since the real probability of error is 

smaller than the bound.
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How Do We Evaluate the Performance of a Coding 

Scheme?

vs.
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How Do We Evaluate the Performance of a Coding 

Scheme?

• Ex.: 8-PSK

186



How Do We Evaluate the Performance of a Coding 

Scheme?

• Union bound:

• Approximate union “bound”:

• Important: By the invariance of the correlation, distances can be 

computed either in the signal space or on the waveforms of the signal set.

minimum distance
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How Do We Evaluate the Performance of a Coding 

Scheme?
• Ex.: 4-Pulse Width Modulation (PWM)
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Ex.: 4-PWM (𝑏 = 2)

1) Conditional squared distance spectrum:

for m= 0

𝑑01
2 = න

𝑇 /4
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How Do We Compute the Union Bound?
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for m= 1 and 𝑚 = 2

for m = 3

2) Squared distance spectrum
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How Do We Compute the Union Bound?
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3) Union bound:

𝑃𝑒 ≤
1

4
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4) Approximate union bound:
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How Do We Compute the Union Bound?
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How Do We Compute the Union Bound?

• Ex.: 4-PAM

The squared distance spectrum is then given as

8𝐸𝑏
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Matlab: Plotting the Union Bound

Union bound for 4-PWM and 4-PAM

EbN0dB=linspace(-5,10,100); %x axis in dB

EbN0=10.^(EbN0dB./10); %x axis in linear scale

for s=1:length(EbN0)

E=EbN0(s);

Pubpwm(s)=3/2*qfunc(sqrt(2/5*E))+qfunc(sqrt(4/5*E))+1/2*qfunc(sqrt

(6/5*E));

Papppwm(s)=3/2*qfunc(sqrt(2/5*E));

Pubpam(s)=3/2*qfunc(sqrt(4/5*E))+qfunc(sqrt(16/5*E))+1/2*qfunc(sqr

t(36/5*E));

Papppam(s)= 3/2*qfunc(sqrt(4/5*E));

end 193



Matlab: Plotting the Union Bound

semilogy(EbN0dB,Pubpwm,'b');

hold on

semilogy(EbN0dB,Papppwm,'b--');

semilogy(EbN0dB,Pubpam, 'r');

semilogy(EbN0dB,Papppam, 'r--');
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How Do We Compute the Union Bound?

𝑃𝑒

𝐸𝑏
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𝑑𝐵

4-PWM

4-PAM

union bound
union bound approximation

3 dB
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How Do We Compute the Union Bound?

• The union bound approximation is increasingly accurate for large SNR 

values to the exponential decay of the Q function.

• The gain/ loss of a constellation as compared to another can be well 

approximated by considering only the arguments of the Q function in 

the union bound approximation.

• Ex.: Loss of 4-PWM as compared to 4-PAM

10log10 4/5

2/5

= 3 dB
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How Do We Evaluate the Performance of a Coding 

Scheme?
• Ex.: Try with 4-Pulse Position Modulation (PPM)

𝐴
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4
𝑇

𝐴 =
8 𝐸𝑏
𝑇
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What About the Bit Error Rate?

• The bit error rate (or probability is given as):

which can be bounded by using the union bound.

• Unlike the probability of error, the probability of bit error depends on 

the mapping between bits and symbols.
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What About the Bit Error Rate?

• Ex.: 4-PAM

Union bound on the probability of bit error:

𝑃𝑏 ≤
1

4
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Chapter 3
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What is This Course About?

• Overview

• 1. One-shot digital communications: Fundamentals

• 2. One-shot digital communications: Passband Systems

• 3. Stream digital communications

Main references

- J. Cioffi, Lecture notes, Stanford Univ., Chapters 1, 2, 3

http://web.stanford.edu/group/cioffi/


Why Passband Communications?

[http://www.extremetech.com]



• 1) Frequency Division Multiplexing (FDM)

…different information streams (e.g., radio stations) modulated 

on different carriers

Each carrier corresponds to a different passband channel

AM FM cellular Wi-Fi

~ 1 MHz ~ 100 MHz ~ 1 GHz ~ 2 GHz

𝑓

Why Passband Communications?

𝑓𝑐 +
𝐵

2

𝑓

𝐵

𝑓𝑐

𝑓𝑐 −
𝐵

2



legend: 𝑘 → 103, 𝑀 → 106, 𝐺 → 109, 𝑇 → 1012 , 𝐻𝑧 = cycles/𝑠

System Carrier Frequency 𝒇𝒄

AM radio 530-1600 kHz

FM radio 88-108 MHz

Cellular ~900 MHz, ~1-2 GHz

Wi-Fi 2.4 GHz

Satellite ~3-6 GHz

Fiber optics 200 THz

Why Passband Communications?



Why Passband Communications?

2) The antenna size depends on the wavelength

𝜆 =
𝑐

𝑓𝑐
(𝑐 = 3 × 108 m/s)

System Wavelength 𝝀

AM ~ 300 m

FM ~ 3 m

Cellular ~ 0.3 m

Wi-Fi ~ 0.1 m



Why Passband Communications?
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Why Passband Communications?

• Note: The passband filter in practice is implemented at the receiver, but 

it is convenient to think of it as being part of the channel.



How To Carry Out Link Budgets for Passband 

Communications?

• The path loss at 1 m is typically given by Friis formula

𝐿1 dB = G (dB) + 𝛾 10 log10(
𝜆

4𝜋
)

where G is the antenna gain and 𝜆 = 𝑐/𝑓𝑐 (𝑐 = 3 × 108 m/s).

• The overall path loss is given as

𝐿 dB = 𝐿1 dB − 𝛾 10 log10 𝑑

with d measured in meters



What Does This Mean for Coding and Modulation?

• Passband signals are difficult to process directly due to the large 
carrier frequency, especially in the digital domain.

• Operating the modulator and demodulator directly on passband 
signals requires tuning to the specific carrier frequency.

• Solution: Perform modulation and demodulation on baseband 
signals and carry out upconversion and downconversion
separately.

• Upconversion/ downconversion are done via multiplication with 
sinusoidal signals at the carrier frequency.

𝑓𝑐 +
𝐵

2

𝑓

𝐵

𝑓𝑐

𝑓𝑐 −
𝐵

2



What Does This Mean for Coding and Modulation?
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What Does This Mean for Coding and Modulation?
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What Does This Mean for Coding and Modulation?
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Why is the Baseband Equivalent Complex?

• Passband signal: Fourier transform is non-zero only in a bandwidth 𝐵

around the carrier frequency ±𝑓𝑐
𝐵

2
< 𝑓𝑐

… suitable for transmission on a passband channel

• Passband signals are sent on a physical channel, and hence they are real. 

Therefore, their Fourier transform has Hermitian symmetry. 

|𝑋𝑝𝑏(𝑓)|

𝑓𝑐 +
𝐵

2

𝐵

𝑓

−𝑓𝑐 −
𝐵

2
−𝑓𝑐 −

𝐵

2 −𝑓𝑐 +
𝐵

2

𝐵

−𝑓𝑐 𝑓𝑐



• Baseband signal: Fourier transform is non-zero only in a bandwidth 𝐵

around the zero frequency

… not suitable for transmission on passband channel

• Given the generally asymmetric Fourier transform (as in the figure), 

baseband equivalent signals are complex in the time domain.

𝐵

2
−
𝐵

2

𝐵

0 𝑓

|𝑋𝑏𝑏(𝑓)|

Why is the Baseband Equivalent Complex?



What is a Passband Signal?

• Mathematically, a bandpass signal is defined as: 

𝑥𝑝𝑏 𝑡 = 2 𝑎(𝑡) cos(2𝜋𝑓𝑐𝑡 + 𝜃(𝑡))

- Information is encoded by two baseband signals: amplitude

𝑎(𝑡) and phase 𝜃 𝑡 .

- Note: The additional term 2 as compared to the expression in J. 

Cioffi’s notes is introduced to simplify some of the later derivations.



What is a Passband Signal?

• Example: Amplitude modulation (𝜃 𝑡 = 0) 

Passband 
signal

𝑥𝑝𝑏(𝑡)

− 2

2

t

a(𝑡)



What is a Passband Signal?

• Example: Phase modulation (𝑎 𝑡 = 1) 

𝜃(t)

2

𝑥𝑝𝑏(𝑡)

− 2

t

𝜋



What is a Passband Signal?

• Example: Amplitude and phase modulation

𝜃(t)

𝑥𝑝𝑏(𝑡)

𝜋

2

− 2

2 2

−2 2



What is a Passband Signal?

• Alternative form of the bandpass signal

𝑥𝑝𝑏 𝑡 = 2 𝑥𝐼 𝑡 cos(2𝜋𝑓𝑐𝑡) − 2 𝑥𝑄 𝑡 sin (2𝜋𝑓𝑐𝑡)

- Information is encoded by the two baseband signals 𝑥𝐼 𝑡 and 

𝑥𝑄 𝑡

in-phase, or I, 
component

quadrature, or Q, 
component

− 𝑥𝐼 𝑡 modulates the in-phase carrier cos(2𝜋𝑓𝑐𝑡)

− 𝑥𝑄 𝑡 modulates the quadrature carrier −sin(2𝜋𝑓𝑐𝑡)



𝑥𝐼 𝑡 = 𝑎 𝑡 cos 𝜃 𝑡
𝑥𝑄 𝑡 = 𝑎 𝑡 sin𝜃(𝑡)

• From amplitude/phase representation to in-phase quadrature 

representation:

Recall that cos 𝑎 + 𝑏 = cos𝑎 cos𝑏 − sin𝑎 sin𝑏

Using this formula, we obtain

𝑥𝑐 𝑡 = 2 𝑎 𝑡 cos(2𝜋𝑓𝑐𝑡 + 𝜃(𝑡))

= 2 𝑎 𝑡 cos 𝜃 𝑡 cos(2𝜋𝑓𝑐𝑡) − 2 𝑎 𝑡 sin 𝜃(𝑡) sin(2𝜋𝑓𝑐𝑡)

What is a Passband Signal?

𝑥𝐼 𝑡 𝑥𝑄 𝑡

and hence



What is a Passband Signal?

• From in-phase / quadrature representation to amplitude / phase 

representation:

• From the equations on the previous slide, we get

𝑎 𝑡 = 𝑥𝐼 𝑡
2 + 𝑥𝑄 𝑡 2

𝜃 𝑡 = arg(𝑥𝐼 𝑡 + j𝑥𝑄(t))



Why Do We Use Complex Numbers to Represent 

Passband Signals?

Information signal described by

𝑥𝐼 𝑡 , 𝑥𝑄 (𝑡) … cartesian coordinates

𝑎 𝑡 , 𝜃(𝑡) …polar coordinates

Remark: As 𝑡 increases, the point     moves on the I-Q plane

Remark: cos 2𝜋𝑓𝑐𝑡 +
𝜋

2
= −sin(2𝜋𝑓𝑐𝑡)

I-Q plane

𝐼

𝑥𝑄 𝑡

𝑄 quadrature axis: − sin 2𝜋𝑓𝑐𝑡

𝑎 𝑡 length of

𝜃 𝑡

𝑥𝐼 𝑡 (in-phase
axis: cos(2𝜋𝑓𝑐𝑡))

• Illustration:



What is the Baseband Equivalent Signal? 

• Based on the discussion from the previous slide, the information 

signal is completely described by the pair of baseband signals

𝑎 𝑡 , 𝜃(𝑡) or 𝑥𝐼 𝑡 , 𝑥𝑄 (𝑡) .

• Baseband equivalent signal

𝑥𝑏𝑏 𝑡 = 𝑥𝐼 𝑡 + 𝑗 𝑥𝑄 𝑡 = 𝑎(𝑡)𝑒𝑗𝜃(𝑡)



What is the Baseband Equivalent Signal? 

• Complex baseband representation

• 𝑥𝑏𝑏 𝑡 is complex and baseband

𝑥𝑄 𝑡

𝑄

𝜃 𝑡

𝑥𝐼 𝑡

𝑎 𝑡

𝑥𝑏𝑏 𝑡 = 𝑥𝐼 𝑡 + 𝑗𝑥𝑄 𝑡

𝐼



What is the Baseband Equivalent Signal? 

• Exercise: Draw the baseband equivalent signals in the complex 

plane for the examples in slides 17, 18 and 19.



What is the Baseband Equivalent Signal? 

[Pei and Chang ’17] 



Why Should We Use the Baseband Equivalent Again?

• Baseband signals are much easier (cheaper) to process than passband 

signals given the smaller frequencies involved.

• Baseband signals can be processed in the digital domain with Analog-to-

Digital and Digital-to-Analog converters operating at feasible frequencies.

• Baseband signals are independent of the carrier frequencies and hence 

changing the carrier frequencies only requires to modify the up/down-

converters.
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What Does the Up-Converter Do?

𝑥𝐼(𝑡)

𝑥𝑄(𝑡)

2cos(2𝜋𝑓𝑐𝑡)

×

×

𝜋/2

LO
𝑥(𝑡)

LO = Local Oscillator



𝑦𝐼(𝑡)

𝑦𝑄(𝑡)

2cos(2𝜋𝑓𝑐𝑡)

×

×

𝜋/2

LO
𝑦(𝑡)

LPF

LPF

What Does the Down-Converter Do?

• Note: Up- and down-converters are fixed and need not be designed.



• Why do we need 𝐋𝐏𝐅? Consider the noiseless case y(t)=x(t)

𝑦(𝑡) 2 cos 2𝜋𝑓𝑐𝑡 = 2𝑥𝐼(𝑡) cos(2𝜋𝑓𝑐𝑡)
2

− 2 𝑥𝑄 𝑡 sin 2𝜋𝑓𝑐𝑡 cos 2𝜋𝑓𝑐𝑡

= 𝑥𝐼 𝑡 + 𝑥𝐼 𝑡 cos 4𝜋𝑓𝑐𝑡 − 𝑥𝑄 𝑡 sin(4𝜋𝑓𝑐𝑡)

And similarly for 𝑦(𝑡) − 2 sin 2𝜋𝑓𝑐𝑡 =

= 𝑥𝑄 𝑡 − 𝑥𝑄 𝑡 cos 4𝜋𝑓𝑐𝑡 − 𝑥𝐼 𝑡 cos(4𝜋𝑓𝑐𝑡)

What Does the Down-Converter Do?

from LO

Removed by LPFcos 𝑎 cos 𝑏 = 1/2 cos 𝑎 − 𝑏 + cos(𝑎 + 𝑏)

cos 𝑎 sin 𝑏 = 1/2 sin 𝑎 + 𝑏 − sin(𝑎 − 𝑏)



Can We Write Directly xpb(t) as a Function of xbb(t)?

• Define the analytic equivalent signal

xA 𝑡 = 𝑥𝑏𝑏 𝑡 𝑒𝑗2𝜋𝑓𝑐𝑡

• We then have:

• To summarize, a passband signal can be represented in the following 

ways:

𝑥𝑝𝑏 𝑡 = 2 𝑎 𝑡 cos(2𝜋𝑓𝑐𝑡 + 𝜃(𝑡))

= 2 𝑥𝐼 𝑡 cos(2𝜋𝑓𝑐𝑡) − 2 𝑥𝑄 𝑡 sin(2𝜋𝑓𝑐𝑡)

= 2 𝑅𝑒 𝑥𝐴(𝑡)



How To Represent Passband Signals?

Example: Compute in-phase and quadrature components, as well as 
amplitude of



How To Represent Passband Signals?

𝑥𝐼 𝑡 =
sinc 106t

2

xQ 𝑡 = −
3sinc 106t

2

𝑥𝑏𝑏 𝑡 =
sinc 106t

2
−j

3sinc 106t

2

a(t)= 5|sinc(106t)|

Example: Compute in-phase and quadrature components, as well as 
amplitude of



Matlab: Plotting Baseband and Passband Signals

• In order to guarantee that no information loss is incurred by 

sampling, the sampling rate needs to satisfy the condition of the 

Nyquist-Shannon theorem:

1

𝑇𝑠
≥ 2 × highest frequency of 𝑋 𝑓

• A signal 𝑥(𝑡) is represented as the vector  

𝑥 = […𝑥 −2𝑇𝑠 , 𝑥 −𝑇𝑠 , 𝑥 0 , 𝑥 𝑇𝑠 , 𝑥 2𝑇𝑠 , … ]

by sampling

−2𝑇𝑠 −𝑇𝑠
0

𝑇𝑠 2𝑇𝑠 3𝑇𝑠

𝑋(𝑡)

𝑡



Matlab: Plotting Baseband and Passband Signals

Plotting signal from the previous example

Ts=10^-8; %sampling interval (it satisfies Shannon-Nyquist)

t=[-5*10^-6:Ts:5*10^-6];

x=sinc(10^6*t).*cos(2*pi*10^7*t)+3*sinc(10^6*t).*sin(2*pi*10^7*t);

plot(t,x)

hold on

a=sqrt(5)*abs(sinc(10^6*t));

plot(t,sqrt(2)*a, 'r--');

figure

xi=sinc(10^6*t)/sqrt(2);

xq=-3*sinc(10^6*t)/sqrt(2);

plot(t,xi);

hold on; plot(t,xq, 'r');



Matlab: Plotting Baseband and Passband Signals

𝑥𝐼 𝑡

xQ 𝑡

a(t)

𝑥𝑝𝑏 𝑡



How Do We Obtain the Fourier Transform of the 

Baseband Equivalent?

• Using the frequency translation property of the Fourier transform, we can 

calculate

𝑋𝑝𝑏 𝑓 = ℱ 𝑥𝑝𝑏(𝑡)

= 2 ℱ 𝑥𝐼 𝑡 cos(2𝜋𝑓𝑐𝑡) − 2 ℱ 𝑥𝑄 𝑡 sin 2𝜋𝑓𝑐𝑡

=
1

2
𝑋𝐼 𝑓 − 𝑓𝑐 + 𝑋𝐼 𝑓 + 𝑓𝑐 −

1

2 𝑗
𝑋𝑄 𝑓 − 𝑓𝑐 − 𝑋𝑄 𝑓 + 𝑓𝑐

=
𝑋𝐼 𝑓 − 𝑓𝑐 + 𝑗𝑋𝑄 𝑓 − 𝑓𝑐

2
+
𝑋𝐼 𝑓 + 𝑓𝑐 − 𝑗𝑋𝑄 𝑓 + 𝑓𝑐

2

=
1

2
𝑋𝑏𝑏 𝑓 − 𝑓𝑐 +

1

2
𝑋𝑏𝑏
∗ −𝑓 − 𝑓𝑐

where the last equality follows from the Hermitian symmetry of 𝑋𝐼(𝑓) and 
𝑋𝑄(𝑓), since

𝑋𝑏𝑏
∗ −𝑓 − 𝑓𝑐 = 𝑋𝐼

∗ −𝑓 − 𝑓𝑐 − 𝑗 𝑋𝑄
∗(−𝑓 − 𝑓𝑐) = 𝑋𝐼 𝑓 + 𝑓𝑐 − 𝑗 𝑋𝑄(𝑓 + 𝑓𝑐)



How Do We Obtain the Fourier Transform of the 

Baseband Equivalent?

• We have shown that

𝑋𝑝𝑏(𝑓) =
1

2
𝑋𝑏𝑏 𝑓 − 𝑓𝑐 +

1

2
𝑋𝑏𝑏
∗ −𝑓 − 𝑓𝑐

• Remark: 𝑋𝑐(𝑓) satisfies Hermitian symmetry 



• The relationship between 𝑋𝑏𝑏 𝑓 and  𝑋𝑝𝑏 𝑓 consists of an 

upconversion operation that guarantees Hermitian symmetry.

How Do We Obtain the Fourier Transform of the 

Baseband Equivalent?

𝑋𝑏𝑏 𝑓

𝐴

𝑓

𝑓

upconversion

𝑋𝑝𝑏 𝑓
𝐴

2

𝐴

2

−𝑓𝑐 𝑓𝑐



• The relationship between 𝑋𝑏𝑏 𝑓 and  𝑋𝑝𝑏 𝑓 consists of an 

upconversion operation that guarantees Hermitian symmetry.

How Do We Obtain the Fourier Transform of the 

Baseband Equivalent?

𝐺𝑏𝑏 𝑓

𝐴2

𝑓

𝑓

upconversion

−𝑓𝑐 𝑓𝑐

𝐺𝑝𝑏 𝑓 𝐴2

2

𝐴2

2



How Do We Obtain the Fourier Transform of the 

Baseband Equivalent?

arg(𝑋𝑏𝑏 𝑓 )

𝐴

𝑓

𝑓

upconversion

arg(𝑋𝑝𝑏 𝑓 )

−𝐴

−𝑓𝑐

𝑓𝑐

𝐴



Why Did We Add That sqrt(2) Term Again?

• In this way, the energy of 𝑥𝑝𝑏(𝑡) is the same as the energy of 

𝑥𝑏𝑏(𝑡). 

• This can be seen using Rayleigh theorem, as illustrated below.

energy spectrum and energy of the baseband signal

𝐺𝑏𝑏(f)=|Xbb(f)|2

𝐸𝑏𝑏



Why Did We Add That sqrt(2) Term Again?

𝐺𝑥𝑐 𝑓 = 𝑋𝑐 𝑓 2

𝑓

𝐴2

2

𝐴2

2

𝐸𝑥𝑐 =
𝐸𝑥𝑧
2

+
𝐸𝑥𝑧
2

= 𝐸𝑥𝑧

𝑓𝑐−𝑓𝑐

𝐺𝑝𝑏(f)=|Xpb(f)|2

𝐸𝑝𝑏= 
𝐸
𝑏𝑏

2
+
𝐸
𝑏𝑏

2
= 𝐸𝑏𝑏



What Does This Mean for Coding and Modulation?

• The signal set produced by the baseband modulator is given by 

complex functions 𝑥𝑏𝑏,𝑚 𝑡 for m = 0,1, … , 2𝑀−1.

• Therefore, both constellation and orthonormal basis functions are 

generally complex.



What Does This Mean for Coding and Modulation?
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How to Encode?

• Encoder:

message m ∈ {0, … ,𝑀 − 1} → symbol (complex vector) 𝒙𝑚 =

𝑥𝑚,1

𝑥𝑚,2

⋮
𝑥𝑚,𝑁

• The signal space is C𝑁

• The set of all symbols 𝒙𝑚, m=1,…,M, is the signal constellation



How to Encode?

M=2
BPSK

Examples: N=1

• More generally, any constellation that we have encountered earlier can 

be reinterpreted by considering every pair of real dimensions as a 

complex dimension.

• The reason for the (I,Q) labeling will be detailed shortly. 

M=4
4-PSK or QPSK

x0=- 𝐸𝑏
- 𝐸𝑏x1= 𝐸𝑏

𝐸𝑏

𝐸𝑏

− 𝐸𝑏

m=0 m=1

I

Q

I

Q



How to Modulate?

• Modulator: 

symbol 𝒙𝑚 → (analog and continuous-time) complex waveform 𝑥𝑚(𝑡)

of duration T seconds (symbol period)

• Signal set:

50

• The set {𝜑𝑛(𝑡)}, n = 1,… , 𝑁 is an N-dimensional orthonormal basis:



Some Math

• Inner product or correlation:

- between complex vectors

- between complex functions

51



Some Math

• Squared Euclidean norm or energy:

- for a complex vector

- for a complex function

52



Some Math

• Orthogonality:

- for complex vectors: vectors v and u are orthogonal if

- for complex functions: functions v(t) and u(t) are orthogonal if

• Note that orthogonal pairs of real functions are also orthogonal when 

interpreted as complex functions (with zero imaginary part).

53



How To Modulate?

Examples:

1) N=1

𝜑1 𝑡 =
1

𝑇
sinc

𝑡

𝑇

2) Any N: Stream modulation

𝜑𝑛 𝑡 =
1

𝑇
sinc

𝑡−𝑛𝑇

𝑇
for n=1,…,N

3) Any N: Orthogonal Frequency Division Multiplexing (OFDM)

𝜑𝑛 𝑡 =
1

𝑇
rect

𝑡

𝑇
exp 𝑗2𝜋

𝑛

𝑇
−

𝑁

2𝑇
𝑡 for n=1,…,N



How To Modulate?

𝐵 ≈
𝑁

𝑇

-
𝑁

2𝑇
+

1

𝑇
0 𝑁

2𝑇

1

𝑇



How To Modulate?

Example: Given the 4-PSK constellation and the basis function indicated below, 

find the signal set. Explain why the axes of the constellation are labeled as I and 

Q.

𝜑1 𝑡 =
1

𝑇
𝑠𝑖𝑛𝑐

𝑡

𝑇

M=4
4-PSK

- 𝐸𝑏 𝐸𝑏

𝐸𝑏

− 𝐸𝑏

I

Q

𝑥0 𝑥1

𝑥2 𝑥3



How To Modulate?

Example: Given the 4-PSK constellation and the basis function indicated below, 

find the signal set. Explain why the axes of the constellation are labeled as I and 

Q.

𝜑1 𝑡 =
1

𝑇
𝑠𝑖𝑛𝑐

𝑡

𝑇

𝑥𝑏𝑏,0 𝑡 =-
𝐸𝑏

𝑇
sinc

𝑡

𝑇
− 𝑗

𝐸𝑏

𝑇
sinc

𝑡

𝑇
, 𝑥𝑏𝑏,1 𝑡 =

𝐸𝑏

𝑇
sinc

𝑡

𝑇
− 𝑗

𝐸𝑏

𝑇
sinc

𝑡

𝑇

𝑥𝑏𝑏,2 𝑡 =-
𝐸𝑏

𝑇
sinc

𝑡

𝑇
+ 𝑗

𝐸𝑏

𝑇
sinc

𝑡

𝑇
, 𝑥𝑏𝑏,3 𝑡 =

𝐸𝑏

𝑇
sinc

𝑡

𝑇
+ 𝑗

𝐸𝑏

𝑇
sinc

𝑡

𝑇

M=4
4-PSK

- 𝐸𝑏 𝐸𝑏

𝐸𝑏

− 𝐸𝑏

I

Q

𝑥0 𝑥1

𝑥2 𝑥3



• As shown in the previous example, with a real basis function, the real part 

of the constellation point is proportional to the I-component of the 

baseband modulated signal and the imaginary part is proportional to the 

Q-component.

How To Modulate?

𝑥𝑄,𝑚 𝑡 =𝑥𝑄,𝑚𝜑1 𝑡

𝑄

𝑥𝐼,𝑚

𝑎

𝐼

𝑥𝑄,𝑚 𝒙𝑚

𝑥𝐼,𝑚 𝑡 =𝑥𝐼,𝑚𝜑1 𝑡

𝑎 𝑡 =𝑎|𝜑1 𝑡 |

𝜃

𝜃 𝑡 =𝜃 + arg(𝜑1 𝑡 )



• The same applies for stream modulation for each symbol, as well as to 

OFDM for each subcarrier.

How To Modulate?



How To Modulate?

• The maximum number of complex dimensions is given as N=BT, where 

B is the bandwidth of the passband signal, or equivalently the 

bandwidth of the baseband equivalent including also the negative 

frequencies.

• This is consistent with the general results in Chapter 2 since one 

complex dimension amounts to two real dimensions. In other words, 

the number of real dimensions is still N=2BT.



What Does This Mean for Decoding and Demodulation?
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What Does This Mean for Decoding and Demodulation?

• Following the same reasoning as in the previous chapter, the optimal 

receiver can be obtained as the cascade of

• Down-converter

• Correlative or matched filter baseband demodulator (with complex 

correlations or impulse responses)

• MAP decoder (or ML in case of equally likely messages)



How to Demodulate?

with complex baseband noise

• The in-phase and quadrature components of 

the noise are independent WGN processes with 

power spectral density N0/2 (to be discussed).

• After down-conversion, we have 

Decoder

 𝑚

𝒚

D
em

o
d

u
la

to
r

Baseband 
demodulator

Down-
converter

R
eceiv

er

𝑦𝑏𝑏(𝑡)

B

𝑆𝑧𝐼 𝑓 = 𝑆𝑧𝑄 𝑓



How to Demodulate?

𝑦𝑏𝑏(𝑡)

y1

y2

yN

.

.

𝑦𝑏𝑏(𝑡)
𝜑1
∗(t)

𝜑2
∗(t)

𝜑𝑁
∗ (t)

correlative demodulator

y1

y2

yN

.

.



How to Decode?

Compute
correlations

max

R
e

R
e

R
e

y1

y2

yN

.

.



How to Demodulate and Decode?

𝑦𝑏𝑏(𝑡)
Compute

correlations
max

y1

y2

yN

.

.

𝑦𝑏𝑏(𝑡)

R
e

R
e

R
e

𝜑1
∗(t)

𝜑2
∗(t)

𝜑𝑁
∗ (t)



How to Demodulate and Decode?

𝑦𝑏𝑏(𝑡)

Minimum 
distance decoding

y1

y2

yN

.

.

𝑦𝑏𝑏(𝑡)
𝜑1
∗(t)

𝜑2
∗(t)

𝜑𝑁
∗ (t)

• When the messages are equally likely, we can also use minimum 
distance decoding.

 𝑚



How to Demodulate and Decode?

• Problem: Prove that the scores of the four messages in 4-PSK 
obtained by the receiver with a correlative decoder are the same as 
those obtained by the optimal receiver studied in the previous chapter 
in the absence of noise. Consider as an example the transmission of 
message m=0.



How to Demodulate and Decode?



How to Demodulate and Decode?



How to Demodulate and Decode?



How to Demodulate and Decode?

• Problem: Consider 8-PSK and that all symbols have the  same 

probability. If Eb=1 and N0=0.1, what is the optimal decision if the 

received signal after demodulation is y=3+j0.01?



Matlab: Implementing a MAP Correlative Detector

8-PSK transmission (equal probability)

%parameters

Eb=1;

N0=0.1;%noise variance – try changing this parameter!

L=1000; %number of symbols

%simulation

m=randi(8,L,1)-1; %generate independent symbols

x= sqrt(3*Eb)*cos(pi*(2*m+1)/8)+j* sqrt(3*Eb)*sin(pi*(2*m+1)/8); 

%generate signal vector

plot(real(x),imag(x),'o'); %plot transmitted constellation points

z=randn(L,1)*sqrt(N0/2)+j*randn(L,1)*sqrt(N0/2); %generate noise

y=x+z; %received signal

hold on; plot(real(y),imag(y), 'x');



Matlab: Implementing a MAP Correlative Detector

Xmat=sqrt(3*Eb)*cos(pi*(2*[0:7]+1)/8)'+j*sqrt(3*Eb)*sin(pi*(2*[0:7]+

1)/8)';

for l=1:L %for each transmitted symbol

score=real(Xmat*y(l,:)'); %compute the score

[smax,imax]=max(score); %find the maximum score

mhat(l)=imax-1;

end

error_rate=sum(m~=mhat')/L



Can We Represent the Entire System with a Baseband Equivalent?
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Can We Represent the Entire System with a Baseband Equivalent?
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zbb(t)
Hbb(f)

• To design the baseband modulator and demodulator, it is useful to operate 
directly with a baseband equivalent channel model. 

• What is the equivalent baseband noise zbb(t)? What is the equivalent baseband 
filter Hbb(f)?



Why Would We Want to Use An Equivalent Baseband 

System Again?

• As discussed, the main processing steps take place at the baseband 
modulator and demodulator. Therefore, for a communication engineer 
focusing on signal processing, up- and d0wn-converters need not be 
included in the design.

• The baseband equivalent is carrier frequency-independent.

• (In practice, the channel model may depend on the carrier frequency.) 



How Do We Obtain a Baseband Equivalent Filter? 

• A passband filter has a non-zero frequency response only around the 

carrier frequency fc.

• Example:

B

Hpb(f)



Passband filter

𝐻𝑝𝑏 𝑓 or ℎ𝑝𝑏(𝑡)

passband
impulse 
response

𝑦𝑝𝑏 𝑡 = √2𝑅𝑒 𝑦𝑏𝑏 𝑡 𝑒𝑗2𝜋𝑓𝑐𝑡

output passband 
signal with 
complex baseband 
equivalent 𝑦𝑏𝑏(𝑡)

passband
frequency 
response

𝑥𝑝𝑏 𝑡 = √2𝑅𝑒 𝑥𝑏𝑏 𝑡 𝑒𝑗2𝜋𝑓𝑐𝑡

input passband 
signal with 
baseband 
equivalent 𝑥𝑏𝑏(𝑡)

How Do We Obtain a Baseband Equivalent Filter? 



How Do We Obtain a Baseband Equivalent Filter? 

Baseband filter

𝐻𝑏𝑏 𝑓 or ℎ𝑏𝑏(𝑡)

baseband
impulse 
response

𝑦𝑏𝑏 𝑡

baseband
frequency 
response

𝑥𝑏𝑏 𝑡



How Do We Obtain a Baseband Equivalent Filter?

• How to choose the baseband filter so that we have the equivalence at 

the previous slide?

• It can be easily seen that we need

𝐻𝑝𝑏(𝑓) = 𝐻𝑏𝑏 𝑓 − 𝑓𝑐 + 𝐻𝑏𝑏
∗ (−𝑓 − 𝑓𝑐)

• Remark: Unlike for signals, there is no 
1

2
term.



How Do We Obtain a Baseband Equivalent Filter?

Consider the bandpass filter in the figure below.

a) If the input signal is 

𝑥𝑝𝑏 𝑡 = 2 𝑥𝐼 𝑡 cos(2𝜋10
7𝑡)

with 𝑥𝐼 𝑡 = cos 2𝜋106𝑡 + cos 6𝜋106𝑡

find the output  𝑦𝑝𝑏 𝑡 .

𝑓𝑐 = 10𝑀𝐻𝑧
Hpb(f)



Input and filter:

-13
-11 -9 -7 9 11 137

How Do We Obtain a Baseband Equivalent Filter?

Hpb(f)

Xpb(f)



Output:

⇒ 𝑦𝑝𝑏 𝑡 = 2 2 cos(2𝜋106𝑡) cos(2𝜋107𝑡)

-11 -9 9 11

𝑦𝐼 𝑡 = 𝑦𝑏𝑏 (𝑡)

How Do We Obtain a Baseband Equivalent Filter?

Ypb(f)



b) Calculate the complex baseband equivalent of the output 𝑦𝑝𝑏 𝑡 :

𝑦𝑏𝑏 𝑡 = 2 cos 2𝜋106𝑡

c) Calculate the equivalent baseband filter 𝐻𝑏𝑏 𝑓 and ℎ𝑏𝑏 𝑡 :

⇒ ℎ𝑏𝑏 𝑡 = 8 × 106 × sinc(4 × 106𝑡)

How Do We Obtain a Baseband Equivalent Filter?

Hbb(f)



d) Using the baseband filter, calculate 𝑦𝑏𝑏(𝑡). Compare with the 

results at point b).

Input and filter:

-3 1 1 3

How Do We Obtain a Baseband Equivalent Filter?

Hbb(f)



d) Using the baseband filter, calculate 𝑦𝑏𝑏(𝑡). Compare with the 

results at point b).

Input and filter:

⇒ 𝑦𝑏𝑏 𝑡 = 2 cos 2𝜋106𝑡 , as at point b).

How Do We Obtain a Baseband Equivalent Filter?

Ybb(f)



• The bandpass noise 𝑧 𝑡 is a WGN with power spectral density 𝑆𝑧 𝑓 =
𝑁0

2
within the bandwidth of the channel

How Do We Obtain the Baseband Equivalent Noise?

B      B      

𝑆𝑧 𝑓



• The baseband noise is the output of the following blocks:

• Assuming that 𝐻𝑝𝑏(𝑓) is an ideal passband filter, it can be proved that

a) 𝑧𝐼 𝑡 and 𝑧𝑄(𝑡) are WGN with power spectral densities

𝑆𝑧𝐼 𝑓 = 𝑆𝑧𝑄 𝑓 =
𝑁0
2

within the bandwidth −
𝐵

2
,
𝐵

2

b) 𝑧𝐼 𝑡 and 𝑧𝑄(𝑡) are independent

How Do We Obtain the Baseband Equivalent Noise?

𝐻𝑝𝑏(𝑓)
𝑧(𝑡)

Down-

converter

𝑧𝑏𝑏 𝑡 = 𝑧𝐼 𝑡 + 𝑗𝑧𝑄 (𝑡)

B

𝑆𝑧 𝑓𝑆𝑧𝐼 𝑓 = 𝑆𝑧𝑄 𝑓



How Do We Obtain the Baseband Equivalent Noise?

Remark: 

𝐸 𝑧 𝑡 2 =
𝑁0
2
∙ 2𝐵 = 𝑁0𝐵

 
𝐸[𝑧𝐼 𝑡

2] =
𝑁0
2
𝐵

𝐸[𝑧𝑄 𝑡 2] =
𝑁0
2
𝐵

The power of the bandpass noise 𝐸 𝑧 𝑡 2 is hence equal to the 
power of the baseband signal 𝐸[|𝑧𝑏𝑏 𝑡 |2]. 

This relationship is akin to that between the energy for 
bandpass and baseband signals.

𝐸[|𝑧𝑏𝑏 𝑡 |2]
= 𝐸 𝑧𝐼 𝑡

2 + 𝐸[𝑧𝑄 𝑡 2]

= 𝑁0𝐵



Matlab: Generating Noise

• Generating a baseband WGN 𝑊𝑧(𝑡) with power 𝑃𝑊𝑧
= 𝑁0𝐵𝑅 in 

MATLAB

𝑊𝐼 = 𝑠𝑞𝑟𝑡(  𝑃𝑊𝑧
2)∗randn (N,1);

% generates N samples of 𝑊𝐼 𝑡

𝑊𝑄 = 𝑠𝑞𝑟𝑡(  𝑃𝑊𝑧
2)∗randn (N,1);

% generates N samples of 𝑊𝑄 𝑡

𝑊𝑧 = 𝑊𝐼 + 𝑗 ∗ 𝑊𝑄;
% generates N samples of 𝑊𝑧(𝑡)



Can We Represent the Entire System with a Baseband Equivalent?
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Can We Represent the Entire System with a Baseband Equivalent?
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zbb(t)

• If the signals are bandlimited within the bandwidth B and the filter is ideal in this 
bandwidth, we can just write

where zbb(t) is AWGN
𝑦𝑏𝑏 𝑡 = 𝑥𝑏𝑏, 𝑚 𝑡 + 𝑧bb(𝑡)



• From the viewpoint of modulator and demodulator, we have then obtained an 
AWGN channel as studied in the previous chapter with the only caveat that 
symbols and functions can be complex.

• From the viewpoint of encoder and decoder, the channel is additive Gaussian as 
studied in the previous chapter with one complex number representing two real 
dimensions. 

• The optimal receiver is hence the one discussed in the previous slides.

• The probability of error can be computed as seen in the previous chapter.

Can We Represent the Entire System with a Baseband Equivalent?



LO = Local Oscillator

𝑥𝐼(𝑡)

𝑥𝑄(𝑡)

2cos(2𝜋𝑓𝑐𝑡)

×

×

𝜋/2

LO
𝑥(𝑡)

What is the Impact of Lack of Synchronization?



𝑦𝐼(𝑡)

𝑦𝑄(𝑡)

2cos(2𝜋𝑓𝑐𝑡 + 𝜃)

×

×

𝜋/2

LO
𝑦(𝑡)

LPF

LPF

Phase asynchronism with phase offset 𝜃

What is the Impact of Lack of Synchronization?



• Consider the noiseless case y(t)=x(t)

𝑦(𝑡) 2 cos 2𝜋𝑓𝑐𝑡 + 𝜃 = 2𝑥𝐼(𝑡) cos(2𝜋𝑓𝑐𝑡)cos(2𝜋𝑓𝑐𝑡 + 𝜃)

− 2 𝑥𝑄 𝑡 sin 2𝜋𝑓𝑐𝑡 cos 2𝜋𝑓𝑐𝑡 + 𝜃

= 𝑥𝐼 𝑡 cos(𝜃) + 𝑥𝐼 𝑡 cos 4𝜋𝑓𝑐𝑡 + 𝜃 − 𝑥𝑄 𝑡 sin(4𝜋𝑓𝑐𝑡 + 𝜃)

+𝑥𝑄 𝑡 sin 𝜃

= 𝑥𝐼 𝑡 cos(𝜃) +𝑥𝑄 𝑡 sin 𝜃 after LPF

= 𝑦𝐼 𝑡

And similarly for 𝑦 𝑡 − 2 sin 2𝜋𝑓𝑐𝑡 :

𝑦𝑄 𝑡 = 𝑥𝑄 𝑡 cos(𝜃) −𝑥𝐼 𝑡 sin 𝜃

cos 𝑎 cos 𝑏 = 1/2 cos 𝑎 − 𝑏 + cos(𝑎 + 𝑏)

cos 𝑎 sin 𝑏 = 1/2 sin 𝑎 + 𝑏 − sin(𝑎 − 𝑏)

What is the Impact of Lack of Synchronization?



• Lack of phase synchronization hence causes interference between I and Q 

components:

• The previous relationship can also be written as

What is the Impact of Lack of Synchronization?



• Equivalent baseband system

What is the Impact of Lack of Synchronization?
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zbb(t)

𝑒−𝑗𝜃



• How to detect a lack of phase synchronization?

• Consider BPSK. We have 

• Hence, after demodulation we obtain

• This implies that the received constellation is rotated.

What is the Impact of Lack of Synchronization?

x0

x1

I

Q

−𝜃



• As a result, a decoder applying the decision regions of BPSK would fail 

completely if the phase offset is 90 degrees.

• A coherent decoder tries to estimate the phase offset and then 

compensates it before performing decoding.

• Estimation of the phase offset based on the reception of the data only 

has an irreducible ambiguity of 180 degrees. 

• To resolve this ambiguity, we need to transmit pilot symbols prior to 

the data. Pilot symbols are known to the receiver in advance and do not 

carry any information.

What is the Impact of Lack of Synchronization?



What is the Impact of Lack of Synchronization?

• The same applies to other constellations, but the ambiguity is more 

pronounced.

• Problem: What is the maximum phase offset detectable without 

training symbols for 4-PSK? How about 8-PSK?

• Problem (Non-coherent transmission): What is the impact of a 

phase offset on on-off modulation? Can you design a coherent decoder 

with no pilots? Can you design a non-coherent decoder that works 

irrespective of the phase offset for equally likely messages?



What is the Impact of Lack of Synchronization?

𝑃𝑒

𝐸𝑏
𝑁0

[𝑑𝐵]

BPSK

OOK

OOK (non-coherent)



LO = Local Oscillator

𝑥𝐼(𝑡)

𝑥𝑄(𝑡)

2cos(2𝜋𝑓𝑐𝑡)

×

×

𝜋/2

LO
𝑥(𝑡)

What is the Impact of Lack of Synchronization?



𝑦𝐼(𝑡)

𝑦𝑄(𝑡)

2cos(2𝜋(𝑓𝑐+∆𝑓)𝑡)

×

×

𝜋/2

LO
𝑦(𝑡)

LPF

LPF

Frequency asynchronism with frequency offset ∆𝑓

What is the Impact of Lack of Synchronization?



• Consider the noiseless case y(t)=x(t)

𝑦 𝑡 2 cos 2𝜋(𝑓𝑐+∆𝑓)𝑡

= 𝑥𝐼 𝑡 cos(2𝜋∆𝑓𝑡) +𝑥𝑄 𝑡 sin(2𝜋∆𝑓𝑡) after LPF

And similarly for 𝑦(𝑡) − 2 sin 2𝜋(𝑓𝑐+∆𝑓)𝑡 =

= 𝑥𝑄 𝑡 cos(2𝜋∆𝑓𝑡) −𝑥𝐼 𝑡 sin(2𝜋∆𝑓𝑡)

What is the Impact of Lack of Synchronization?



• Equivalent baseband system

What is the Impact of Lack of Synchronization?
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• How to detect a lack of frequency synchronization?

• Consider BPSK – After downconversion and demodulation, the 
constellation looks as follows

• The constellation rotates at a frequency equal to the frequency 
offset. The frequency offset can hence be estimated in the frequency 
domain by observing received training symbols.

What is the Impact of Lack of Synchronization?

x0
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Q

−2𝜋∆𝑓𝑡
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6CCS3COS Communication Systems: 

Chapter 4

Osvaldo Simeone



What is This Course About?

• Overview

• 1. One-shot digital communications: Fundamentals

• 2. One-shot digital communications: Passband Systems

• 3. Stream digital communications

Main references

- J. Cioffi, Lecture notes, Stanford Univ., Chapters 1, 2, 3

http://web.stanford.edu/group/cioffi/


What Have We Learned So Far?

• We have mostly focused so far on “one-shot” transmission with N=1 

complex dimension (or N=2 real dimensions).

m

𝒙𝑚
N-dim.

complex
vector

Encoder

T
ra

n
sm

it
te

r Decoder

message ෝ𝑚

Baseband
equivalent
waveform

𝒚

Baseband 
modulator

Baseband 
demodulator

R
eceiv

er

𝑥𝑏𝑏, 𝑚(𝑡) 𝑦𝑏𝑏(𝑡)

Baseband channel



How to Stream Data?

• Time-domain transmission: 

𝜑𝑛 𝑡 = 𝜑 𝑡 − 𝑛𝑇 for n=1,…,N

for some unitary-energy waveform 𝜑 𝑡



How to Stream Data?

• Time-domain transmission: 

𝜑𝑛 𝑡 = 𝜑 𝑡 − 𝑛𝑇 for n=1,…,N

for some unitary-energy waveform 𝜑 𝑡

• Frequency-domain transmission: Orthogonal Frequency Division 
Multiplexing (OFDM)

𝜑𝑛 𝑡 = 𝜑 𝑡 exp 𝑗2𝜋
𝑛

𝑇
−

𝑁

2𝑇
𝑡 for n=1,…,N

for some unitary-energy waveform 𝜑 𝑡

• Each symbol carries one complex dimension.



How to Stream Data?

• Time-domain transmission:

• T must be larger than 1/B since each symbol carries one complex 

dimension.

• The choice

maximizes the symbol rate, i.e., uses the minimum T for a given B.

t

T ≥ 1/𝐵

𝜑 𝑡 =
1

𝑇
sinc 𝑡/𝑇



How to Stream Data?

• Frequency-domain transmission (OFDM):

• The spacing between subcarriers must be at least 1/T, since each symbol 

carries one complex dimension.

• The choice 𝜑 𝑡 =
1

𝑇
rect

𝑡

𝑇
uses the spectrum in the most efficient way, 

i.e., it minimizes the subcarrier spacing for a given T.

f

≥ 1/𝑇



How to Stream Data?

• Frequency-domain transmission (OFDM):

• The spacing between subcarriers must be at least 1/T, since each symbol 

carries one complex dimension.

• The choice 𝜑 𝑡 =
1

𝑇
rect

𝑡

𝑇
uses the spectrum in the most efficient way, 

i.e., it minimizes the subcarrier spacing for a given T.

f

≥ 1/𝑇

In practice, OFDM symbols, 
of duration T, are sent back 
to back with guard periods 
or cyclic prefixes



How to Stream Data?

http://rfmw.em.keysight.com/wireless/helpfiles/89600b/webhelp/subsystems/wlan-
ofdm/content/ofdm_basicprinciplesoverview.htm



How to Stream Data?

• In this chapter, we will talk about two key aspects of data streaming.

• 1. Effect of channel distortions:

How does the channel affect the 

reception of successive symbols in 

time or frequency domain?

• 2. Coding over many dimensions:

When streaming, one has available a large number N of dimensions.   

Can this be used to reduce the probability of error?  



What is the Effect of the Channel on Data Streaming?

• Let us start with time domain transmission.

• The design and analysis considered up to now applies only if the 

successive symbols do not interfere with one another. 

• We know that this is the case if the delayed symbols are orthogonal.

• We will see that orthogonality in practice depends also on the channel 

and not only on the modulator.

• When orthogonality does not hold, the interference between successive 

transmissions is called intersymbol interference (ISI). ISI can 

severely complicate the implementation of an optimum detector.



• The message transmissions are separated by T units in time, where T 
is called the symbol period.

• 1/T is called the symbol rate. 

• The data rate is

R=
log

2
𝑀

𝑇
=

𝑏

𝑇
(bit/s)

How to Stream Data in Time Domain?



What is the Effect of the Channel on Data Streaming?
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What is the Effect of the Channel on Data Streaming?



How to Stream Data in Time Domain?

0 𝑇 𝑡

𝜑 𝑡

×

+ 𝑗

𝜑 𝑡 − 𝑇 𝜑 𝑡 − 2𝑇

⋯

2𝑇

××𝑥[1] x[2] x[3]

𝑥𝐼[1]

0 𝑇 𝑡

𝑥𝐼 𝑡 𝑥𝐼[3]

⋯

2𝑇 3𝑇

𝑥𝐼[2]

𝑥𝑄[1]

0 𝑡

𝑥𝑄 𝑡
𝑥𝑄[3]

𝑥𝑄[2] ⋯

• Note: With rectangular waveforms: no ISI (with an ideal channel), but 
generally unacceptable spectrum.



How to Stream Data in Time Domain?

• The baseband equivalent transmitted baseband signal can be written as 

(dropping the subscript “bb”):

𝑥 𝑡 =

𝑙

𝑥[𝑙] 𝜑(𝑡 − 𝑙𝑇)



What is the Effect of the Channel?

• Frequency selectivity: If the transmitter uses waveform 𝜑 𝑡 , the 
effective waveform is given by the convolution 𝑝 𝑡 = 𝜑 𝑡 ∗ ℎ 𝑡 .

H(f) or h(t)
𝑝 𝑡 = 𝜑 𝑡 ∗ ℎ 𝑡



What is the Effect of the Channel?

• As a result of the channel, the received signal is

𝑦 𝑡 =

𝑙

𝑥 𝑙 𝑝 𝑡 − 𝑙𝑇 + 𝑧(𝑡)

where 𝑝 𝑡 = 𝜑 𝑡 ∗ ℎ 𝑡 .



What is the Effect of the Channel?

• Example: As seen, if 

𝜑(t)=1/ 𝑇rect(t/T) 

h(t)=𝛿(t) + 𝛿 (t − T )

we have 

𝑝 𝑡 = 1/ 2𝑇 rect(t/(2T))

… the effective waveform suffers from ISI while the original waveform    

does not. In other words, the ISI is created by the multipath channel.



What is the Effect of the Channel?

• Example: ISI can limit the transmission rate 

p(t) = 1/(1+t4); BPSK; x(-T)=-1 and x(0)=1

T=1



What is the Effect of the Channel?



What is the Effect of the Channel?

eye diagram



What is the Effect of the Channel?

eye diagram (for 4-PAM)



• In the absence of ISI, the optimal correlative demodulator would 

operate as follows:

• Note that each symbol is encoded separately and hence it can also be 

decoded separately if there is no ISI.

• Note also that, unlike the simpler demodulator considered in the 

introductory example, this demodulator requires knowledge of the 

channel and is hence a coherent decoder. 

How Can We Avoid ISI?

<𝑦𝑏𝑏 𝑡 , 𝑝 𝑡 − 𝑘𝑇 >
𝑦𝑏𝑏(𝑡) 𝑦[𝑘]

Decoder
ෝ𝑚[𝑘]

demodulator



• In the absence of ISI, the optimal correlative demodulator would 

operate as follows:

• Let us calculate 𝑦[𝑘] assuming no noise for simplicity:

𝑦 𝑘 =

𝑙

𝑥 𝑙 < 𝑝 𝑡 − 𝑙𝑇 , 𝑝 𝑡 − 𝑘𝑇 >

= x[𝑘] < 𝑝 𝑡 − 𝑘𝑇 , 𝑝 𝑡 − 𝑘𝑇 >

+

𝑙≠𝑘

𝑥[𝑙] < 𝑝 𝑡 − 𝑙𝑇 , 𝑝 𝑡 − 𝑘𝑇 >

How Can We Avoid ISI?

<𝑦𝑏𝑏 𝑡 , 𝑝 𝑡 − 𝑘𝑇 >
𝑦𝑏𝑏(𝑡) 𝑦[𝑘]

Decoder
ෝ𝑚[𝑘]

demodulator

𝐸𝑝

inter-symbol interference (ISI)



• In the absence of ISI, the optimal correlative demodulator would 

operate as follows:

• Let us calculate 𝑦[𝑘] assuming no noise for simplicity:

𝑦 𝑘 =

𝑙

𝑥 𝑙 < 𝑝 𝑡 − 𝑙𝑇 , 𝑝 𝑡 − 𝑘𝑇 >

= x[𝑘] < 𝑝 𝑡 − 𝑘𝑇 , 𝑝 𝑡 − 𝑘𝑇 >

+

𝑙≠𝑘

𝑥[𝑙] 𝑅𝑝 𝑙 − 𝑘 𝑇

How Can We Avoid ISI?

<𝑦𝑏𝑏 𝑡 , 𝑝 𝑡 − 𝑘𝑇 >
𝑦𝑏𝑏(𝑡) 𝑦[𝑘]

Decoder
ෝ𝑚[𝑘]

demodulator

𝐸𝑝

inter-symbol interference (ISI) 𝑅𝑝 𝜏 =< 𝑝 𝑡 , 𝑝 𝑡 − 𝜏 >

autocorrelation function



How Can We Avoid ISI?

• As a first observation, the useful signal x[k] is multiplied by the energy 

of the waveform Ep. Therefore, this decoder is able to collect all the 

energy created by the channel through multiple propagation paths.

• In order to have zero ISI, we need to ensure that the effective waveform 

𝑝 𝑡 is such that its correlation function satisfies

𝑅𝑝 𝑘𝑇 = 0 for all 𝑘 ≠ 0

• Nyquist criterion for zero ISI:  p(t) should be orthogonal to all its time 
shifts at multiples of the symbol time T.



How Can We Avoid ISI?

• As a first observation, the useful signal x[k] is multiplied by the energy 

of the waveform Ep. Therefore, this decoder is able to collect all the 

energy created by the channel through multiple propagation paths.

• In order to have zero ISI, we need to ensure that the effective waveform 

𝑝 𝑡 is such that its correlation function satisfies

𝑅𝑝 𝑘𝑇 = 0 for all 𝑘 ≠ 0

• Nyquist criterion for zero ISI:  p(t) should be orthogonal to all its time 
shifts at multiples of the symbol time T.

• More generally, ISI from one symbol l to another symbol k depends on how far 
two symbols are through the autocorrelation 𝑅𝑝 ((𝑙−𝑘)𝑇).



a)

satisfies the Nyquist criterion

since:

Ex.:

0

1

𝑇

𝑡

p 𝑡

𝑇

0

1

𝜏

𝑅𝑝 𝜏 =< 𝑝 𝑡 , 𝑝 𝑡 − 𝜏 >

𝑇−𝑇



a)

satisfies the Nyquist criterion

since:

b) 𝑝 𝑡 =
1

𝑇
sinc

𝑡

𝑇
satisfies the Nyquist criterion

since

𝑅𝑝 𝜏 = ℱ−1 = sinc
𝜏

𝑇

Ex.:

0

1

𝑇

𝑡

p 𝑡

𝑇

0

1

𝜏

𝑅𝑝 𝜏 =< 𝑝 𝑡 , 𝑝 𝑡 − 𝜏 >

𝑇−𝑇

−1/2𝑇 1/2𝑇

𝐺𝑝 𝑓

𝑇

How Can We Avoid ISI?



c) 

does not satisfy the Nyquist criterion

since:

Ex.:

0

1

𝑇

𝑡

p 𝑡

2𝑇

0

2

𝜏

𝑅𝑝 𝜏 =< 𝑝 𝑡 , 𝑝 𝑡 − 𝜏 >

2𝑇−2𝑇



• d) We can reduce the impact of ISI by choosing waveforms with lower 

sidelobes than the sinc.

• A typical example is given by raised-cosine waveforms

p(t)

t

𝛼 = roll-off factor

1

2𝑇
(1 + 𝛼)

B=
1

𝑇
(1 + 𝛼)



• Equalization methods are used by communication engineers to 

mitigate the effects of the intersymbol interference.

• The equalizer attempts to compensate for the channel

• Equalizers can be linear or non-linear.

What to Do if ISI is Present?

<𝑦𝑏𝑏 𝑡 , 𝑝 𝑡 − 𝑘𝑇 >
𝑦𝑏𝑏(𝑡) ො𝑦 [𝑘]

Decoder
ෝ𝑚[𝑘]

demodulator

Equalizer
𝑦[𝑘]



What to Do if ISI is Present?
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What to Do if ISI is Present?

• Note: The SINR of the linear equalizer scheme decreases for successive 
symbols: equalization causes noise to accumulate (try!).



What to Do if ISI is Present?



What to Do if ISI is Present?



What to Do if ISI is Present?



What to Do if ISI is Present?



What to Do if ISI is Present?



How to Stream Data in the Frequency Domain?

• Frequency-domain transmission:

𝑥 𝑡 = 

𝑛=1

𝑁

𝑥[𝑛]𝜑𝑛 𝑡

f

≥ 1/𝑇
𝜑𝑛 𝑡 = u 𝑡 exp 𝑗2𝜋

𝑛

𝑇
−

𝑁

2𝑇
𝑡

𝑥[1]

𝑥[2]

.

.

.

where u(t) has energy equal to one and its 
Fourier transform guarantees no ISI in the 
frequency domain



How to Stream Data in the Frequency Domain?

• Frequency-domain transmission:

• Waveform u(t) can be chosen as a rectangle with duration T or as the 

Fourier transform of a raised-cosine waveform.

𝑥 𝑡 = 

𝑛=1

𝑁

𝑥[𝑛]𝜑𝑛 𝑡

f

≥ 1/𝑇
𝜑𝑛 𝑡 = u 𝑡 exp 𝑗2𝜋

𝑛

𝑇
−

𝑁

2𝑇
𝑡

𝑥[1]

𝑥[2]

.

.

.

where u(t) has energy equal to one and its 
Fourier transform guarantees no ISI in the 
frequency domain



How to Stream Data in the Frequency Domain?

• Frequency-domain transmission:

𝐵 ≈
𝑁

𝑇

-
𝑁

2𝑇
+

1

𝑇
0 𝑁

2𝑇

1

𝑇



What is the Effect of the Channel?

• Convolutive channels (i.e., filters) H(f) do not affect the 

orthogonality of OFDM subcarriers.

• This is one of the key advantages of OFDM, which has motivated its 

adoption in most modern systems.

• Each OFDM subcarrier 𝑓𝑛 is merely multiplied by the value 𝐻 𝑓𝑛 .



What is the Effect of the Channel?

4
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What About 5G?

[Bhushan et al ’17]

• Subcarrier spacing increases (and hence T decreases) with the overall 
bandwidth in order to avoid N being too large for complexity reasons.

• The available bandwidth depends on the carrier frequency.



What About 5G?

[Keysight Technologies  ‘18]
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What About 5G?

[Keysight Technologies  ‘18]



What About 5G?



What About 5G?

[Bhushan et al ’17]

• Different services will share the same time-frequency resources.

• MBB = Mobile BroadBand
• D2D = Device-to-Device



Can We Use a Large N to Improve the Performance?

• The encoders and decoders studied up to now operate on one symbol, 
i.e., on two real dimensions or one complex dimension, at a time.

• The probability of error is hence determined by the minimum distance 
between constellation points in the two dimensional signal space.

• This type of systems are known as being uncoded.

• Can we improve the probability of error by coding and decoding over 
multiple symbols (i.e., over N>1 complex dimensions)?

• In other words, can we improve the system performance by coding?



How Do We Define Performance?

• 1) Bandwidth or spectral efficiency

• Since N=BT (complex dimensions), T=1/B is the minimum symbol 
durations for a complex dimension or two real dimensions. Therefore, 
we also write 



How Do We Define Performance?

• 1) Bandwidth or spectral efficiency

• Since N=BT (complex dimensions), T=1/B is the minimum symbol 
durations for a complex dimension or two real dimensions. Therefore, 
we also write 

• 2) Power or energy efficiency

• 3) Complexity

for a given 𝑃𝑒



Can We Use a Large N to Improve the Performance?
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Can We Use a Large N to Improve the Performance?

• We have concluded that repetition coding offers:

• a coding gain (that is, an improvement of the energy efficiency) of 
10log10𝑁 dB

• a reduction of spectral efficiency by 1/N



What is the Optimal Trade-Off between Energy and 
Bandwidth Efficiencies?

1948



Who is Claude Shannon Again?

• He’s the most important genius you’ve never heard of, a man whose 

intellect was on par with Albert Einstein and Isaac Newton.

• At the age of 21, he published what’s been called the most important 

master’s thesis of all time, explaining how binary switches could do 

logic. It laid the foundation for all future digital computers.

• At the age of 32, he published “A Mathematical Theory of 

Communication,” which has been called “the Magna Carta of the 

information age.” Shannon’s masterwork invented the bit, or the 

objective measurement of information, and explained how digital codes 

could allow us to compress and send any message with perfect accuracy.

Excerpts from this post

https://medium.com/the-mission/10-000-hours-with-claude-shannon-12-lessons-on-life-and-learning-from-a-genius-e8b9297bee8f


Who is Claude Shannon Again?

• He worked on the top-secret transatlantic phone line connecting FDR 

and Winston Churchill during World War II and co-built what was 

arguably the world’s first wearable computer. He learned to fly airplanes 

and played the jazz clarinet. He rigged up a false wall in his house that 

could rotate with the press of a button, and he once built a gadget whose 

only purpose when it was turned on was to open up, release a 

mechanical hand, and turn itself off. Oh, and he once had a photo spread 

in Vogue magazine.

Excerpts from this post

https://www.youtube.com/watch?v=G5rJJgt_5mg
https://medium.com/the-mission/10-000-hours-with-claude-shannon-12-lessons-on-life-and-learning-from-a-genius-e8b9297bee8f
https://www.youtube.com/watch?v=vPKkXibQXGA
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What is the Optimal Trade-Off between Energy and 
Bandwidth Efficiencies?

repetition code (N=2)

coding gain = 3 dB
spectral efficiency loss = 1/2



What is the Optimal Trade-Off between Energy and 
Bandwidth Efficiencies?

repetition code (N=4)

coding gain = 6 dB
spectral efficiency loss = 1/4



What is the Optimal Trade-Off between Energy and 
Bandwidth Efficiencies?

binary 
code

const. 
maps

m

k bits n bits

information 
bits

encoded
bits

x



What is the Optimal Trade-Off between Energy and 
Bandwidth Efficiencies?

(n,k):
n = number of encoded bits
k = number of information bits
r = k/n code rate



What is the Optimal Trade-Off between Energy and 
Bandwidth Efficiencies?

With QPSK constellation, we have N=n/2 
and



What is the Optimal Trade-Off between Energy and 
Bandwidth Efficiencies?

Ex: (n=31,k=26)
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How to Encode over Multiple Dimensions?
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How Do Convolutional Codes Work?

• Assume BPSK, and encode the information bits m in a stream b[1], b[2], … 

where b[i]=1 if m[i]=1 and b[i]=-1 if m[i]=0.

• Example: m=(m[1]=0, m[2]=1, m[3]=1, m[4]=0,…, m[k]=1)  message

b= (b[1]=-1,  b[2]=1,  b[3]=1,   b[4]=-1,…, b[k]=1)  uncoded

(signed) bits

• A convolutional encoder takes as input k information bits and outputs n

encoded bits.

binary 
code

const. 
maps

m -> b

k bits n bits

encoded
bits

x

information
bits



How Do Convolutional Codes Work?

• The rate of the code is defined as r=k/n.

• Note that, with BPSK modulation, the spectral efficiency is computed as 

follows: 

• As seen, this can be improved to 

with QPSK.



How Do Convolutional Codes Work?

D D
𝑏[𝑗] 𝑏[𝑗 − 1] 𝑏[𝑗 − 2]

convolutional encoder

𝑥 2𝑗 − 1 = 𝑏 𝑗 𝑏[𝑗 − 2]

• Example: r=1/2 and constraint length (memory) = 3

𝑥 2𝑗 = 𝑏 𝑗 𝑏[𝑗 − 1]𝑏[𝑗 − 2]

x[j]=(x[2j-1], x[2j])

input: uncoded (signed) bits output: coded (signed) bits

𝑏[𝑗]



• Example: r=1/2 and constraint length (memory) = 3

• All registers are initialized to 1.

How Do Convolutional Codes Work?

D D
𝑏[𝑗] 𝑏[𝑗 − 1] 𝑏[𝑗 − 2]

𝑥 2𝑗 − 1 = 𝑏 𝑗 𝑏[𝑗 − 2]

𝑥 2𝑗 = 𝑏 𝑗 𝑏[𝑗 − 1]𝑏[𝑗 − 2]



• State diagram description

1,1

1,-1-1,1

-1,-1

-1/1,-1

-1/-1,1 1/1,-1 1/-1,1

-1/-1,-1

1/1,1

1/-1,-1
-1/1,1

state diagram

How Do Convolutional Codes Work?

state=(b[j-1],b[j-2])

b[j]/x[2j-1],x[2j]



• State diagram description

• Example:

1,1

1,-1-1,1

-1,-1

-1/1,-1

-1/-1,1 1/1,-1 1/-1,1

-1/-1,-1

1/1,1

1/-1,-1
-1/1,1

state diagram

How Do Convolutional Codes Work?

b=[1,               - 1,                 1,                   1,                -1,                    1,               1 ]
x=[1,      1,       -1,        -1,     1,        -1,      -1,       -1.    -1,         -1,      1,       -1,    -1,     -1]    

state=(b[j-1],b[j-2])

b[j]/x[2j-1],x[2j]



How Do Convolutional Codes Work?

trellis diagram

x[j]=(x[2j-1], x[2j])

lower transitions correspond to b[j]=1 and higher transitions to b[j]=-1

j



How Do Convolutional Codes Work?

• The last two transmitted bits are fixed so as to end at state (1,1).

x[j]=(x[2j-1], x[2j])

j



trellis diagram

How Do Convolutional Codes Work?

b=[1,               - 1,                 1,                   1,                -1,                    1,               1 ]
x=[1,      1,       -1,        -1,     1,        -1,      -1,       -1.    -1,         -1,      1,       -1,    -1,     -1]    



• Minimum distance decoding would require the computation of 

2𝑘 distances 

or correlations

where 𝒙𝑚 𝑗 is the jth encoded symbol for message m=0,1,….,2𝑘 − 1.

• The Viterbi algorithm allows us to solve the problem with a complexity 

that is linear in n.

How to Decode a Convolutional Code?



How to Decode a Convolutional Code?

• 1) Compute branch metrics

branch metric



y=[(1,3),      (-2,1),      (4,-1),      (5,5),    (-3,-3),    (1,-6),   (2,-4)]

How to Decode a Convolutional Code?

• Example: branch metric



y=[(1,3),      (-2,1),      (4,-1),      (5,5),    (-3,-3),    (1,-6),   (2,-4)]

How to Decode a Convolutional Code?

• Example: branch metric



How to Decode a Convolutional Code?

• 2) Feedforward pass: for each state compute path with 

maximum metric (survivor) 



How to Decode a Convolutional Code?

• Example:



How to Decode a Convolutional Code?

• Example:

metric of path 
ending in this state



How to Decode a Convolutional Code?

• Example:

metric of path 
ending in this state



How to Decode a Convolutional Code?

• Example:

• choose maximum between
-1+5 and 5-5

• prune non-surviving path (dashed)



How to Decode a Convolutional Code?

• Example:

and so on…



• 3) Backward pass: Backtracking to find the decoded sequence

How to Decode a Convolutional Code?

ෝ𝑚=[1,                    1,                 1,                   1,                  -1,                  1,               1 ]



• In the previous discussion, we have chosen the coded BPSK symbols to 

take the values +1 and -1.

• In practice, the values of the encoded symbols x depend on Eb. How?

• Set x to be +A and –A.

What  About Eb?



• In the previous discussion, we have chosen the coded BPSK symbols to 

take the values +1 and -1.

• In practice, the values of the encoded symbols x depend on Eb. How?

• Set x to be +A and –A.

• Note that we have

• We conclude that 

What  About Eb?



• To compute the probability of error, and hence the energy efficiency, we 

can use the union bound.

• How to compute the minimum distance?

How  to Compute the Probability of Error?



• Each codeword 𝒙𝑚, encoding a message m, corresponds to a path on the 

trellis.

How  to Compute the Probability of Error?



• Each codeword 𝒙𝑚, encoding a message m, corresponds to a path on the 

trellis.

• The distance between two codewords is equal to

How  to Compute the Probability of Error?

Hamming distance between 
two codewords
= number of differences



• To compute the probability of error, and hence the energy efficiency, we 

can use the union bound.

• How to compute the minimum distance?

• Consider one codeword as a reference, namely the all-1 codeword.

• We are interested in finding the detour on the trellis that has the 

minimum Hamming distance.

How  to Compute the Probability of Error?



How  to Compute the Probability of Error?

reference patha detour



How  to Compute the Probability of Error?

reference patha detour



How  to Compute the Probability of Error?

reference patha detour

• It is not difficult to see that there is no detour at a smaller Hamming 
distance (why?).



How  to Compute the Probability of Error?

reference patha detour



In Summary…

D D
𝑏[𝑗] 𝑏[𝑗 − 1] 𝑏[𝑗 − 2]

convolutional encoder
𝑥 2𝑗 − 1 = 𝑏 𝑗 𝑏[𝑗 − 2]

𝑥 2𝑗 = 𝑏 𝑗 𝑏[𝑗 − 1]𝑏[𝑗 − 2]

• This convolutional code has spectral efficiency of ½ with BPSK and 1 with 
QPSK and a coding gain with respect to BPSK of 

• This improves over repetition code with the same spectral efficiency, 
which has a coding gain of 3 dB



More Examples of Convolutional Codes

[Moon ’05]

r



More Examples of Convolutional Codes

[Moon ’05]

r



More Examples of Convolutional Codes

[Moon ’05]

r



Turbo Codes



How to Increase the Spectral Efficiency?

• In order to increase the spectral efficiency, we need to use large 
constellations.

• In fact, if we used a constellation carrying b bits, the spectral efficiency 
would be 𝑏𝑟.

• However, with a constellation that is different from QPSK, the distances 
between codewords would not be proportional to the corresponding 
Hamming distances.



How to Increase the Spectral Efficiency?

000

3

• Example:

001

011
111

101

100

110

010



How to Increase the Spectral Efficiency?

• Three main solutions:

• Trellis Coded Modulation (TCM)

• Multilevel modulation

• Bit Interleaved Coded Modulation (BICM)
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How to Increase the Spectral Efficiency?

• TCM:

code only chooses subset at the first level



Additional Material



What if We Have Multiple Antennas?

• Modern base stations and access points 
have multiple antennas.

• Mobile devices at higher frequencies can 
also pack multiple antennas.



• Massive MIMO, i.e., the deployment of base stations with hundreds of 

antennas, is a key technology for 5G.

What if We Have Multiple Antennas?



What if We Have Multiple Antennas?

• Multiple antennas at the transmitting end of the communication link enable:

• Diversity: transmission from multiple antennas can be leveraged so as 
to reduce the change of deep fades in the channel

• Space-Division Multiple Access: serving multiple users in the same 
time-frequency resources by using beamforming (see figure)



What if We Have Multiple Antennas?

• Multiple antennas at the receving end of the communication link enable:

• Diversity: reception from multiple antennas can be combined so as to 
reduce the change of deep fades in the channel



• Multiple antennas at both ends of a communication link enable transmission 
of multiple streams between a transmitter and a receiver.

(Multiple Input Multiple Output)

What if We Have Multiple Antennas?



• Consider a single-antenna device communicating to a multi-antenna 

base station.

What is the Equivalent Baseband Model?

D

uniform linear 
antenna array

1

2

3



• Consider a single-antenna device communicating to a multi-antenna 

base station.

What is the Equivalent Baseband Model?

D

𝜃

uniform linear 
antenna array

transmitter 
positioned at an 
angle θ
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3



• Consider a single-antenna device communicating to a multi-antenna 

base station.

What is the Equivalent Baseband Model?

D

𝜃

𝐷 sin 𝜃

2𝐷 sin 𝜃

uniform linear 
antenna array

transmitter 
positioned at an 
angle θ

• Relative propagation delay for antenna n

1

2

3



• Passband signal received at first antenna

• Passband signal received at the nth antenna 

What is the Equivalent Baseband Model?



What is the Equivalent Baseband Model?

• Baseband signal received at the nth antenna 

• Define the steering vector (𝑁𝑎 = number of antennas)



What is the Equivalent Baseband Model?
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How to Demodulate and Decode?

• Consider transmission in the absence of ISI and communication using a 
time-domain waveform 

• Received signals on the antennas 

where 



How to Demodulate and Decode?

• Maximum ratio combining maximizes the signal-to-noise ratio
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How to Demodulate and Decode?

• Consider transmission in the absence of ISI and communication using a 
time-domain waveform 

• Maximum ratio combining maximizes the signal-to-noise ratio



How to Demodulate and Decode?

• It can be proved that

since the power of independence random variables is equal to the sum of 
the individual powers.



What is the Performance Gain?

• It can be proved that

since the power of independence random variables is equal to the sum of t
the individual powers.

• Hence, the SNR is improved by a factor equal to the number of antennas:



What is the Performance Gain?

𝑁𝑎 = 1

𝑁𝑎 = 2

𝑁𝑎 = 3

𝑁𝑎 = 4

BPSK



What Can We Gain with MIMO?

• With MIMO with 𝑁𝑎 antennas at the transmitter and receiver, we can 
communicate 𝑁𝑎 data streams simultaneously.

• In this way, the spectral efficiency is multiplied by 𝑁𝑎.



What Can We Gain with MIMO?

[Bliss et al ‘05]

• MIMO provides a multiplexing gain and not merely a coding gain.

𝑁𝑎

𝑁𝑎

𝑁𝑎

𝑁𝑎
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