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Abstract—Caching of popular multimedia content at small-cell
base stations (BSs) is a promising solution to reduce the traffic
load of macro-BSs without relying on a high-speed backhaul
architecture. While most prior work analyzed the effect of small-
cell caching, or femto-caching, under the assumption of negligible
interference between macro-BS and small-cell BS, this paper
contributes to a more recent line of work in which the benefits
of caching are reconsidered in the presence of interference on
the downlink channel. In particular, a binary fading one-sided
interference channel is considered in which the small-cell BS,
whose transmission is interfered by the macro-BS, has a limited-
capacity cache. An information-theoretic metric that captures
the delivery latency is defined and fully characterized through
information-theoretic achievability and converse arguments as a
function of the cache capacity, as well as of the capacity of the
backhaul link connecting cloud and small-cell BS.

Index Terms—Edge caching, interference channel, information
theory, latency, cloud RAN.

I. INTRODUCTION

Caching of popular multimedia content at small-cell base
stations (BSs) of a cellular system, also known as femto or
edge-caching, has been widely studied in recent years as a
low-latency means to deliver video files without relying on
high-speed backhaul connections to the ”cloud” [1], [2]. Most
existing theoretical work on the performance advantages, in
terms of latency, of edge caching has focused on wireless chan-
nel models in which small-cells BSs and macro-BSs cannot
coordinate their transmissions and hence cannot manage their
mutual interference (see [1], [2] and references therein). In
contrast, recent work in [3], [4] endeavored to address the
possibility of interference management among edge nodes,
such as small-cell and macro-BSs, based on the respective
cached contents.

The papers [3], [4] proposed caching and transmission
schemes that enables coordination and cooperation at the BSs
based on the cached contents for a system with three BSs and
three users. The performance of these schemes was evaluated
in terms of the information-theoretic high signal-to-noise ratio
(SNR) metric of the degrees of freedom, or, more precisely,
of its inverse, as a function of the cache capacity of the BSs.
More recent research in [5] provided an operational meaning
for the inverse of the degrees of freedom metric used in [3],
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Figure 1: Cache and cloud-aided data delivery over binary
fading interference channels.

[4] in terms of delivery latency, and derived a lower bound
on this metric for a general system with any number of BSs
and users. Furthermore, in [6], the system model studied in
[3], [4], [5] was extended to encompass also a cloud server,
which is connected to the BSs via finite-capacity backhaul
links and can make up for partial caching of the library of files
at the BSs. The mentioned high-SNR latency metric was fully
characterized in [6] as a function of the cache and backhaul
capacity by developing achievability and converse arguments
for a number of special cases of interest. Related works that
focus on signal processing aspects of the discussed cache and
cloud-aided system include [7], [8], [9], [10].

In this work, we consider a set-up with a small-cell BS
and a macro-BS, represented by Encoder 1 and Encoder 2,
respectively, in Fig. 1. The small-cell BS (Encoder 1) is
endowed with a cache of finite capacity and can serve a small-
cell mobile user, represented by Decoder 1. The macro-BS
(Encoder 2) can serve a macro-cell user, namely Decoder
2, as well as, possibly, also Decoder 1. When intended for
Decoder 2, the transmission from the macro-BS (Encoder 2)
hence causes interference to Decoder 1. It is noted that, unlike
all mentioned prior work in which full wireless connectivity
was assumed, in the practically relevant set-up of Fig. 1, the
small-cell BS transmits with sufficiently small power so as
not to create interference at Decoder 2, yielding a partially
connected wireless channel.

The goal of this paper is to characterize the minimal delivery
latency for the system in Fig. 1 as a function of the cache
capacity at Encoder 1 and of the capacity of the backhaul
link that connects the cloud to Encoder 1. To this end, we
adopt a simplified channel model, namely the binary fading



interference channel first introduced in [11], which is further
used in [12] in order to obtain insights into the performance
of fading Gaussian one-sided interference channels.

The rest of the paper is organized as follows. In Sec. II
we present the system model, including the definition of the
key performance metric of Delivery Time per Bit (DTB). Sec.
III and Sec. V characterize the DTB for the system in Fig. 1
in the absence and presence, respectively, of a backhaul link
between cloud and Encoder 1, with Sec. IV detailing the proof
of achievability for the set-up with no backhaul connectivity.
Finally, Sec. VII concludes the paper.

Notation: Given a > 0, we define the set [a] =
{1, 2, ..., dae}. For any probability p, we define p̄ = 1− p.

II. SYSTEM MODEL

We study the cache and cloud-aided system depicted in Fig.
1. To elaborate, let L = {W1, ...,WN} be a library of N files,
which are independent and identically distributed according
to uniform distribution, so that we have Wi ∼ U([2F ]), for
i ∈ [N ], where F is the file size in bits. Encoder 1, which
models a small-cell BS, has a local cache and is able to store
µNF bits. The parameter µ is hence the fractional cache size
and represents the portion of library that can be stored at the
cache. Encoder 2, which models a macro-BS, has available the
whole library L thanks to its direct connection to the cloud.
Encoder 1 is also connected to the cloud, which stores the
entire library L, but only through a rate-limited link of capacity
C bits per channel use. The special case with C = 0, i.e., with
encoder 1 only aided by its cache, is considered first, and the
extension to the more general set-up with C > 0 will be
discussed at Sec. V.

Two receivers are served by the encoders via a binary
fading interference channel, previously studied in [11], [12].
As illustrated in Fig. 1, the signal received at Decoder 1 and
Decoder 2 at time t can be written as:

Y1(t) = G1(t)X1(t)⊕G0(t)X2(t)
Y2(t) = G2(t)X2(t),

(1)

where G(t) = (G0(t), G1(t), G2(t)) ∈ {0, 1}3 represents the
vector of binary channel coefficients at time t, and X1(t)
and X2(t) are the binary transmitted signals from Encoder
1 and Encoder 2, respectively. In (1), all operations are in
the binary field. The channel gains are distributed as G1(t) ∼
Bernoulli(ε1) and G0(t), G2(t) ∼ Bernoulli(ε2), are mutually
independent and change independently over time. The parame-
ters ε1 and ε2 describes the average quality of the communica-
tion links originating at Encoder 1 and Encoder 2, respectively,
and are hence in practice related to the transmission powers
of Encoder 1 and Encoder 2. We remark that a more general
model with different erasure probabilities for the links G0(t)
and G2(t) could also be considered but at the expense of a
more cumbersome notation and analysis, which is not further
pursued here.

Each user or decoder k, requests a file Wdk from the library
L at every transmission interval for k = 1, 2. The demand
vector is defined as d = (d1, d2) ∈ [N ]2. The system operates
according to the following two phases.

1) Placement phase: The placement phase is defined by
functions φi(·), at Encoder 1, which maps each file Wi ∈ L
to its cached version Vi:

Vi = φi(Wi) ∀i ∈ {1, ..., N}. (2)

To satisfy cache storage constraint, it is required that

H(Vi) ≤ µF. (3)

The total cache content at encoder 1 is given by:

V = (V1, ..., VN ). (4)

Note that, as in [5] and [13], we focus on caching that allows
for arbitrary intra-file coding but not for inter-file coding as per
(2). Furthermore, the caching policy is kept fixed over multiple
transmission intervals and is thus independent of the receivers’
requests and of the channel realizations in the transmission
intervals.

2) Delivery phase: The delivery phase is in charge of
delivering the given request vector d in each transmission
interval given the current channel realization. It is defined by
the following two functions.
• Encoding: Encoder 1 uses the encoding function

ψ1 : [2µNF ]× [N ]2 × {0, 1}3T → {0, 1}T , (5)

which maps the cached content V , the demand vector d and
the CSI sequence GT = (G(1), ...,G(T )) to the transmitted
codeword XT

1 = (X1[1], ..., X1[T ]) = ψ1(V,d,GT ). Note
that T represents the duration of transmission in channel
uses. Encoder 2 uses the following encoding function:

ψ2 : [2NF ]× [N ]2 × {0, 1}3T → {0, 1}T , (6)

which maps the library L of all files, the demand vector d,
and the CSI vector GT to the transmitted codeword XT

2 =
(X2[1], ..., X2[T ]) = ψ2(L,d,GT ).

• Decoding: Each decoder j ∈ {1, 2} is defined by the
following mapping:

ηj : {0, 1}T × [N ]2 × {0, 1}3T → [2F ], (7)

which outputs the detected message Ŵdj = ηj(Y
T
j ,d,G

T )
where Y Tj = (Yj(1), ..., Yj(T )) is the received signal (1) at
receiver j.

We refer to a selection for the caching function and the
encoding and decoding functions in (5)-(7) as a policy. The
probability of error is evaluated with respect to the worst-case
demand vector and decoder as

PFe = max
d∈[N ]2

max
j∈{1,2}

Pr(Ŵdj 6= Wdj ). (8)

The delivery time per bit (DTB) of a code is defined as T/F
and is measured in channel symbols per bit. A DTB ∆ is said
to be achievable if there exists a sequence of policies indexed
by the file size F for which the limits

lim
F→∞

T

F
= δ (9)

and PFe → 0 as F → ∞ hold. The minimum DTB δ∗(µ) is
the infimum of all achievable DTB when the fractional cache
capacity at encoder 1 is equal to µ.
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Figure 2: Minimum Delivery Time per Bit (DTB) δ∗(µ) for
the system in Fig. 1 with C = 0.

III. MINIMUM DTB

In this section, we derive the minimum DTB δ∗(µ) for the
system in Fig. 1 by assuming C = 0.

Proposition 1. The minimum DTB for the cache and cloud-
aided system in Fig. 1 with C = 0 is

δ∗(µ) =

{
2−µ
1−ε22

if µ ≤ µ0

δ0 if µ ≥ µ0,
(10)

with µ0 and δ0 are given by

µ0 =

{
1− ε2 if ε̄1ε2 > ε̄22ε1

2(1−ε1)(ε22−ε2+1)

2−ε1−ε2+ε1ε2−ε1ε22
if ε̄1ε2 ≤ ε̄22ε1

(11)

and

δ0 = max
( 1

1− ε2
,

2

2− ε1 − ε2 + ε1ε2 − ε1ε22

)
. (12)

Proof. See Sec. IV for achievability and Appendix A for the
converse.

To elaborate on the result in Proposition 1, consider first
the setting in which Encoder 1 has no caching capabilities, i.e.
µ = 0. In this case, Encoder 2 needs to deliver the requested
files to both decoders on a binary erasure broadcast channel.
Considering the worst-case in which two different files are
requested by two decoders, the minimum average time to serve
both users is T = 2F/(1− ε22), since with probability 1− ε22
a bit can be delivered to either Decoder 1 or Decoder 2 by
Encoder 2, yielding a minimum DTB of δ∗(0) = 2/(1− ε22).
In contrast, when the entire library is available at Encoder 1,
i.e., µ = 1, depending on the relative values of ε1 and ε2, two
different cases should be distinguished. Roughly speaking, if
the channel between Encoder 2 and the Decoders is weaker on
average than the channel between Encoder 1 and Decoder 1, or
more precisely if ε̄1 ≥ ε̄2, then the minimum DTB is limited
by transmission delay to Decoder 2 and the minimum DTB
is δ∗(1) = 1/(1 − ε2). Instead, when the channel between
Encoder 1 and Decoder 1 is weaker on average than the
channel between Encoder 2 and both decoders, or ε̄1 ≤ ε̄2,
the resulting minimum DTB depends on both ε1 and ε2. In
both cases, Encoder 2 serves a fraction 1−µ0 of the requested
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Figure 3: Optimum fractional cache size µ0 as a function of
ε1 for different values of ε2, which ranges from 0 to 1 with
step size 0.1.

file to Decoder 1, so that Encoder 1 only needs to deliver a
fraction µ0 of the requested file by Decoder 1.

As it will be detailed in the next section, a key element of
the transmission policies is that, in the channel state in which
all three links are active, the presence of the cache at Encoder
1 allows the latter to coordinate its transmission with Encoder
2 and cancel the interference caused by Encoder 2 to Decoder
1. Furthermore, from the discussion above, a fractional cache
size µ ≥ µ0 is sufficient to achieve the same DTB δ0 as with
full caching. Fig. 3 shows the value µ0 as a function of ε1
for different values of ε2. It is observed that, for fixed ε2, the
fraction µ0 decreases with ε1, showing that an Encoder 1 with
a low channel quality cannot benefit from a large cache size.
Furthermore, as the channel from Encoder 2 becomes more
reliable, i.e., for small ε2, a larger cache at Encoder 1 enables
the latter to coordinate more effectively with Encoder 2, hence
improving the DTB.

IV. PROOF OF ACHIEVABILITY

In this section, we provide details on the policies that
achieve the minimum DTB identified in Proposition 1. We
start by proving that the minimum DTB δ∗(µ) is a convex
function of µ. The proof leverages the splitting of files into
subfiles delivered using different strategies via time sharing.

Lemma 1. The minimum DTB δ∗(µ) is a convex function of
µ ∈ [0, 1].

Proof. Consider two policies that require fractional cache sizes
µ1 and µ2 and achieve DTBs δ1 and δ2, respectively. Given a
fractional cache size µ = αµ1 + (1−α)µ2 for any α ∈ [0, 1],
the system can operate by splitting each file into two parts,
one of size αF and the other of size (1−α)F , while satisfying
the cache constraints. The first fraction of the files is delivered
following the first policy, while the second fraction is delivered
using the second policy. Since the delivery time is additive
over the two file fractions, the DTB δ = αδ1 + (1 − α)δ2 is
achieved.

By the convexity of δ∗(µ) proved in Lemma 1, it suffices
to prove that the corner points (µ = 0, δ∗(0) = 2/(1 − ε22))
and (µ = µ0, δ0) are achievable. In fact, the minimum DTB



δ∗(µ) can then be achieved, following the proof of Lemma 1,
by file splitting and time sharing between the optimal policies
for µ = 0 and µ = µ0 in the interval 0 ≤ µ ≤ µ0 and by using
the optimal policy for µ = µ0 in the interval µ0 ≤ µ ≤ 1 (see
Fig. 2).

In the following, we use the notation (g0, g1, g2) ∈ {0, 1}3
to identify the channel realization (G0 = g0, G1 = g1, G2 =
g2). For instance, (0, 1, 1) represents the channel realization
in which Y1 = X1 and Y2 = X2, and (1, 0, 1) that in which
Y1 = X2 and Y2 = X2.

A. No Caching (µ = 0)

We first consider the corner point (µ = 0, δ∗(0) = 2/(1 −
ε22)). In this setting, in which Encoder 1 has no caching
capabilities, the model reduces to a broadcast erasure channel
from Encoder 2 to both decoders. The worst-case demand
vector is any one in which the decoders request different files.
In fact, if the same file is requested, it can always be treated as
two distinct files achieving the same latency as for a scenario
with distinct files. Focusing on this worst-case scenario, we
adopt the following delivery policy.

Encoder 1 always transmits X1 = 0. Encoder 2 transmits
1 bit of information to Decoder 1 in the states (1, 0, 0) and
(1, 1, 0), in which the channel from Encoder 2 to Decoder 1 is
on while the channel to Decoder 2 is off. It transmits 1 bit of
information to Decoder 2 in the states (0, 0, 1) and (0, 1, 1),
in which the channel to Decoder 2 is on while the channel
to decoder 1 is off. Instead, in states (1, 0, 1) and (1, 1, 1),
in which both channels to Decoder 1 and Decoder 2 are on,
Encoder 2 transmits 1 bit of information to Decoder 1 or to
Decoder 2 with equal probability.

Consider now the time T1 required for Decoder 1 to decode
successfully F bits. We can write this random variable as

T1 =

F∑
k=1

T1,k, (13)

where T1,k denotes the number of channel uses required to
transmit the kth bit. Given the discussion above, the variables
T1,k are independent for k ∈ [F ] and have a Geometric dis-
tribution with mean (Pr[G = (1, 0, 0)] + Pr[G = (1, 1, 0)] +
1/2Pr[G = (1, 0, 1)] + 1/2 Pr[G = (1, 1, 1)])−1 = 2/(1−ε22).
By the strong law of large numbers we now have the limit

lim
F→∞

T1

F
= E[T1] =

2

1− ε22
(14)

with probability 1. In a similar manner, the resulting delivery
time for Decoder 2 for any given bit has a Geometric distri-
bution with mean (Pr[G = (0, 0, 1)] + Pr[G = (0, 1, 1)] +
1
2 Pr[G = (1, 0, 1)] + 1

2 Pr[G = (1, 1, 1)])−1 = 2/(1 − ε22);
and, by the strong law of large numbers, we obtain that the
time T2 needed to transmit F bits to Decoder 2 satisfies the
limit lim

F→∞
T2

F = E[T2] = 2
1−ε22

almost surely. Using this limit
along with (14) allows to conclude that there exists a sequence
of policies with T/F → 2/(1 − ε22) for any arbitrarily small
probability of error.

B. Partial Caching (µ = µ0) with ε̄1ε2 ≥ ε1ε̄22

Next, we consider the corner point (µ0, δ0) under the
condition ε̄1ε2 ≥ ε1ε̄22. In this case, in which Encoder 1 has a
better channel than Decoder 2 in the average sense discussed
above, our findings show that Encoder 2 should communicate
to Decoder 1 only in the channel states in which the channel to
Decoder 2 is off. Using these states, Encoder 2 sends (1−µ0)F
bits to Decoder 1. Encoder 1 cache a fraction µ0 of each file
in the library and delivers µ0F bits of the requested file to
Decoder 1. For this purpose, coordination between Encoder 1
and Encoder 2 is needed to manage interference in the state
(1, 1, 1) in which all links are on.

A detailed description of the transmission strategy is pro-
vided below as a function of the channel state G.
1) G = (0, 0, 1): Only the channel between Encoder 2
and Decoder 2 is active, and Encoder 2 transmits 1 bit of
information to Decoder 2.
2) G = (0, 1, 0): The only active channel is between Encoder
1 and Decoder 1, and Encoder 1 transmits 1 information bit
to Decoder 1.
3) G = (0, 1, 1): The cross channel is off, and each encoder
transmits 1 bit of information to its decoder.
4) G = (1, 0, 0): Only the channel between Encoder 2
and Decoder 1 is active, and Encoder 2 transmits 1 bit of
information to Decoder 1.
5) G = (1, 0, 1): The direct channel between Encoder 1 and
Decoder 1 is off, while two other channels are on. Encoder 2
transmits 1 bit of information to Decoder 2.
6) G = (1, 1, 0): Both channels from Encoder 1 and Encoder 2
to Decoder 1 are on. Encoder 1 transmits X1 = 0 and Encoder
2 transmits 1 bit of information to Decoder 1.
7) G = (1, 1, 1): Encoder 2 transmits 1 bit X2 of information
to Decoder 2. Encoder 1 transmits X1 = X̃1⊕X2, where X̃1 is
an information bit for Decoder 1. This form of coordination is
enabled by the fact that Encoder 1 knows the bit X2, since it is
part of the µ0F cached bits from the file requested by Decoder
2. In this way, interference from Encoder 2 is cancelled at
Decoder 1.

From the discussion above, Encoder 2 transmits 1 bit of
information to Decoder 2 in the states 1), 3), 5) and 7). For
large F , the normalized transmission delay for transmitting
the requested file to Decoder 2 is then equal to

δ22 =
(

Pr[G = (0, 0, 1) + Pr[G = (0, 1, 1)]

+ Pr[G = (1, 0, 1)] + Pr[G = (1, 1, 1)]
)−1

= 1
ε̄2
.

(15)

Furthermore, Encoder 2 transmits (1 − µ0)F bits to decoder
1 in the states at 4) and 6). The required normalized time for
large F is hence

δ21 =
1− µ0

ε2ε̄2
(16)

Finally, Encoder 1 transmits µ0F bits to Decoder 1 in the
states at 2), 3) and 7). The required time is thus

δ11 =
µ0

ε̄1ε̄2 + ε̄1ε22
(17)



It can be shown that δ11 ≤ δ21 = δ22 = δ0 under the
given condition ε̄1ε2 ≥ ε1ε̄

2
2, and hence the DTB is given

by max(δ11, δ21, δ22) = δ0.

C. Partial Caching (µ = µ0) with ε̄1ε2 ≤ ε1ε̄22
Finally, we consider the corner point (µ0, δ0) under the

complementary condition ε̄1ε2 ≤ ε1ε̄
2
2, in which Encoder 2

has better channels to the decoders. In this case, as above,
Encoder 1 caches a fraction µ0 of all files. Transmission take
place as described in Sec. IV-B except for state 5) which is
modified as follows:
5) G = (1, 0, 1): Encoder 2 transmits 1 bit of information to
either Decoder 1 or Decoder 2 with probabilities α = (1 −
ε̄1ε2/ε1ε̄

2
2)/2 and 1− α, respectively.

Encoder 2 hence transmits 1 bit of information to Decoder
2 in the states at cases 1), 3) and 7) and also with probability
1 − α in case 5). For large F , the normalized transmission
delay for transmitting the requested file to Decoder 2 tends to

δ22 =
(

Pr[G = (0, 0, 1) + Pr[G = (0, 1, 1)]

+ Pr[G = (1, 1, 1)] + (1− α)Pr[G = (1, 0, 1)]
)−1

= 2
2−ε1−ε2+ε1ε2−ε1ε22

.

(18)
In addition, Encoder 2 transmits 1 bit to Decoder 1 in cases 4)
and 6) as well as in case 5) with probability α. The required
time to transmit (1−µ0)F bits from Encoder 2 to Decoder 1
is hence

δ21 =
1− µ0

ε2ε̄2 + 1
2 (1− ε̄1ε2)

. (19)

It can be shown that δ11 = δ21 = δ22 = δ0, where δ11 is
given in (17) under the given condition ε̄1ε2 ≤ ε1ε̄22, yielding
the DTB max(δ11, δ21, δ22) = δ0. This concludes the proof of
achievability.

V. CLOUD-AIDED SMALL-CELL BS

In this section, we reconsider the cloud and cache-aided
system in Fig. 1 by allowing a rate-limited connection with
capacity C > 0 between Cloud and Encoder 1, which
represents a small-cell BS as discussed in Sec. I. The system
model is first revised to include the Cloud-to-Encoder 1 link,
and then the minimum DTB is derived as a function of both
cache size µ and fronthaul capacity C.

A. System Model

The same system model as described in Sec. II is adopted
with the following caveats. In the delivery phase, the Cloud
implements an encoding function

ψC : [2NF ]× [N ]2 × {0, 1}3T → [2TCC ], (20)

which maps the library L of all files, the demand vector d
and the CSI vector GT to the signal UTC = (U1, ..., UTC

) =
ψC(L,d,GT ) to be delivered to encoder 1. Here, parameter
TC represents the duration of the transmission from Cloud to
Encoder 1 in terms of number of channel uses. We have the
inequality H(Ui) ≤ C for i ∈ [TC ] by the capacity limitations

on the Cloud-to-Encoder 1 link. Furthermore, Encoder 1 uses
the encoding function

ψ1 : [2µNF ]× [2TCC ]× [N ]2 × {0, 1}3T → {0, 1}T , (21)

which maps the cached content V , the received sig-
nal UTC , the demand vector d and the CSI sequence
GT = (G(1), ...,G(T )) to the transmitted codeword XT

1 =
(X1[1], ..., X1[T ]) = ψ1(V,UTC ,d,GT ). Note that T repre-
sents, as above, the duration of transmission on the binary
fading channel in channel uses.

Decoding and probability of error are defined as in Sec. II.
Instead, a DTB ∆ is said to be achievable if there exists a
sequence of policies, defined by (2), (6), (7), (20) and (21)
and indexed by F , such that the limits

lim
F→∞

T + TC
F

= δ (22)

and PFe → 0 as F →∞ hold. The minimum DTB δ∗(µ,C) is
the infimum of all achievable DTBs when the fractional cache
size at Encoder 1 is equal to µ and the Cloud-to-Encoder 1
capacity is equal to C.

B. Minimum DTB

In this section, we derive the minimum DTB δ∗(µ,C) for
the system in Fig. 1.

Proposition 2. The minimum DTB for the cache and cloud-
aided system in Fig. 1 is equal to (10) if

C ≤ 1− ε22; (23)

otherwise, it is given by

δ∗(µ,C) =

{
2−µ
C +

(
1− 1−ε22

C

)
δ0 if µ ≤ µ0

δ0 if µ ≥ µ0,
(24)

with µ0 and δ0 is defined in (11) and (12), respectively.

Proof. See Sec. V-C and Appendix B.

To shed light on the results in Proposition 2, consider first
the setting in which Encoder 1 has no caching capability, i.e.,
µ = 0. In this case, unlike the scenario studied in the previous
section, Encoder 1 can deliver part of the file requested by
Decoder 1 through the connection to the Cloud. Nevertheless,
if C ≤ 1− ε22, that is, if the average delay for transmission of
1 bit from cloud to Encoder 1, namely 1/C, is larger than the
corresponding delay between Encoder 2 and both decoders,
namely 1/(1− ε22) (see Sec. III), then it is optimal to neglect
Encoder 1 and operate as discussed in Sec. IV-A. Instead, if
C ≥ 1 − ε22, it is optimal for Encoder 1 to transmit parts of
the requested files, or functions thereof, which are received
from the cloud. In fact, as discussed below, it is necessary
for the cloud to transmit a coded signal obtained from both
the files requested by the users in order to obtain the DTB in
Propositon 2. Furthermore, if the fractional cache size satisfies
the inequality µ ≥ µ0, then the cache size at Encoder 1 is
sufficient to achieve the DTB δ0 corresponding to full caching
and the Cloud-to-Encoder 1 link can be neglected with no loss
of optimality.
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Figure 4: Minimum Delivery Time per Bit (DTB) δ∗(µ,C)
for the system in Fig. 1.

C. Proof of Achievability

In this section, we provide details on the policies that
achieve the minimum DTB identified in Proposition 2. We
start by noting that for C ≤ 1− ε22, achievability follows from
Proposition 1, and hence we can focus on the case C ≥ 1−ε22.
We first observe that the minimum DTB δ∗(µ,C) is a convex
function of µ for any value of C. The proof follows as in
Lemma 1 by file splitting and time sharing and is hence
omitted.

Lemma 2. The minimum DTB δ∗(µ,C) is a convex function
of µ ∈ [0, 1] for any given value of C ≥ 0.

By the convexity of δ∗(µ,C) in Lemma 2, and by the
achievability of the DTB in Proposition 1 with C = 0, and
hence also for C ≥ 0, it suffices to prove that the corner
point δ∗(0, C) = 2/C + (1 − (1 − ε22)/C)δ0 is achievable
for C ≥ 1 − ε22. To this end, we consider the worst case in
which each decoder requests a different file, and we adopt the
following policy.

The Cloud-to-Encoder 1 link is used for a normalized time
δC = TC/F = (2 − δ0(1 − ε22))/C to transmit ρF bits from
the file requested by Encoder 1, with

ρ = 2− δ0(1− ε22). (25)

Of these bits, ρF ε̄1ε2/(ε̄1ε2 + ε̄1ε̄
2
2) bits are sent to Encoder

1 by the Cloud in an uncoded form. Instead, the remaining
ρF ε̄1ε̄

2
2/(ε̄1ε2 + ε̄1ε̄

2
2) bits are transmitted by XORing each

bit of the file with the corresponding bit of the file requested
by Decoder 2. The mentioned ρF bits are sent to Decoder 1
by Encoder 1, while the remaining (1− ρ)F bits are sent by
Encoder 2 to Decoder 1, as discussed next.

The transmission strategy follows the approach described in
Sec. IV-B for all states except for case 5) in which the encoders
operate according to Sec. IV-B if ε̄1ε2 > ε1ε̄

2
2 or to Sec. IV-C

if ε̄1ε2 ≥ ε1ε̄
2
2. As for (17) the transmission of uncoded bits

from Encoder 1 to Decoder 1 requires a normalized time on
the channel

δu11 =
ρ

ε̄1ε2 + ε̄1ε̄22
. (26)

while the transmission of coded bits requires time

δc11 =
ρ

ε̄1ε2 + ε̄1ε̄22
. (27)

Similar to (16) and (19), the time required for Encoder 2 to
transmit to Decoder 1 is

δ21 =

{
1−ρ
ε2 ε̄2

if ε̄1ε2 > ε̄22ε1
1−ρ

ε2 ε̄2+ 1
2 (1−ε̄1ε2)

if ε̄1ε2 ≤ ε̄22ε1
(28)

while δ22 = δ0 is sufficient to communicate to Decoder 2.
Under the channel conditions ε̄1ε2 > ε̄22ε1, from (25), (26)
and (28), it can be shown that δu11 = δc11 ≤ δ21 = δ22 = δ0.
Therefore, the normalized time required on the edge chan-
nel is δE=max(δu11, δ

c
11, δ21, δ22) = δ0. Instead, under the

condition ε̄1ε2 ≤ ε̄22ε1, using the same equations, it can be
seen that δc11 = δu11 = δ21 = δ22 = δ0. It follows that
δE=max(δ21, δ

c
11, δ

u
11, δ22) = δ0. We can conclude that DTB

is δC + δE = δ0 + (2 − δ0(1 − ε22))/C, which is equal to
δ∗(0, C) in (24).

VI. CONCLUSIONS

As cache and cloud-aided wireless network architectures
begin to assume a prominent role in the deployment of
next-generation wireless systems, it becomes imperative to
understand the potential of interference management as a
function of the caching and backhaul capacity limitations.
This work contributed to this study by investigating an one-
sided interference scenario modeling a macro-BS coexisting
with a cache and cloud-aided small-cell BS. Using an original
information-theoretic framework that centers on the evaluation
of a minimum delivery latency metric, the trade-off between
latency and system resources has been studied, and a full
characterization has been provided under a simplified binary
fading interference channel and in the presence of full CSI.
Interesting extensions include the analysis of the impact of
imperfect CSI as well as of a more general channel model.
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APPENDIX A
PROOF OF CONVERSE FOR PROPOSITION 1

Consider any request vector d containing two arbitrary,
different files W1 and W2, and any coding scheme satisfying
PFe → 0 as F → ∞. The following set of inequalities
is based on the fact that, under any such coding scheme, a
hypothetical decoder provided with the CSI vector GT , with
the cached contents V1 and V2 in (2) relative to files W1

and W2, and with the signal G̃TXT
2 , to be described below,

must be able to decode both messages W1 and W2. The
signal G̃TXT

2 = (G̃(1)X2(1), ..., G̃(T )X2(T )) is such that
G̃(t) = 0 if G0(t) = G2(t) = 0 and G̃(t) = 1 otherwise.
Note, therefore, that G̃(t)X2(t) = X2(t) as long as either or
both G0(t) and G2(t) are equal to one. The intuition here
is that from G̃TXT

2 and GT , the hypothetical decoder can
recover Y T2 and hence W2; while from G̃TXT

2 , GT and V1,
the decoder can reconstruct Y T1 and hence decode W1. Details
are as follows:

2F = H(W1,W2)

= I(W1,W2; G̃TXT
2 , V1, V2,GT )

+ H(W1,W2|G̃TXT
2 , V1, V2,GT )

= I(W1,W2; G̃TXT
2 , V1, V2,GT )

+ H(W1|G̃TXT
2 , V1, V2,GT )

+ H(W2|G̃TXT
2 , V1, V2,GT ,W1)

(a)
= I(W1,W2; G̃TXT

2 , V1, V2,GT )

+ H(W1|G̃TXT
2 , V1, V2,GT , Y T1 )

+ H(W2|G̃TXT
2 , V1, V2,GT ,W1, Y

T
2 )

(b)

≤ I(W1,W2; G̃TXT
2 , V1, V2,GT ) + FγF

= I(W1,W2; G̃TXT
2 , V1, V2|GT ) + FγF

(c)

≤ H(V1) +H(G̃TXT
2 |G

T ) + FγF
(d)

≤ µF + T (1− ε22) + FγF ,

(29)

where γF indicates any function that satisfies γF → 0 as
F →∞. In above derivation, (a) follows from the facts that:
(i) Y T1 is a function of V1, V2, GT , and G̃TXT

2 , since XT
1 can

be assumed to depend on without loss of generality only on V1

and V2, and the vector GT0 X
T
2 can be obtained from G̃TXT

2

and GT ; (ii) Y T2 is a function of (GT , G̃TXT
2 ); (b) follows

from Fano’s inequality; inequality (c) follows from the fact
that the messages are independent of channel realization and
from Fano inequality H(V2|G̃TXT

2 ,G
T ) ≤ FγF ; (d) hinges

on the cache constraint (3) and by the following bounds:

H(G̃TXT
2 |G

T ) ≤
T∑
t=1

H(G̃(t)X2(t)|G(t))

≤ T
∑

g∈G
p(g) max

p(X2)
H(G̃X2|G = g)

≤ T (1− ε22),

(30)

where G is the set of all channel states and the last inequality
follows from the fact that the entropy in all states G = g is
maximized for X2 ∼ Bernoulli(1/2). For F →∞, (29) yields
the bound on the minimum DTB:

δ∗(µ) ≥ 2− µ
1− ε22

. (31)

Based on the fact that requested files should be retrieved from
the received signals, another bound can be derived as follows:

2F = H(W1,W2)

= I(W1,W2;Y T1 , Y
T
2 ,G

T ) +H(W1,W2|Y T1 , Y T2 ,G
T )

(a)

≤ I(W1,W2;Y T1 , Y
T
2 ,G

T ) + FγF
(b)

≤ I(W1,W2;Y T1 , Y
T
2 |G

T ) + FγF

= H(Y T1 , Y
T
2 |G

T ) + FγF
(c)

≤ T
∑
g∈G

p(g) max
p(X1,X2)

H(Y1, Y2|G = g) + FγF

(d)
= T (2− ε1 − ε2 + ε1ε2 − ε1ε22) + FγF ,

(32)
where (a) follows from Fano’s inequality; (b) follows from the
fact that channel gains are independent from files; (c) follows
in a manner similar to (30); and (d) is due to the fact that the
entropy terms in the previous step are maximized by choosing
X1 and X2 to be independent and identically distributed as
Bernoulli(1/2). With F →∞, we obtain the bound:

δ∗(µ) ≥ 2

2− ε1 − ε2 + ε1ε2 − ε1ε22
. (33)

Considering decoder 2, the file W2 should be decodable from
Y T2 , leading to the following bounds:

F = H(W2) = I(W2;Y T2 ,G
T ) +H(W2|Y T2 ,G

T )

(a)

≤ I(W2;Y T2 |G
T ) + FγF

≤ H(Y T2 |G
T ) + FγF

(b)

≤ T (1− ε2) + FγF ,

(34)

where (a) follows from Fano’s inequality and (b) follows in a
manner similar to (30) and the independence of channel gains
from files. Therefore, based on (34) as F →∞, we obtain the
bound

δ∗(µ) ≥ 1

1− ε2
. (35)

Combining (31), (33) and (35) yields the desired lower bound.

APPENDIX B
PROOF OF CONVERSE FOR PROPOSITION 2

Let us denote δC = TC/F the normalized latency on
the cloud-to-encoder 1 link and δE = T/F the normalized
latency on the channel between encoders and decoders. We
first observe that, following the same argument as in (32)-(35),
we have the bound

δE ≥ δ0 (36)

for any sequence of feasible policies. We now obtain a lower
bound on both normalized delays δE and δC by observing



that a hypothetical decoder provided with the CSI vector GT ,
with the cached content V1 and V2 in (2), with the cloud-
aided message UTC , and with the signal G̃TXT

2 described in
Appendix A can decode both messages W1 and W2. Details
are as follows:

2F = H(W1,W2)

= I(W1,W2; G̃TXT
2 , V1, V2, U

TC ,GT )

+ H(W1,W2|G̃TXT
2 , V1, V2, U

TC ,GT )
(a)

≤ I(W1,W2; G̃TXT
2 , V1, V2, U

TC ,GT ) + FγF
= I(W1,W2; G̃TXT

2 , V1, V2, U
TC |GT ) + FγF

(b)

≤ H(V1) +H(UTC ) +H(G̃TXT
2 |G

T ) + FγF
(c)

≤ µF + TCC + T (1− ε22) + FγF ,
(37)

where, as in Appendix A, γF indicates any function that
satisfies γF → 0 as F → ∞. In above derivation, steps
(a)-(b) follow as steps (a)-(b) in (29), where we note that
the inequality H(V2|G̃TXT

2 ,G
T ) ≤ FγF by Fano inequal-

ity, while (c) hinges on the cache constraint (3) and the
bound H(UTC ) ≤

∑TC

i=1H(Ui) ≤ TCC due to the capacity
constraint on the cloud-to-encoder 1 link. As F → ∞, the
inequality (37) yields the bound on the latency components δc
and δE :

1− ε22
C

δE + δC ≥
2− µ
C

. (38)

To complete the proof, we combine bounds (36) and (38) as
follows.
• For C ≤ 1− ε22, the bound (38), directly yields

δ∗(µ,C) = δE + δC ≥ δE +
C

1− ε22
δC ≥

2− µ
1− ε22

.

(39)
DTB for C = 0.

• For C ≥ 1 − ε22, two scenarios are possible. If µ ≤ µ0,
multiplying (36) by the positive coefficient 1−(1−ε22)/C
and summing the result with (38), provides the corre-
sponding result in (24). Instead, if µ ≥ µ0, from (24),
we directly obtain δ∗(µ,C) ≥ δE ≥ δ0.


