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Abstract—An emerging requirement for 5G systems is the
ability to provide wireless ultra-reliable communication (URC)
services with close-to-full availability for cloud-based applica-
tions. Among such applications, a prominent role is expected
to be played by mobile cloud computing (MCC), that is, by
the offloading of computationally intensive tasks from mobile
devices to the cloud. MCC allows battery-limited devices to run
sophisticated applications, such as for gaming or for the “tactile”
internet. This paper proposes to apply the framework of reliable
service composition to the problem of optimal task offloading in
MCC over fading channels, with the aim of providing layered,
or composable, services at differentiated reliability levels. Inter-
layer optimization problems, encompassing offloading decisions
and communication resources, are formulated and addressed
by means of successive convex approximation methods. The
numerical results demonstrate the energy savings that can be
obtained by a joint allocation of computing and communication
resources, as well as the advantages of layered coding at the
physical layer and the impact of channel conditions on the
offloading decisions.

Index Terms—Ultra-reliable communications, 5G, mobile cloud
computing, layered coding, call graph, application offloading.

I. INTRODUCTION

An emerging requirement for 5G systems is the ability to
provide wireless ultra-reliable communication (URC) services
with close-to-full availability for cloud-based applications (see,
e.g., [1]). Among such applications, a prominent role is
expected to be played by mobile cloud computing (MCC),
that is, by the offloading of computionally intensive tasks from
mobile devices to the cloud [2]. MCC allows battery-limited
devices to run sophisticated applications, such as for video
processing, object recognition, gaming, automatic translation
and medical monitoring, and can be an enabler of the “tactile”
internet [3], [4]. Well-known applications that are based on
MCC include Google Voice Search and Apple Siri.

Existing solutions for the optimization of the offloading
decisions for MCC generally abstract the contribution of the
underlying communication network by assuming reliable links
with fixed achievable rates (see, e.g., [2], [5] and references
therein). More recently, it was recognized that there is an
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Figure 1: An example of a call graph in the class of map-
reduce applications under study. Gray nodes correspond to
tasks that must be run at the mobile.

important interplay between the offloading decisions at the
application layer and the operation of the underlying com-
munication network, which can provide different trade-offs
between rate and energy expenditure at the mobile devices.
As a result, the inter-layer optimization of offloading decisions
and communication network parameters, such as transmission
powers, were studied in [6], [7] and references therein, as well
as in [8], [9]. In this line of work, the focus is on the resource
allocation of communication and computing functionalities,
and a key assumption is the reliability of the communication
links at the rates specified by current channel conditions and
by the power allocation. Furthermore, the applications to be
offloaded can be assumed to be unsplittable as in [6] or
splittable into constituent subtasks as in [8], [9].

The assumption of reliable communication is in practice too
strong when communication takes place over wireless fading
channels, especially when latency constraints prevent the use
of retransmission protocols to reduce the probability of error.
In light of this important motivation, this work aims at study-
ing the problem of joint optimization of offloading decisions
and communication system’s parameters by accounting for
the limited reliability of fading channels with given diversity
degrees.

At the application layer, we postulate, as in [10] (see also
[4]), that certain applications can be designed so as to ensure
service composition: the application can be run at different
levels of accuracy or quality of experience, with higher levels



requiring a larger number of CPU cycles. For example, in
an object recognition application based on video or image
frames, the first service level may correspond to identification
of dangerous obstructions, the second to the recognition of
landmarks, the third to the search of businesses of possible
interest, etc. We observe that the idea of service composition
is already implemented in scalable video coding and, more
generally, in successive refinement data compression. When
coupled with transmission with differentiated reliability levels
on the communication network, the approach will be referred
to as reliable service composition [10].

This paper proposes to apply the framework of reliable
service composition to the problem of optimal task offloading
in MCC over fading channels, with the aim of providing
layered, or composable, services at differentiated reliability
levels. We focus on a simple application call graph, exempli-
fied in Fig. 1, which is related to the popular “map-reduce”
programming model, in which multiple parallel tasks operate
between an input task that prepares the input (“map”) and an
output task that combines the outputs of the parallel tasks
“reduce”). In MCC, each one of the parallel task may be
offloaded or not. The application is designed, according to
the service composition principle, so that running the first
task T1, along with input and output tasks, ensures the basic
level of service, while the execution of successively more tasks
T2,T3, ... allows a higher-accuracy outcome to be obtained.
As an example, the parallel tasks may correspond to the
processing of different features to extract sufficient statistics
in a detection application.

For communication, we consider and compare both time
division (TD) transmission and superposition coding (SC),
where the latter has been widely studied for the transmission
successive refinement compression layers [11]. Inter-layer
optimization problems, encompassing offloading decisions and
communication resources, are formulated and addressed by
means of successive convex approximation methods [12].

The paper is organized as follows. In Section II, first the
system model is described and then optimization algorithms
over both offloading decisions and communication parameters
for TD and SC transmission are provided. Numerical results
are provided in Section III and the paper is concluded in
Section IV.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we define system model and problem for-
mulation.

A. System Model

We focus on the optimization of offloading decisions and
communication parameters for a given mobile user, which can
communicate to a base station (BS) via a fading wireless
channel. The BS is in turn connected to a cloud processor.
As discussed, the application to be run at the mobile is
characterized by a set of processing tasks that could be run
locally or remotely at the cloud.

Figure 2: Example of a compound call hypergraph.

Call Graph: A call graph is used to describe the relation-
ship between computing tasks (e.g., [2], [8]). In particular, in
this work, we focus on the class of “map-reduce”-type call
graphs, illustrated in Fig. 1, which is characterized by input
(“map”) task, to be run at the mobile; processing tasks Ti,
for i = 1, ...N , which may be offloaded; and an output task
(“reduce”) to be run at the mobile. As seen in Fig. 1, the
directed edge between input task and task Ti is labeled by the
size bIi in bits of the data needed for task Ti to run; while
the directed edge between each task Ti and the output task
is labeled by the number bOi of bits produced by the task.
Furthermore, each task Ti is labeled by the number of CPU
cycles vi required by its execution. Note that, if task Ti is
offloaded, bIi bits need to be transmitted in the uplink and bOi
bits should be received in the downlink direction.

Reliable Service Composition: According to the principle
of reliable service composition [10] (see also [4]), the output
task can provide services corresponding to different accuracy
or quality of experience levels depending on the number
of tasks Ti from which it receives data. In particular, it is
assumed that the tasks are ordered so that receiving from T1

allows to obtain a minimal acceptable performance, which is
referred to as Service Level 1 (SL(1)); processing the inputs
from T1 and T2 yields an enhanced performance, denoted as
SL(2); and so on for every subset {T1, ...,Ti} for i = 1, ..., N ,
which yields a service level SL(i), with full quality obtained
when the outputs of all tasks {T1, ...,TN} are available at the
output task. Note that extensions in which more general nested
subsets correspond to different quality of experience metrics
could be accommodated in the framework.

Reliable service composition requires that the ith service
level (SL(i)) be obtained with probability ri, with r1 ≥ r2 ≥
... ≥ rN . For example, in order to ensure ultra-reliability,
SL(1) may be provided with reliability r1 = 99%, while a
lower reliability may be sufficient for higher service levels.
We define also the parameters r̃i = ri/ri−1, with r̃1 = r1,
where r̃i measures the probability that SL(i) is realized given
that SL(i−1) is also attained. This follows from the definition
of SLs, which imply that SL(i) can only be realized if SL(i−1)
is.

Offloading: The offloading decisions are described by
binary variables Ii. Specifically, the ith task can be either
offloaded, which is indicated by setting Ii = 1, or computed
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locally, indicated as Ii = 0. The set of offloaded tasks is
represented by T , i.e., T = {i ∈ {1, ..., N} : Ii = 1}. If
task Ti is offloaded, a transmission power P I

i is allocated
to send bIi bits in the uplink, while PO

i is the allocated
transmission power to send bOi bits in the downlink direction.
Rayleigh fading is used to model the communication channel
between user and BS, with a diversity order of d in both uplink
and downlink. For the sake of simplicity and concreteness,
selection diversity is utilized to exploit the diversity. It is
assumed that mobile has no knowledge about the channel
while the BS has full knowledge. Channels in the uplink and
downlink direction are independent of each other. Furthermore,
we let fM and fC be mobile and cloud computing frequencies,
respectively, in CPU cycles per second. We also denote as PM

the power needed to compute locally at the mobile device.
Finally, the application latency constraint states that maximum
allowed delay, including the time need for communication and
computing, is Lmax second.

Compound Hypergraph: To simplify the interpretation
of the reliable service composition requirements, we now
introduce an alternative graphical representation that we refer
to as compound hypergraph. While this is not necessary for
what follows, we believe it to be a useful way to visualize the
reliability requirements. To elaborate, given a call graph as in
Fig. 1, a compound call hypergraph can be constructed in order
to represent the reliable service composition requirements as
follows:

• Set input node and edges between input task and tasks
Ti as in original call graph;

• Replicate the output task N times, the first corresponding
to SL(1), the second to SL(2) and so on. We refer to each
output node by the corresponding service level;

• Connect task Ti to the output nodes SL(j) with j =
i, ..., N via a directed hyperedge with head in Ti and
tail given by the set {SL(i),SL(i + 1),...,SL(N )}. The
hyperedge is labeled by the size of the output of task
Ti, namely bOi .

Fig. 2 is an example of a compound call hypergraph. The
hypergraph formalism is useful to capture the fact that, if
task Ti is offloaded, bOi bits need to be received for all the
connected SL output tasks.

Time-division vs. superposition coding Two transmission
modes are considered for offloading, namely:

• Time-division (TD) transmission: Input bits bIi for i ∈ T
on the uplink and output bits bOi for i ∈ T on the
downlink are transmitted in separate time slots, each
of duration length LI

i and LO
i , respectively. More in

detail, in a time slot of duration LI , the bits for all
the offloaded tasks are encoded into different codewords
of the same length that are summed, i.e., superimposed,
for transmission in the uplink. The same is done for the
downlink in a time-slot of duration LO.

• Superposition coding (SC): Input bits bIi for i ∈ T on the
uplink and output bits bOi for i ∈ T on the downlink are
transmitted using superposition coding in two separate

time-slots of length LI and LO, respectively. The BS
in the uplink and the mobile in the downlink decode in
lexicographical order starting from the bits corresponding
to the lower index i by means successive interference
cancellation.

B. Design Problem Formulation

We focus on the problem of minimizing the energy con-
sumption at the mobile subject to the mentioned maximum
latency constraint and reliability constraints, as well as power
constraints at the base station. The resulting optimization
problem is stated as:

minimize
∑N

i=1

(
IiP

I
i L

I
i +

(1−Ii)vi
fM PM

)
subject to

∑N
i=1

(
Ii(L

I
i + LO

i ) +
Iivi
fC + (1−Ii)vi

fM

)
≤ Lmax

ρIi (P
I , LI

i , I) ≥
√
r̃i for i ∈ T

ρOi (P
O, LO

i , I) ≥
√
r̃i for i ∈ T

PO
i ≤ PDL

max for i ∈ T
P I
i ≥ 0, PO

i ≥ 0, LI
i ≥ 0, LO

i ≥ 0
Ii ∈ {0, 1}

variables {Ii, P I
i , P

O
i , LI

i , L
O
i }

(1)
where PI = (P I

1 , ..., P
I
N ) and PO = (PO

1 , ..., PO
N ) are

the vectors of transmission powers in uplink and downlink
directions, respectively; I = (I1, ..., IN ) is the vector collect-
ing all the offloading decisions; LI

i and LO
i are the uplink

and downlink transmission times, respectively, as introduced
above. Note that problem (1) applies to both TD and SC
transmissions, with the only caveat that, with SC, we have
the additional constraint that LI

i = LI and LO
i = LO for all

i = 1, ..., N . The functions ρOi (P
O, LO

i , I) and ρIi (P
I , LI

i , I)
represent the probabilities of success for the transmissions in
the uplink and in the downlink, respectively, for the offloading
of task Ti. These functions depend on whether the transmission
takes place via TD or SC, as further discussed below.

The objective function in (1) is the sum of transmission
energy at the user, which accounts for the offloaded tasks, and
of the local computing energy, for tasks that are run locally. In
a similar manner, the first constraint accounts for the latency
of both transmission and computing. The following reliability
constraints in (1) are justified by the fact that the reliability of
SL(i), conditioned on SL(i−1), is given by the product of the
probabilities of success for uplink and downlink transmissions.
This is because task Ti ∈ T is successfully offloaded as long
as both uplink and downlink transmissions are successful. The
problem formulation in (1) is obtained by imposing equal
reliability requirements on uplink and downlink. A problem
formulation with a more general balancing could be easily
defined, but is not further considered here. Finally, the fourth
constraint imposes a power limit on the transmission of the BS,
due to the power-limited, rather than energy-limited, nature of
BS transmission.

Problem (1) is a mixed integer program. To solve this
problem, we perform an exhaustive search over the binary
variable Ii and adopt the successive convex approximation
method of [12] to optimize over the remaining variables



namely {P I
i , P

O
i , LI

i , L
O
i } for fixed offloading variables. This

method is invoked since, as further detailed below, for fixed
offloading variables, problem (1) is not convex. For instance,
the objective function of problem (1) is a non-convex bilinear
function in the optimization variables (P I

i , L
I
i ).

We now specialize problem (1) to TD and SC transmission.

1) Time Division Transmission: For TD transmission, using
outage capacity arguments, the probability of a successful
transmission for the uplink can be written as (see Appendix):

ρIi (P
I
i , L

I
i , Ii)=

1−
1− exp

(
− 2

bIi
LI
i
WI − 1

γIP I
i

)
d
 (2)

and analogously for the downlink by substituting the super-
script ”O” for ”I”. In (2), γI stands for average signal-to-noise
ratio (SNR) of the uplink channel for a unitary transmit power,
i.e., for P I

i = 1. We define the downlink average SNR γO in
a similar way. The original problem (1) can be seen to be
non-convex due to the bilinearity of the objective. Using the
successive convex approximation method in [12], the original
problem (1) is solved as outlined in Table I by means of an
iterative procedure in which the current iterate is denoted as
st = {pIi , lOi , lIi , lOi }, where t is the iteration index. At each
iteration, the following strictly convex problem is solved:

minimize
∑N

i=1

(
Ii

(
pIi (L

I
i − lIi ) +

τI
i

2 ∥LI
i − lIi ∥2

+lIi (P
I
i − pIi ) +

τP
i

2 ∥P I
i − pIi ∥2

)
+ (1−Ii)vi

fM PM

)
subject to

∑N
i=1

(
Ii(L

I
i + LO

i ) +
Iivi

fC + (1−Ii)vi

fM

)
≤ Lmax

2

bIi
LI
i
WI

−1
γIP I

i
+ ln(1− (1−

√
r̃i)

1
d ) ≤ 0 for i ∈ T

2

bOi
LO
i

WO
−1

γOPO
i

+ ln(1− (1−
√
r̃i)

1
d ) ≤ 0 for i ∈ T

PO
i ≤ PDL

max for i ∈ T
P I
i ≥ 0, PO

i ≥ 0, LI
i ≥ 0, LO

i ≥ 0
variables {P I

i , P
O
i , LI

i , L
O
i }.

(3)
Note that all the constraints in the problem above are convex.
Also, the second and third constraints are obtained from simple
algebraic manipulations from the corresponding constraints in
(1). In Table I, the step sizes are updated as λt+1 = λt(1−ϵλt)
for t ≥ 0 with λ0 ∈ (0, 1] and ϵ0 ∈ (0, 1). The algorithm in
Table I is repeated until convergence for every value of Ii.
The minimum value of the objective over all possible choices
of Ii is taken as the final solution.

2) Superposition Coding Transmission: With SC, the prob-
ability of success for uplink transmission can be written as (see
Appendix):

ρIi (P
I
i , L

I , Ii)=1−

1− exp

− 2
bIi

LIWI −1

γIP I
i −

2 bI
i

LIWI −1

∑N
j=i+1 γIP I

j




d

(4)
and analogously for the downlink. Note that here the trans-
mission periods LI and LO do not depend on the task i as
explained above. As for TD, the reliability constraint can be
expressed as

2
bIi

LIWI − 1

γIP I
i

− 1

γI
∑N

j=i+1 P
I
j −

(
ln(1− (1−

√
r̃i)

1
d )
)−1 ≤ 0

(5)
for the uplink and analogously for the downlink. Unlike TD,
these constraints are non-convex. However, they can be written
as the difference of two convex functions, which may be
dealt with as explained in [12] in the successive convex
approximation method by linearizing the negative term. This
yields the approximate reliability function:

2
bIi

LIWI −1
γIP I

i
− 1

γI
∑N

j=i+1 pI
j−
(

ln(1−(1−
√
r̃i)

1
d )

)−1 +

γI(∑N
j=i+1 γIpI

j−
(

ln(1−(1−
√
r̃i)

1
d )

)−1)2

(∑N
j=i+1(P

I
j − pIj )

)
≤ 0

(6)
where {pIi } represents the previous iterate. Following Table
I, the problem to be solved at each iteration is then (3), with
LI
i = LI and LO

i = LO as well as with the constraint above,
and the corresponding downlink constraint, in lieu of the third
and fourth constraints in (3).

III. NUMERICAL RESULTS

In this section, we provide some numerical examples based
on the analysis developed in the previous sections. We set
PM = 0.4 Watts; fM = 109 CPU cycles/s (e.g., Apple iPhone
6 processor has maximum clock rate of 1.4 GHz); fC = 1010

CPU cycles/s (e.g., AMD FX-9590 has a clock rate of 5 Ghz);
bandwidth W I = 1MHz and WO = 1MHz; and SNR levels
γI = γO = 0 dB.

We start by considering just the basic service level, namely
SL(1), in order to simplify the interpretation of the results
and to gain insight into the role of the diversity level d
on the offloading decisions. The reliability of SL(1) is set
to r1 = 0.99. Note that, given the presence of only one
offloadable task, TD and SC yield the same performance.

Table I: Successive convex approximation algorithm for TD

Initialization: Set t = 0, s0={pIi , pOi , lIi , lIo} feasible
λ0 ∈ (0, 1], ϵ0 ∈ (0, 1)

Step 1) If st satisfies a termination criterion: STOP
Step 2) Compute ŝ(st) as the solution of (3).
Step 3) Set st+1 = st + λt(ŝ(st)− st).
(S.4) t← t+ 1 and go to step 1.
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Figure 3: Mobile energy expenditure versus latency constraint
for a single service level (v = 2× 109 CPU cycles and bI1 =
bO1 = 1.4× 105 bits).

Fig. 3 presents the mobile energy versus latency constraint
Lmax for different diversity orders. If the tolerable latency is
low, then it is necessary to offload the task to the cloud since
local computing here takes around 1.7 seconds. For diversity
d = 1, the energy required to offload is outside the range
shown in the Fig. 1. An increase of diversity order provides
more reliable communication between mobile and cloud, and
therefore the offload of the task can be performed with a lower
energy expenditure. In particular, if d = 3, then it is optimal
to offload the task even for latencies larger than 1.7 seconds.
We emphasize that the discontinuity in the curves is due to
changes in the optimal offloading decisions.

We now consider reliable service composition with two
service levels, namely N = 2, accounting for both TD and SC
transmission modes. The reliability for the second level is set
to r̃2 = 0.9 and the first is still r1 = 0.99. The corresponding
mobile energy versus latency trade-offs are shown in Fig.
4 and Fig. 5, respectively. Note that here computing both
tasks locally requires a latency of approximately 3.6 seconds.
Considering first TD transmission, we observe from Fig. 4
that achieving low latency requires tolerating a high energy
cost by offloading both tasks. When increasing the latency,
the mobile has incentive to first offload the task with higher
computation cost, here the first task, while the second task is
run locally due to the lower energy consumption. For d = 2
and higher latencies, when the first task can be run locally, it
becomes optimal to offload only the second task; while, when
the latency is large enough, both tasks should be run locally.
With a larger latency, instead, the solution (I1 = 1, I2 = 0)
turns out to be optimal over a larger range of latencies.

Comparing TD with SC, by observing Fig. 5, we note
that SC enables a drastic energy reduction for offloading and
hence makes the decision to offload both tasks optimal for all
latencies up to 3.6 seconds when d = 2, and for the entire
range of considered latencies when d = 3.

IV. CONCLUDING REMARKS

In this paper, the mobile energy versus latency tradeoff
was explored for mobile cloud computing applications over
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Figure 4: Mobile energy expenditure versus latency constraint
for a single service level (v1 = 2 × 109 CPU cycles, v2 =
1.6 × 109 CPU cycles, bI1 = bO1 = 1.4 × 105 bits and bI2 =
bO2 = 2.8× 105 bits).

fading channels by accounting for the principle of reliable
service level composition at the application layer. The aim of
this approach is providing layered, or composable, services at
differentiated reliability levels. Inter-layer optimization prob-
lems, encompassing offloading decisions and communication
resources, were formulated and addressed by means of suc-
cessive convex approximation methods. The numerical results
demonstrated the energy savings that may be obtained by a
joint allocation of computing and communication resources, as
well as the advantages of superposition coding at the physical
layer and the impact of channel conditions on the offloading
decisions.

APPENDIX: CALCULATION OF THE PROBABILITIES OF
SUCCESS

For TD transmission, assuming diversity d = 1 and
Rayleigh fading channel gain GI , the probability of success
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Figure 5: Mobile energy expenditure versus latency constraint
for a single service level (v1 = 2 × 109 CPU cycles, v2 =
1.6 × 109 CPU cycles, bI1 = bO1 = 1.4 × 105 bits and bI2 =
bO2 = 2.8× 105 bits).



is the complement of the outage probability, namely

Pr
[
LI
iW

I log(1 +GIP I
i γ

I) ≥ bIi
]
=

Pr

GI ≥ 2

bIi
LI
i
WI

−1
γIP I

i

 = exp

− 2

bIi
LI
i
WI

−1
γIP I

i

 .
(7)

Generalizing, with a diversity order d ≥ 1 and selection
diversity, we obtain

ρIi (P
I
i , L

I
i , Ii) = 1−

1− exp

(
− 2

bIi
LI
i
WI

−1
γIP I

i

)d

, (8)

and similar calculations apply for ρOi (P
O
i , LO

i , Ii).
For SC transmission, assuming for d = 1, following similar

arguments, we have

ρIi (P
I , LI , I)

= Pr
[
LIW I log2

(
1 +

GIP I
i γI

1+γIGI
∑N

i=i+1 P I
i

)
≥ bIi

]
= Pr

[
GIPiγ

I ≥
(
2

bIi
LIWI − 1

)(
1 + γIGI

∑N
i=i+1 P

I
i

)]

= Pr

GI ≥ 2
bIi

LIWI −1

γIPi−

2

bI
i

LIWI −1

γI
∑N

i=i+1 P I
i


= exp

− 2

bIi
LI
i
WI

−1

γIPi−

2

bI
i

LIWI −1

γI
∑N

i=i+1 P I
i

 ,

where all layers beyond i are treated as noise in the decoding.
With selection diversity, we obtain the reliability function

stated in the text.
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