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Abstract8

Logical characterisation of a behavioural equivalence relation precisely specifies the set of formulae9

that are preserved and reflected by the relation. Such characterisations have been studied extensively10

for exact semantics on discrete models such as bisimulations for labelled transition systems and11

Kripke structures, but to a much lesser extent for approximate relations, in particular in the context of12

hybrid systems. We present what is to our knowledge the first characterisation result for approximate13

notions of hybrid refinement and hybrid conformance involving tolerance thresholds in both time14

and value. Since the notion of conformance in this setting is approximate, any characterisation15

will unavoidably involve a notion of relaxation, denoting how the specification formulae should16

be relaxed in order to hold for the implementation. We also show that an existing relaxation17

scheme on Metric Temporal Logic used for preservation results in this setting is not tight enough for18

providing a characterisation of neither hybrid conformance nor refinement. The characterisation19

result, while interesting in its own right, paves the way to more applied research, as our notion of20

hybrid conformance underlies a formal model-based technique for the verification of cyber-physical21

systems.22
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1 Introduction29

Cyber-physical systems integrate discrete aspects of computation, with continuous aspects30

of physical phenomena, and asynchronous aspects of communication protocols. To test31

cyber-physical systems against their discrete abstractions (also called discrete-event systems),32

several notions of conformance have been proposed [13, 28, 31]; we refer to the tutorial volume33

edited by Broy et al. [8] for an overview. Logical characterisations of conformance [21, 3]34

are of particular importance in this context, because they precisely specify the set of logical35

formulae that are preserved and reflected under conformance (we refer to [4] for an accessible36

introduction). Such logical characterisations provide a rigorous basis for design trajectories37

that involves subsequent conformance test at different layers of abstraction. Moreover, logical38

characterisations are stepping stones towards devising the notion of characterising formulae,39

which have been used in tools and algorithms for checking conformance [4, 10].40

In the context of hybrid systems, i.e., abstractions of CPSs integrating both discrete41

and continuous aspects, some notions of conformance have been proposed in the recent42

literature [2, 1, 11, 16] (see [22] for an overview). However, not much is known about logical43

characterisation of such notions; to our knowledge, the closest known results to a logical44

characterisation of hybrid conformance are the logical preservation results [16, 1] and the45
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characterisation of metric bisimulation [12] and stochastic bisimulation for systems with46

rewards [17] (see the related work section for an in-depth discussion). This paper aims47

at bridging this gap and comes up with, to the best of our knowledge, the first logical48

characterisation of approximate conformance for hybrid systems [2, 1] in terms of Metric49

Temporal Logic [23, 5].50

To this end, we study the hybrid conformance notion due to Abbas, Mittelmann and51

Fainekos [2, 1], as well as its its associated preorder which we call hybrid refinement (for both52

notions, we also study their extensions to non-deterministic hybrid-systems). We provide53

logical characterisations for each of theses notions in terms of Metric Temporal Logic (MTL)54

and suitable notions of relaxation. We also show that the notions of relaxation proposed in55

the preservation result by Abbas, Mittelmann and Fainekos [1] is insufficiently precise to lead56

to a logical characterisation. We formulate our results in a general semantic domain, called57

generalised timed traces, which encompasses both discretised hybrid systems (as studied58

by Abbas, Mittelmann, and Fainekos [1]) and their continuous variants that have not been59

given a logical characterisation so far, to the best of our knowledge. Moreover, we study a60

generalisation of these results for both bounded and unbounded nondeterministic systems.61

The contributions of this paper have both theoretical and practical motivation and62

relevance. The theoretical motivation for logical characterisation is that it not only provides63

an idea about the logic that is preserved under conformance (subject to relaxation) such64

as – in our case – MTL, but also it specifies precise bounds on the relaxation required for65

such formulae to hold. The practical motivation is that firstly, it provides designers with a66

precisely specified set of properties that carry over from specification to implementation (while67

preservations results only provide a rough approximation of such properties) and moreover,68

logical characterisation sets the scene for developing algorithms for finding distinguishing69

formulae, and hence, provide an alternative means for checking hybrid conformance. Logical70

characterisations have also proven to be a versatile auxiliary tool in e.g. developing congruence71

formats for operational semantics [7], as well as providing approximations of hybrid systems72

[26].73

The rest of this paper is organised as follows. In Section 2, we review the related work74

and position our contributions with respect to the state of the art. In Section 3, we define75

some preliminary notions, including our semantic domain, the notions of hybrid refinement76

and conformance [1] and Metric Temporal Logic [6]. Subsequently in Section 4, we define77

appropriate notions of relaxations to characterise these notions using Metric Temporal Logic.78

We compare our results to the past preservation results in Section 5, where we show that79

the existing relaxation scheme for Metric Temporal Logic are too lax to serve for a logical80

characterisation of hybrid refinement and conformance. Namely, we prove there is a class of81

non-conforming implementations that do satisfy all relaxed MTL formulae satisfied by the82

specification. In Section 6, we conclude the paper, and present the directions of our ongoing83

research in this domain.84

2 Related work85

Logical characterisations of conformance relations allow for identifying conforming systems by86

means of the logical formulae satisfied by them. They also facilitate the converse operation,87

important from a practical perspective, namely, distinguishing non-conforming systems with88

a formula that forms a succinct counterexample.89

Characterisations using modal logic have been studied extensively in the setting of exact90

behavioural semantics on discrete models such as labelled transition systems [21, 30]. In this91
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context, characterisations use direct comparison i.e. inclusion of sets of formulae satisfied by92

systems in question; distinguishing formulae are those belonging to a set difference of such93

sets. Our work differs from this line of work in that it deals with approximate behavioural94

semantics and hence, cannot use standard inclusion check between sets of satisfied formulae.95

To our knowledge, the first notion of characterisation for approximate behavioural96

semantics has been offered in the context of Metric Transition Systems [12] for linear and97

branching distances based on Metric Bisimulation [20, 19].98

On a general level, our semantic model and conformance relation are different from99

those in [12, 20] in that they involve separate time and value dimensions, both of which100

can be subject to perturbations. Our choices for the semantic model and the notion of101

conformance are motivated by the practical applications of hybrid conformance [2, 1] in102

testing cyber-physical systems, e.g., in the automotive- [29] and healthcare domain [27].103

Moreover, from a technical perspective, we base our characterisation on a logic with a104

qualitative (binary) satisfaction relation, but with quantities embedded in its syntax, namely,105

the Metric Temporal Logic (MTL). However, our approach can be easily translated to a106

quantitative setting of [12], by defining an evaluation of a formulae as the least degree of107

relaxation after applying which the formula is satisfied by a system. Also in this case, the108

choice of Metric Temporal Logic [23, 5] (and its concrete instantiation with signal values for109

propositions: Signal Temporal Logic [24]) is motivated by its wide-spread use in the hybrid110

systems literature and in practice [1, 18, 15].111

Prabhakar, Vladimerou, Viswanathan, and Dullerud [26] provide a characterisation112

theorem for approximate simulation [19]; the characterisation serves as an auxiliary tool for113

developing approximations of hybrid systems with polynomial flows. In terms of semantic114

domain and relation under consideration, their characterisation result is strongly related to115

[12]. One technical feature which makes that paper somewhat closer in style to ours than116

[12] is the use of a relaxation operator (called a shrink of a formula in [26]).117

Desharnais, Gupta, Jagadeesan and Panangaden [14] provide an approximate charac-118

terisation of probabilistic bisimulation for labelled Markov processes. They do so using a119

quantitative extension of Hennessy-Milner logic. This work has led to several follow-up applic-120

ations, e.g., to a logical characterisation of differential privacy by Castiglioni, Chatzikokolakis,121

and Palamidessi [9]. Gburek and Baier [17] have recently investigated characterisation of122

bisimulation for stochastic systems with actions and rewards with two probabilistic logics: a123

very expressive APCTL∗, and simpler APCTL◦, that can provide succinct distinguishing124

formulae. Unlike their approach [17], our work is set in the context of standard hybrid125

systems.126

The results that appear closest to ours in terms of underlying models, and conformance127

relations that allow for disturbances in both time and space values, are logical preservation128

results for hybrid conformance [1] and Skorokhod conformance [16]. Both papers define129

syntactical transformations on temporal logics yielding more relaxed formulae; they differ130

on the conformance relations and temporal logics investigated. We improve upon them by131

providing different relaxation schemes that are proven to be tight, i.e., are precisely sufficient132

for a characterisation. Moreover, we generalise their results to semantic models that can133

encompass both discrete and continuous behaviour and non-determinism. Our framework of134

generalised timed traces subsumes both discrete timed state sequences (TSSs) and continuous135

trajectories, e.g., allowing for a comparison of behaviours of different types (such as sampled136

discretised behaviour against continuous trajectories).137
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Figure 1 Examples of (a) continuous and (b) discretised GTTs

3 Preliminaries138

In this section, we define some preliminaries regarding our semantic domain, Metric Temporal139

Logic and notions of hybrid conformance and refinement.140

Generalised timed traces and hybrid systems. In order for our theory to remain as141

general as possible, we define generalised timed traces, a notion that generalises both discrete142

semantic models, such as timed state sequences (TSSs) [1], and continuous-time trajectories143

[16]. A generalised timed trace is essentially a mapping from a discrete or continuous time144

domain to a set of values within some metric space.145

I Definition 1. Let (Y, dY) be a metric space. A Y-valued generalised timed trace is a146

function µ : T → Y such that T ⊆ R≥0 is the time domain, and in addition 0 ∈ T is the147

least element in T . The set of all Y-valued generalised timed traces is denoted by GTT (Y).148

Observe that a timed state sequence (TSS) is simply a generalised timed trace with T149

being a finite subset of R≥0; moreover, in case T is an interval within R≥0, we obtain a150

standard continuous-time trajectory. We could generalise the domain of µ to any totally-151

ordered metric space, but we dispense with this generalisation here for the sake of simplicity.152

Likewise, the assumption that 0 is the least element of the time domain could be also153

dispensed with.154

I Example 2. Consider trajectories µ1 and µ2 depicted in Figure 1.(a), where µ1 represents155

the specification of a system and µ2 its implementation. The mappings from the subset of156

reals in the domain of each trajectory to the value of x at the corresponding point form157

real-valued GTTs.158

Consider the discretisation of these two trajectories where we sample the trajectories159

with a period T and we record whether the value of x at the sampling point is higher than α160

(denoted by p .= x > α) or at most α (denoted by ¬p .= x ≤ α). The corresponding mappings161

from {0, T, 2T, 3T, 4T} to P = {p,¬p} are discretised GTTs depicted in Figure 1.(b) are162

P -valued GTTs.163

A hybrid system, defined below, is a mapping from initial conditions and inputs to sets164

of generalised (output) traces. We use the notation P(S) and P
FIN

(S) denote, respectively,165

a powerset of S, and the powerset of S restricted to the finite subsets.166

I Definition 3. Given sets C and I of initial conditions and input space, the set of Y-167

valued hybrid systems, denoted by H(C, I,Y) is the set of all functions of the type C ×168

I → P(GTT(Y)). In addition, we distinguish the following two classes of hybrid systems:169

the class of finitely branching hybrid systems is defined as HFIN (C, I,Y) := {H : C ×170
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I → PFIN (GTT(Y))}; similarly, the class of deterministic hybrid systems is defined as171

HDET (C, I,Y) := {H : C × I → P(GTT (Y)) | ∀c∈C,i∈I |H(c, i)| = 1}.172

Note that we intentionally left the nature of the initial conditions and input space implicit,173

as they play no role in the development of this paper. In reality, input conditions are typically174

constraints on input signals and the input space is typically a generalised timed trace with175

the same domain as the generalised timed trace for output. Also note that we focus mainly176

on finitely branching hybrid systems. When the parameters I, C,Y are not relevant or are177

clear from the context, we leave them out and refer to the set of hybrid systems with fixed178

parameters as H.179

3.1 Metric Temporal Logic180

Metric Temporal Logic (MTL) [23, 5] is an extension of Linear Temporal Logic [25] with181

intervals; the introduction of intervals allows for reasoning about the real-time behaviour of182

dynamic systems once the propositions of the logic are interpreted over real-valued signals183

[24] (this interpretation of MTL is also called Signal Temporal Logic, or STL in the literature).184

MTL serves as an intuitive formalism for reasoning about hybrid systems [24, 1, 18, 15].185

We work with the following language MTL+ of MTL formulas in the negation-normal
form

φ ::= T | F | p | ¬p | φ ∧ φ | φ ∨ φ | φUI φ | φRI φ

where p ranges over a collection of atomic propositions AP , and I ranges over intervals,186

UI denotes the until operator and RI denotes the release operator (both annotated with187

interval I).188

For the purpose of relaxation, we shall also use the slightly extended language MTL+
ext

that in addition includes p+(ε) and p−(ε) constructs. Intuitively, they denote, respectively,
the expansion- and contraction of the domain of validity of proposition p by ε.

φ ::= T | F | p | ¬p | φ ∧ φ | φ ∨ φ | φUI φ | φRI φ | p+(ε) | p−(ε) (ε ∈ R≥0)

I Example 4. To illustrate the intuitive meaning of p+(ε) and p−(ε) consider the predicate189

p := x > α in Example 2. p+(ε) relaxes p into x > α− ε; in other words p+(ε) allows for an190

error margin of ε when checking p, while p−(ε) shrinks p into x > α+ ε. The latter is helpful191

for defining the relaxation of negated propositions.192

In order to provide the formal semantics for MTL+, we need two auxiliary definitions of193

δ-expansion and δ-contraction. Below, we assume the context of some metric space (Y, dY),194

and S ranges over subsets of Y.195

E(S, δ) := {x ∈ Y | ∃y ∈ S : dY(x, y) ≤ δ} (δ-expansion)196

C(S, δ) := Y \ E(Y \ S, δ) (δ-contraction)197

Note that our definitions slightly differ from [1]. In particular, for any y0 ∈ Y, and the198

set Bε(y0) = {y ∈ Y |, dY(y, y0) > ε} (complement of an ε-ball of point y0), we have199

E(Bε(y0), ε) = {y0} (rather than ∅ which the expansion of [1] would yield).200

We also remark that the semantics of MTL+
ext is provided in the context of an interpretation201

function O : AP → P(Y). This is a standard approach, similar to e.g. [1], but also to202

Signal Temporal Logic [24]. Note that the nature of the interpretation function restricts the203

expressive power of the logic, as the propositions are interpreted over the domain of values204

only (excluding time domain), which precludes expressing more powerful properties such as205

signal tracking (which is possible in Freeze LTL [16]).206

ICALP 2020
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I Definition 5. Let µ : T → Y be a generalised timed trace, t ∈ R, and O : AP → P(Y) be207

an interpretation mapping for atomic propositions. The semantics of MTL+
ext formulas is208

defined as follows:209

(µ, t) |= T (µ, t) 6|= F210

(µ, t) |= p iff t ∈ T and µ(t) ∈ O(p)211

(µ, t) |= ¬p iff t ∈ T and µ(t) /∈ O(p)212

(µ, t) |= p+(ε) iff t ∈ T and µ(t) ∈ E(O(p), ε)213

(µ, t) |= p−(ε) iff t ∈ T and µ(t) /∈ C(O(p), ε)214

(µ, t) |= φ ∧ ψ iff (µ, t) |= φ and (µ, t) |= ψ215

(µ, t) |= φ ∨ ψ iff (µ, t) |= φ or (µ, t) |= ψ216

(µ, t) |= φUI ψ iff ∃t′ ∈ T . t′ − t ∈ I. (µ, t′) |= ψ217

∧∀t′′ ∈ T . t′′ ∈ [t, t′) =⇒ ((µ, t′′) |= φ ∨ (t′′ − t ∈ I ∧ (µ, t′′) |= ψ))218

(µ, t) |= ψRI φ iff ∀t′ ∈ T . (t′ − t ∈ I ∧ (µ, t′) 6|= φ) =⇒ (∃t1 ∈ T . t1 ∈ [t, t′) ∧ (µ, t1) |= ψ)219

We say that a generalised timed trace µ : T → Y satisfies an MTL+ formula φ, notation220

µ |= φ iff (µ, 0) |= φ. The satisfaction relation is lifted to hybrid systems in the standard221

manner, i.e., H(c, i) |= φ ⇐⇒ ∀µ ∈ H(c, i). µ |= φ.222

In the remainder of this paper, we use the common shorthand notation for eventually223

and always, defined as: ♦Iφ := TUI φ �Iφ := FRI φ.224

We remark that the semantics of the until operator slightly differs from the standard one225

used e.g. for MTL over discrete-time models. There, one simply requires the safety formula226

φ to hold in every time point before the “ultimate" formula ψ holds. In order to cater for227

dense-time domains where there may be no “earliest” time point satisfying ψ, we require228

that in all the preceding time points either φ, or ψ holds. A similar kind of semantics can be229

found in [16].230

We also remark that the semantics of until operator makes it possible for the “ultimate”231

formula ψ to hold before the current state (time point); this is because we allow formulae to232

be annotated with arbitrary intervals, in particular those with negative endpoints.233

Furthermore, note that the semantics allows for certain “ambiguous” cases where neither234

a formula nor its negation (which can be syntactically obtained by an appropriate trans-235

formation) is satisfied by a given state. This happens in case of (negated) propositions, and236

tuples of the form (µ, t), where t does not belong to the time domain T . For instance, in237

case of a generalised timed trace µ : {0, 1, 2, 3} → R corresponding to a small sampling of238

a real-valued signal, and proposition pos such that O(pos) = R>0 we have (µ,
√

2) 6|= pos,239

and (µ,
√

2) 6|= ¬ pos, regardless of the actual values of µ for the sampling points in the time240

domain.241

However, if all occurrences of propositions in a formula are guarded by an until or release242

operator, the satisfaction status of a formula is never ambiguous – this is because semantics243

of those operators refer only to time points within the time domain. Throughout the rest of244

the paper, we work with propositions that are guarded with until or release and hence, in245

our context, the ambiguity is never an issue in the context of our theory.246

3.2 Hybrid Conformance247

Next, we provide the definition of hybrid conformance, due to Abbas and Fainekos [2, 1],248

in the context of our generalised semantic domain. Intuitively, hybrid conformance allows249

for conforming signal to differ up to τ in time and up to ε in the value. In addition to the250

“standard" hybrid conformance, which is a symmetric relation on traces, we also define its251

one-directional variant which we call hybrid refinement.252
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I Definition 6. Let µ1 : T1 → Y and µ2 : T2 → Y be Y-valued generalised timed traces. A253

trace µ1 is a (τ, ε)-refinement of µ2, notation µ1 vτ,ε µ2, iff:254

∀t1 ∈ dom(µ1). ∃t2 ∈ dom(µ2). |t2 − t1| ≤ τ ∧ dY(µ2(t2), µ1(t1)) ≤ ε255

In the above definition, µ2 can match any value in µ1 within a sufficiently small time256

interval, but can potentially contain some other signal values that cannot be matched by µ1.257

We know at least that the “behaviour”of µ1 in terms of signal values does not go beyond258

those of µ2 (up to the (τ, ε)-window).259

By requiring two traces to be mutually conforming, we obtain the standard notion of260

hybrid conformance [2, 1] for individual traces:261

I Definition 7. Let µ1 : T1 → Y and µ2 : T2 → Y be Y-valued generalised timed traces. µ1262

and µ2 are (τ, ε)-close, denoted by µ1 ∼τ,ε µ2, whenever µ1 vτ,ε µ2 and µ2 vτ,ε µ1.263

When the precise value of τ and ε is not relevant, we refer to (τ, ε)-refinement, and264

(τ, ε)-closeness, as respectively, hybrid refinement, and hybrid conformance. The two notions265

can be lifted to hybrid systems in the following manner:266

I Definition 8. 1. A system H1 is a (τ, ε)-refinement of H2, notation H1 vτ,ε H2, if for267

all c ∈ C and i ∈ I, it holds that:268

∀µ1 ∈ H1(c, i). ∃µ2 ∈ H2(c, i). µ1 vτ,ε µ2269

2. Two hybrid systems H1, H2 are (τ, ε)-close, denoted by H1 ∼τ,ε H2, if and only if for all270

c ∈ C and i ∈ I, it holds that271

∀µ1 ∈ H1(c, i). ∃µ2 ∈ H2(c, i). µ1 ∼τ,ε µ2272

∀µ2 ∈ H2(c, i). ∃µ1 ∈ H1(c, i). µ1 ∼τ,ε µ2273

4 Logical Characterisation of Hybrid Refinement and Hybrid274

Conformance275

4.1 Logical Characterisation via Relaxation276

Logical characterisation of a relation provides means to uniquely identify classes of related277

systems by sets of formulae in a certain logic. In case of non-exact relations involving some278

tolerance thresholds for disturbances, such as hybrid conformance or refinement, one cannot279

directly compare sets of formulae satisfied by systems in question.280

Our approach to characterisation involves the notion of relaxation of logical formulae,281

that has been used in the context of hybrid systems [1, 16, 26]. It involves a syntactical282

transformation of a formula to a weaker one, which is supposed to be also satisfied by at283

least one trace of a conforming system.284

For the purpose of logical characterisation, we introduce the following relation.285

I Definition 9. We say that a system potentially exhibits property φ, notation H(c, i) |=∃ φ,286

whenever there exists µ ∈ H(c, i) such that µ |= φ.287

The relation |=∃ can be seen as a variant of satisfaction relation for nondeterministic288

systems that has existential, rather than universal interpretation, the latter being the289

traditional interpretation in LTL literature. This alternative view on satisfaction is similar290

to one that is used in the context of Hennessy-Milner logic and its variations for behavioural291

models [21, 30], where a logical formula represents a (potentially) observable behaviour of a292

system. This approach is more suitable for the purpose of logical chracterisation.293

Assume a logic (a collection of formulae) L and a notion of relaxation rlx : L → L. Our294

notion of characterisation can now be defined as follows295

ICALP 2020
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I Definition 10. A logic L and a notion of relaxation rlx : L → L characterise a relation296

R ⊆ H×H if and only if, for any two systems H and H ′ we have:297

H RH ′ ⇐⇒ ∀φ ∈ L. H |=∃ φ =⇒ H ′ |=∃ rlx(φ)298

The implication from left to right is called preservation; in our context, there already299

exist some preservation results in the literature [1, 16]; the implication from right to left300

(called reflection) has not been studied for hybrid conformance and MTL to the best of our301

knowledge.302

We remark that for certain classes of “well-behaved” relations, the implication under the303

existential interpretation in definition 10, namely H |=∃ φ =⇒ H ′ |=∃ rlx(φ), is equivalent304

to a dual one under the more common universal interpretation, i.e. H ′ |= φ =⇒ H |= rlx(φ).305

Regarding the two relations considered in our work, only hybrid conformance has this property306

on all systems, while hybrid refinement does not. This is because the underlying relation on307

individual traces is not symmetric, and moreover allows the presence of considerably different308

values on the side of the “larger” trace (as long as it also matches all the required values on309

other timepoints within the relevant time interval).310

In this section, we define two novel (and in our view, very natural) relaxation operators311

on MTL which, as we subsequently show, precisely serve this purpose.312

4.2 Characterisation of hybrid refinement313

Relaxation operator rlx vτ,ε. We shall now introduce the first relaxation operator on MTL,314

which (as we subsequently prove) gives rise to the characterisation of hybrid refinement.315

Syntactically, it has a very simple structure: the actual relaxation is performed on the level316

of propositions only.317

I Definition 11. Let τ, ε ≥ 0. The relaxation operator rlx vτ,ε : MTL+ → MTL+
ext is defined318

as follows:319

rlx vτ,ε(T) = T , rlx vτ,ε(F) = F
rlx vτ,ε(p) = ♦[−τ,τ ] p

+(ε) , rlx vτ,ε(¬p) = ♦[−τ,τ ] p
−(ε)

rlx vτ,ε(φ1 ∧ φ2) = rlx vτ,ε(φ1) ∧ rlx vτ,ε(φ2)
rlx vτ,ε(φ1 ∨ φ2) = rlx vτ,ε(φ1) ∨ rlx vτ,ε(φ2)
rlx vτ,ε(φUI ψ) = rlx vτ,ε(φ)UI rlx vτ,ε(ψ)
rlx vτ,ε(φRI ψ) = rlx vτ,ε(φ)RI rlx vτ,ε(ψ)

320

Note that each relaxation of a formula different than T and F is guarded by either release321

or until formulae, and hence its satisfaction status is always unambiguous.322

4.2.1 Characterisation of traces.323

We proceed to show that the introduced relaxation operator can be used to characterise the324

(τ, ε)-refinement, starting with the individual timed traces. Note that since the results below325

concern arbitrary generalised timed traces, they apply also to the setting with two traces of326

different kind, e.g., a discrete TSS against a continuous trajectory.327

4.2.1.1 Preservation modulo relaxation328

We start by proving that the satisfaction of MTL+ formulae is preserved by the refinement329

relation vτ,ε on timed traces modulo rlx vτ,ε relaxation.330
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I Proposition 12. Let µ1 : T1 → Y, µ2 : T2 → Y be two Y-valued generalised timed traces,331

and φ be an MTL formula. If µ1 vτ,ε µ2, then, for any t ∈ R:332

(µ1, t) |= φ =⇒ (µ2, t) |= rlx vτ,ε(φ)333

Proof. The proof proceeds by structural induction on the formula φ.334

φ = p: since (µ1, t) |= p, we have t ∈ T1 and µ1(t) ∈ O(p). Furthermore, since µ1 vτ,ε µ2,335

we know that there is some t′ such that |t′− t| ≤ τ and d(µ1(t), µ2(t′)) ≤ ε. We have thus336

µ2(t′) ∈ O(p+(ε)), and hence (µ2, t
′) |= p+(ε). Moreover, since |t′ − t| ≤ τ , we obtain337

(µ2, t) |= ♦[−τ,τ ] p
+(ε) = rlx vτ,ε(p).338

φ = ¬p: since (µ1, t) |= ¬p, we have t ∈ T1 and µ1(t) /∈ O(p). Furthermore, since339

µ1 vτ,ε µ2, we know that there is some t′ such that |t′ − t| ≤ τ and d(µ1(t), µ2(t′)) ≤ ε.340

From the latter and µ1(t) ∈ Y\O(p), we obtain µ2(t′) ∈ E(Y\O(p), ε), which is equivalent341

to µ2(t′) /∈ C(O(p), ε). Hence (µ2, t) |= ♦[−τ,τ ] p
−(ε) = rlx vτ,ε(¬p)342

φ = φUI ψ: since (µ1, t) |= φUI ψ, there is some t1 ∈ T1 such that t1−t ∈ I and (µ1, t1) |=343

ψ, and moreover for any t0 ∈ [t, t1) we have (µ1, t0) |= φ ∨ (µ1, t0) |= ψ. By applying the344

inductive hypothesis, we obtain that (µ2, t1) |= rlx vτ,ε(ψ), and for any t0 ∈ [t, t1) we have345

(µ2, t0) |= rlx vτ,ε(φ) or (µ2, t0) |= rlx vτ,ε(ψ). We thus have (µ2, t) |= rlx vτ,ε(φ)UI rlx vτ,ε(ψ),346

and from the definition of relaxation we immediately obtain (µ2, t) |= rlx vτ,ε(φUI ψ).347

φ = φRI ψ: take any t′ ∈ T2 such that t′ − t ∈ I and (µ2, t
′) 6|= rlx vτ,ε(ψ). From the348

inductive hypothesis, we have (µ1, t
′) 6|= ψ, and since (µ1, t) |= φRI ψ, we know that349

there is some t1 ∈ T1 such that t1 ∈ [t, t′), and (µ1, t1) |= φ. By applying the inductive350

hypothesis again, we obtain (µ2, t1) |= rlx vτ,ε(φ). From the statements obtained above we351

can now infer that (µ2, t) |= rlx vτ,ε(φRI ψ).352

J353

4.2.1.2 Existence of distinguishing formula354

We shall now prove that the converse of the preceding theorem holds as well: whenever a355

timed trace is not a (τ, ε)-refinement of another, we can always find an MTL formula that356

witnesses this, that is, preservation modulo rlx vτ,ε relaxation operator does not hold.357

I Proposition 13. Let µ1 : T1 → Y and µ2 : T2 → Y be two Y-valued timed traces. If358

µ1 6vτ,ε µ2, then there is a formula φ ∈ MTL+ such that φ distinguishes µ1 from µ2 modulo359

relaxation rlx vτ,ε, that is µ1 |= φ ∧ µ2 6|= rlx vτ,ε(φ)360

Proof. Suppose that there is some t1 ∈ T1 for which there is no t2 ∈ T2 such that |t2 − t1| ≤361

τ and |µ2(t2) − µ1(t1)| ≤ ε. Consider an MTL formula φ = ♦[t1,t1]p, where O(p) =362

{µ1(t1)}. Obviously, we have µ1 |= φ, however, the relaxed version of the formula rlx vτ,ε(φ) =363

♦[t1,t1]♦[−τ,τ ]p
+(ε) cannot be satisfied by µ2. J364

4.2.2 Characterisation of hybrid systems.365

4.2.2.1 Finitely branching systems366

Propositions 12 and 13 provide the characterisation of relation vτ,ε by MTL+ through the367

relaxation rlx vτ,ε on individual traces. Based on those results, for hybrid systems that are368

finitely branching (i.e. have bounded non-determinism, see definition 3), the characterisation369

result for hybrid refinement can be obtained in a straightforward manner.370
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I Theorem 14. The logic MTL+, together with the relaxation operator rlx vτ,ε, characterise371

the conformance relation vτ,ε on finitely branching hybrid systems. That is, for arbitrary372

finitely branching hybrid systems H and H ′, the following statements hold:373

H vτ,ε H ′ ⇐⇒ (∀φ ∈ MTL+. H |=∃ φ =⇒ H ′ |=∃ rlx vτ,ε(φ)374

Proof.375

(preservation): Take any two hybrid systems H1, H2 such that H1 vτ,ε H2. Take any c ∈376

C, i ∈ I. Suppose w.l.o.g. that H1(c, i) |=∃ φ; we need to show that H2(c, i) |=∃ rlx vτ,ε(φ).377

From H1(c, i) |=∃ φ we know that there is a µ1 ∈ H1(c, i) such that µ1 |= φ. Moreover,378

since H1 vτ,ε H2, there is some µ2 ∈ H2(c, i) such that µ1 vτ,ε µ2. From Proposition 12379

we thus obtain µ2 |= rlx vτ,ε(φ), and hence H2(c, i) |=∃ rlx vτ,ε(φ).380

(reflection/distinguishing formula): Suppose that H1 6vτ,ε H2. Then for certain c ∈ C, i ∈381

I there is some µ1 ∈ H1(c, i) such that for all µj2 ∈ H2(c, i) we have µ1 6vτ,ε µj2. From382

Proposition 13 we know that for each such µj2 ∈ H2(c, i) there is a distinguishing formula383

φj such that µ1 |= φj and µj2 6|= rlx vτ,ε(φj). Consider a formula Φ =
∧
j:µj2∈H2(c,i) φj . Since384

H2(c, i) is a finite set, Φ is a well-formed MTL+formula. We now have H1(c, i) |=∃ Φ,385

but since obviously for any j, µj2 6|= rlx vτ,ε(Φ), we also have H2(c, i) 6|=∃ rlx vτ,ε(Φ). Hence Φ386

distinguishes H1(c, i) from H2(c, i).387

J388

4.2.2.2 Systems with unbounded non-determinism389

In order to provide characterisation for hybrid refinement on systems with infinite branching,
one needs to endow the logic MTL+ with infinite conjunctions and disjunction; the syntax of
such logic, denoted with MTL+

∞, is given below (Ind ranges over arbitrary sets of indices).

φ ::= T | F | p | ¬p |
∧
i∈Ind

φi |
∨
i∈Ind

φi | φUI φ | φRI φ

I Theorem 15. The logic MTL+
∞, together with the relaxation operator rlx vτ,ε, characterise390

the conformance relation vτ,ε on arbitrary hybrid systems.391

Proof. The proof is nearly the same as the one of Theorem 14, except that while proving the392

reflection property, the set of distinguishing formulae for individual traces may be infinite.393

However, a disjunction over such a set is now a well-formed MTL+
∞ formula, hence the394

construction is valid. J395

4.3 Characterisation of hybrid conformance396

4.3.1 Relaxation operator rlx ∼
τ,ε397

While the relaxation operator rlx vτ,ε introduced in the previous section allows one to preserve398

– up to the relevant (τ ,ε)-window – properties of (signal values at) individual timepoints, it399

falls short of preserving properties of entire intervals. Therefore, in order to characterise400

the standard, symmetric notion of (τ, ε)-closeness, or hybrid conformance, one needs a finer401

notion of relaxation.402

In what follows, we shall use the following notation: for an interval I, by I<a,b> we denote403

the modified interval: I<a,b> := {x ∈ R | ∃xa, xb ∈ I : xa + a ≤ x ∧ x ≤ xb + b}.404

Below, we define a relaxation operator rlx ∼τ,ε where:405
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for propositions not in the scope of a temporal operator, the relaxation is done similarly406

as in the rlx vτ,ε operator407

for temporal operators, the interval endpoints are modified (i.e. “shrinked” to relax the408

temporal obligations accordingly)409

for propositions guarded by a temporal operator, only ε-relaxation of a signal value is410

perfomed (the relaxation of timeline has already been handled through interval relaxation)411

I Definition 16. Let τ, ε ≥ 0. The relaxation operator rlx ∼τ,ε : MTL+ → MTL+
ext is defined412

as follows:413

rlx ∼τ,ε(T) = T , rlx ∼τ,ε(F) = F
rlx ∼τ,ε(p) = ♦[−τ,τ ]p

+(ε) , rlx ∼τ,ε(¬p) = ♦[−τ,τ ]p
−(ε)

rlx ∼τ,ε(φ1 ∧ φ2) = rlx ∼τ,ε(φ1) ∧ rlx ∼τ,ε(φ2)
rlx ∼τ,ε(φ1 ∨ φ2) = rlx ∼τ,ε(φ1) ∨ rlx ∼τ,ε(φ2)

rlx ∼τ,ε(φUI ψ) =
{
♦[τ,τ ]

(
t-rlx ∼τ,ε(φ)UI<0,−2τ> (♦[0,2τ ]t-rlx ∼τ,ε(ψ))

)
if I<0,−2τ> 6= ∅

♦I<−τ,τ>t-rlx ∼τ,ε(ψ) if I<0,−2τ> = ∅
rlx ∼τ,ε(φRI ψ) = (♦[−τ,τ ]t-rlx ∼τ,ε(φ))RI<τ,−τ> t-rlx ∼τ,ε(ψ)

414

where the auxilliary relaxation t-rlx ∼τ,ε for subformulae guarded by a temporal operator is415

defined as follows:416

t-rlx ∼τ,ε(T) = T , t-rlx ∼τ,ε(F) = F
t-rlx ∼τ,ε(p) = p+(ε) , t-rlx ∼τ,ε(¬p) = p−(ε)
t-rlx ∼τ,ε(φ1 ∧ φ2) = t-rlx ∼τ,ε(φ1) ∧ t-rlx ∼τ,ε(φ2)
t-rlx ∼τ,ε(φ1 ∨ φ2) = t-rlx ∼τ,ε(φ1) ∨ t-rlx ∼τ,ε(φ2)

t-rlx ∼τ,ε(φUI ψ) =
{
♦[τ,τ ]

(
t-rlx ∼τ,ε(φ)UI<0,−2τ> (♦[0,2τ ]t-rlx ∼τ,ε(ψ))

)
if I<0,−2τ> 6= ∅

♦I<−τ,τ>t-rlx ∼τ,ε(ψ) if I<0,−2τ> = ∅
t-rlx ∼τ,ε(φRI ψ) = (♦[−τ,τ ]t-rlx ∼τ,ε(φ))RI<τ,−τ> t-rlx ∼τ,ε(ψ)

417

4.3.2 Characterisation of traces418

4.3.2.1 Preservation419

Before stating the main preservation property, we prove the key lemma which lists certain420

properties of the auxilliary relaxation operator t-rlx ∼τ,ε.421

I Lemma 17. Suppose µ1 ∼τ,ε µ2. For any φ ∈ MTL+ we have:422

1. µ1, t |= φ =⇒ ∃t′ ∈ [t− τ, t+ τ ]. µ2, t
′ |= t-rlx ∼τ,ε(φ)423

2. (∀t ∈ I. µ1, t |= φ) =⇒ (∀t ∈ I<τ,−τ>. µ2, t |= t-rlx ∼τ,ε(φ))424

3. if in addition φ is of the form χUI ψ or ψRI χ, then µ1, t |= φ =⇒ µ2, t |= t-rlx ∼τ,ε(φ)425

Proof. We proceed by structural induction on φ; for technical reasons, it is convenient to426

prove all the properties simultaneously. We focus on three key cases: atomic propositions, as427

well as the until and release operators.428

φ = p:429

1. Suppose µ1, t |= p; from the semantics of MTL+ this means that µ1(t) ∈ O(p). Since430

µ1 ∼τ,ε µ2, there is some t′ ∈ [t− τ, t+ τ ] such that dY(µ1(t), µ2(t)′) ≤ ε. From this431

and µ1(t) ∈ O(p) we obtain µ2(t′) ∈ E(O(p), ε), and hence µ2, t
′ |= p+(ε) = t-rlx ∼τ,ε(p).432
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2. Suppose that for all t ∈ I we have µ1, t |= p, that is, for all t ∈ I µ1(t) ∈ O(p).433

Take any t2 ∈ I<τ,−τ>. Observe that the “matching” timepoint for µ2 and t2 in µ1434

must be in the interval I, i.e. there is some t1 ∈ I such that dY(µ1(t1), µ2(t2)) ≤ ε.435

Since t1 ∈ I, we have µ1(t1) ∈ O(p), and hence µ2(t2) ∈ E(O(p, ε)), from which436

µ2, t2 |= p+(ε) = t-rlx ∼τ,ε(p) follows.437

φ = χUI ψ: we only need to prove the third statement, as it is stronger than the first438

two. Moreover, we consider only the more involved case when I<0,−2τ> 6= ∅.439

Suppose µ1, t |= χUI ψ. Then there is some tψ ∈ t+ I such that µ1, tψ |= ψ (note that440

since I<0,−2τ> 6= ∅, we have tψ − t ≥ 2τ). From µ1 ∼τ,ε µ2 and applying the inductive441

hypothesis on statement 1 of Lemma 17 there is some t′ψ ∈ [tψ − τ, tψ + τ ] such that442

µ2, t
′
ψ |= t-rlx ∼τ,ε(ψ). This in particular implies that443

(*) µ2, tψ − τ |= ♦[0,2τ ]t-rlx ∼τ,ε(ψ).444

From µ1, t |= χUI ψ it further follows that for all t′ ∈ [t, tψ) we have µ1, t
′ |= χ. From445

applying the inductive hypothesis on statement 2 of Lemma 17 we therefore have446

(**) for all t′ ∈ [t+ τ, tψ − τ) we have µ2, t
′ |= t-rlx ∼τ,ε(χ).447

That µ2, t |= ♦[τ,τ ]
(
t-rlx ∼τ,ε(χ)UI<0,−2τ> (♦[0,2τ ]t-rlx ∼τ,ε(ψ))

)
= t-rlx ∼τ,ε(χUI ψ) now follows448

immediately from (*) and (**).449

φ = ψRI χ: similarly as above, we only prove the third statement. Note that whenever450

the interval I is strictly shorter than 2τ , we have I<0,−2τ> = ∅, and the relaxation yields451

a formula equivalent to T.452

Take any t′¬χ ∈ t + I<τ,−τ> such that µ2, t
′
¬χ 6|= t-rlx ∼τ,ε(χ). Consider the interval453

I ∩ [t, t′¬χ + τ ]. There must be some t¬χ ∈ [t′¬χ− τ, t′¬χ + τ ] ⊆ t+ I such that µ1, t¬χ 6|= χ.454

Indeed, were it not the case, then from the inductive hypothesis (statement 2), we would455

have that for all t′ ∈ [t′¬χ, t′¬χ], t′ |= t-rlx ∼τ,ε(χ), contradicting µ2, t
′
¬χ 6|= t-rlx ∼τ,ε(χ).456

From µ1, t |= ψRI χ and µ1, t¬χ 6|= χ, one obtains existence of some tψ ∈ [t, t¬χ) such that457

µ1, tψ |= ψ. From the inductive hypothesis (1) we know that µ2, tψ |= ♦[−τ,τ ]t-rlx ∼τ,ε(ψ).458

We have thus shown that µ2, t |= (♦[−τ,τ ]t-rlx ∼τ,ε(ψ))RI<τ,−τ> t-rlx ∼τ,ε(χ) = t-rlx ∼τ,ε(ψRI χ)459

J460

The preservation property is given in the proposition below.461

I Proposition 18. µ1 ∼τ,ε µ2 =⇒ ∀φ, t. µ1, t |= φ =⇒ µ2, t |= rlx ∼τ,ε(φ)462

Proof. Formally, the proof proceeds by structural induction. However, the key cases of463

temporal operators are now immediate corollaries of Lemma 17 (point 3); while for the464

remaining cases including base the proof is very straightforward. J465

4.3.2.2 Reflection466

We proceed to show that for non-conforming traces, one can always find a distinguishing467

formula, regardless of the “direction” in which the conformance fails. Since ∼τ,ε is symmetric,468

this is equivalent to the statement that if µ1 6∼τ,ε µ2, then one can find both a formula469

distinguishing µ1 from µ2, and also one that distinguishes µ2 from µ1.470

I Proposition 19. µ1 6∼τ,ε µ2 =⇒ ∃φ. µ1 |= φ ∧ µ2 6|= rlx ∼τ,ε(φ)471

Proof. Suppose µ1 6∼τ,ε µ2; we show that there is always a formula that distinguishes µ1472

from µ2. We distinguish two cases:473

there is some t1 ∈ T1 such that the value µ1(t1) cannot be matched within the (τ, ε)-window474

by µ2, that is:475

(∗) ∀t′ ∈ T2. |t′ − t1| ≤ τ =⇒ dY(µ2(t′), µ1(t1)) > ε476
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We use a similar construction as for the relaxation rlx vτ,ε, by defining477

ΦDIST := ♦[t1,t1]p478

where O(p) = {µ1(t1)}. Then rlx ∼τ,ε(ΦDIST ) = ♦[t1−τ,t1+τ ] p
+(ε). We have µ1 |= ΦDIST ,479

but from (*) we clearly have µ2 6|= rlx ∼τ,ε(ΦDIST ).480

there is some t2 ∈ T2 that cannot be matched by µ1, that is: that is:481

∀t′ ∈ T1. |t′ − t2| ≤ τ =⇒ dY(µ1(t′), µ2(t2) > ε482

we define483

ΦDIST := �[t2−τ,t2+τ ]p484

where O(p) = {y ∈ Y | dY(y, µ2(t2)) > ε}. Note that p+(ε) = Y \ {µ2(t2)} (at this point485

using our definition of expansion operator rather than the one from [1] proves essential).486

We have µ1 |= ΦDIST , but on the other hand: rlx ∼τ,ε(ΦDIST ) = (♦[−τ,τ ]F)R[t2,t2] p
+(ε) ≡487

�[t2,t2]p
+(ε), and since µ2(t2) /∈ Y \ {µ2(t2)} = p+(ε), we have µ2 6|= rlx ∼τ,ε(ΦDIST )488

J489

4.3.3 Characterisation of hybrid systems490

Characterisation results for hybrid conformance and their proofs share many similarities with491

those for hybrid refinement. One fine point worth noting is the proof of reflection property:492

when, similarly as in the proof of Theorem 14, we arrive at the case when µ1 6∼τ,ε µj2, we493

know from Proposition 19 that for all j there is a formula that distinguishes µ1 from µj2,494

regardless of the direction in which the (τ, ε)-matching fails . We therefore have a family495

of formulae distinguishing µ1 from µj2 for each j, and hence can construct a distinguishing496

formula by taking their conjunction.497

In addition, since hybrid conformance is based on a symmetric relation on individual traces,498

the characterisation result holds for the standard (universal) interpretation of satisfaction499

relation as well.500

I Theorem 20. The logic MTL+ [resp. MTL+
∞], together with the relaxation operator rlx ∼τ,ε,501

characterise the conformance relation vτ,ε on finitely branching [resp. arbitrary] hybrid502

systems. That is, for finitely branching [resp. arbitrary] hybrid systems H and H ′, the503

following statements hold:504

H ∼τ,ε H ′ ⇐⇒ (∀φ ∈ MTL+ [MTL+
∞]. H |=∃ φ =⇒ H ′ |=∃ rlx vτ,ε(φ))505

Moreover, the characterisation result holds for the universal interpretation of satisfaction506

relation as well, that is:507

H ∼τ,ε H ′ ⇐⇒ (∀φ ∈ MTL+ [MTL+
∞]. H ′ |= φ =⇒ H |= rlx vτ,ε(φ))508

5 Comparison with an existing relaxation509

In this section, we discuss the existing relaxation operator for MTL from the literature due to510

Abbas, Mittelmann, and Fainekos [1], which is known to preserve MTL formulae for discrete511

samplings (timed-state sequences). We show that their relaxation cannot distinguish between512

traces not related by hybrid conformance, and hence is too lax for the purpose of logical513

characterisation for either hybrid conformance, or refinement.514
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5.1 AMF-Relaxation515

We recall the relaxation operator from [1], which we call AMF-relaxation (for Abbas,516

Mittelmann, and Fainekos). Originally the definition was given on the super-dense time517

domain (i.e., a time domain that allows for specifying the ordering of simultaneous events).518

Since the “super-denseness” of the time domain does not have any influence on our study,519

we simplify the time domain to a dense time domain (such as non-negative real numbers).520

We also adapt the presentation to the generalised timed traces framework.521

I Definition 21. Given τ, ε ≥ 0, the relaxation operator []amf
τ,ε : MTL+ → MTL+

ext is defined522

as follows:523

[T]amf
τ,ε = T , [F]amf

τ,ε = F
[p]amf

τ,ε = p+(ε) , [¬p]amf
τ,ε = p−(ε)

[φ1 ∧ φ2]amf
τ,ε = [φ1]amf

τ,ε ∧ [φ2]amf
τ,ε

[φ1 ∨ φ2]amf
τ,ε = [φ1]amf

τ,ε ∨ [φ2]amf
τ,ε

[φUI ψ]amf
τ,ε = (♦(−2τ,0][φ]amf

τ,ε )UI<<−2τ,2τ>> (♦[0,2τ)[ψ]amf
τ,ε )

[φRI ψ]amf
τ,ε = (♦(−2τ,0][φ]amf

τ,ε )RI<<2τ,−2τ>> (♦[0,2τ)[ψ]amf
τ,ε ),

524

where I<<a,b>> is the relaxation of the bounds of interval I with constants a and b, formally525

defined as follows. For a, b ∈ R, let T (a, b) := {[a, b], (a, b], [a, b), (a, b)}; then for any interval526

I ∈ T (a, b), I<<c,d>> := (a+ c, b+ d).527

Note that the interval relaxation I<<a,b>> differs from I<a,b> in that the former always528

yields an open interval, while the latter yields an interval of the same kind as I. For instance529

[4, 7]<<−1,1>> = (3, 8), whereas [4, 7]<−1,1> = [3, 8].530

It follows from Definition 21 that the relaxation operator []amf
τ,ε applied to until or release531

formulae annotated with any interval from T (a, b) produces the same formulae:532

I Observation 1. For any I ∈ T (a, b), we have:533

[φUI ψ]amf
τ,ε = (♦(−2τ,0][φ]amf

τ,ε )U(a−2τ,b+2τ) (♦[0,2τ)[ψ]amf
τ,ε )

[φRI ψ]amf
τ,ε = (♦(−2τ,0][φ]amf

τ,ε )R(a+2τ,b−2τ) (♦[0,2τ)[ψ]amf
τ,ε )534

The following preservation result can be found in [1].535

I Theorem 22. Let φ ∈ MTL+. Let µ1 : T1 → Y and µ2 : T2 → Y be two discrete GTTs, i.e.536

T1, T2 ⊆ PFIN (R≥0). If µ1 ∼τ,ε µ2, then for any t1 ∈ T1 if (µ1, t1) |= φ, then for all t2 ∈ T2537

such that |t2 − t1| ≤ τ and |µ2(t2)− µ1(t1)| ≤ ε, we have µ1, t1 |= φ =⇒ µ2, t2 |= [φ]amf
τ,ε .538

Observe that the above preservation property is very strong: it holds for any sampling539

point in the conforming trace that matches the given point within the (τ, ε)-“window”. This540

kind of result comes at a price of having to employ a relaxation operator which yields541

considerably weaker formulae, which explains the significant relaxation of intervals in []amf
τ,ε .542

5.2 Laxness of AMF-Relaxation543

In this section, we prove that the notion of AMF-relaxation is too lax for the purpose544

of logical characterisation of hybrid conformance, i.e. there is a class of non-conforming545

implementations which preserve AMF-relaxations of all MTL properties satisfied by their546

specifications.547

Throughout this section, we assume a simple setting where values range over Booleans,548

i.e. Y = B = {true, false}. The associated metric on P(B) is defined as d(b1, b2) = 0 if549

b1 = b2, and ∞ otherwise.550
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Recall that we refer to generalised timed traces with a finite time domain as timed state551

sequences, or TSSs.552

We first explain the gist of our proof by showing one instance of the above-mentioned553

family of non-conforming counter-examples.554

I Example 23. Fix τ > 0 and let T be a value very slightly smaller than τ , i.e. T = τ − δ,555

where δ << τ . Consider the discretised GTTs presented in Example 2, which we recall here556

for the sake of convenience; µ1 holds value true only at T and 2T and µ2 holds value true557

at 3T and false, otherwise. The two TSSs can be depicted as follows (white/black dots558

represent states that have value, respectively, true / false):559

µ1

0 T 2T 3T 4T
µ2

µ1 and µ2 are not (τ, 0)-close, not even (t, 0)-close for any t < 2T . To observe this560

note that for instance µ1(T ) cannot be matched by µ2 within (−T, 3T ) since no state in561

µ2 has value false in this interval. On the other hand, as we show next, TSSs µ2 satisfies562

the AMF-relaxation of all MTL formulae satisfied by µ1 (relaxed by parameters (τ, 0) and563

vice versa. Intuitively, this is because the intervals in the until and release formulae are564

respectively expanded and compressed by 2τ , allowing for shifts by 2τ in the states of TSS565

without affecting the satisfaction of formulae.566

In the remainder of this section, we generalise this example and prove this fact for a567

broader, infinite class of pairs of TSSs which are not (t, 0)-equivalent for any t < 2τ .568

I Definition 24. For a pair of TSSs µA : TA → B and µB : TB → B, we say that µB569

is stretched to the right of µA by less than t, if there is some K ∈ N and functions570

chunkA : TA → {1, . . . ,K} and chunkB : TB → {1, . . . ,K} such that the following hold:571

chunkA and chunkB are surjective and non-decreasing572

all states that map to the same chunk number have the same value, i.e. for all k ∈573

{1, . . . ,K} and for all tA ∈ TA, tB ∈ TA such that chunkA(tA) = chunkB(tB) = k, we574

have µA(tA) = µB(tB)575

for any tA ∈ TA, there is some tB ∈ TB such that576

(∗) 0 ≤ tB − tA < t ∧ chunkA(tA) = chunkB(tB)577

and conversely, for any tB ∈ TB there is some tA ∈ TA such that (*) holds. We shall call578

a pair (µA, tA), (µB , tB) satisfying (*) a pair of t-corresponding states.579

Note that in the last condition, the inequality in (*) involves the actual difference between580

tB and tA, not its absolute value – we allow µB to be shifted only to the right as compared581

to µA. The following example illustrates this definition.582

I Example 25. Consider the TSSs in Example 23; the TSS µ2 is stretched to the right of583

µ1 by less than 2τ , as witnessed by the following functions chunk1 and chunk2:584

chunk1(0) = 1 chunk2(t) = 1 for t ∈ {0, T, 2T }
chunk1(t) = 2 for t ∈ {T, 2T } chunk2(3T ) = 2
chunk1(t) = 3 for t ∈ {3T, 4T } chunk2(4T ) = 3

585
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I Example 26. Considering Example 23 and propositions pt and pf such thatO(pt) = {true}586

and O(pf ) = {false}; we have (µ2, 0) |= pt U[3T,3T ] pf , and the 2τ -corresponding state (µ1, 0)587

satisfies the relaxed formula [pt U[3T,3T ] pf ]amf
τ,0 . The latter statement can be deduced from that588

(µ1, 0) satisfies pt U(3T−2τ,3T+2τ) pf , a simpler formula that logically entails [pt U[3T,3T ] pf ]amf
τ,0 .589

The key proposition below states that for 2τ -corresponding states, the satisfaction of all590

formulae in MTL+ is preserved modulo relaxation []amf
τ,0 .591

I Proposition 27. Suppose µB is stretched to the right of µA by less than 2τ . Then for any592

tA ∈ TA, and any tB ∈ TB satisfying593

(∗) 0 ≤ tB − tA < 2τ ∧ chunkA(tA) = chunkB(tB)594

we have, for all formulae φ ∈ MTL+: (µA, tA) |= φ =⇒ (µB , tB) |= [φ]amf
τ,0 , and (µB , tB) |=595

φ =⇒ (µA, tA) |= [φ]amf
τ,0 .596

Proof. The proof by structural induction on φ is rather tedious and technical, and omitted597

in this version of the paper. J598

6 Conclusions and Future Work599

In this paper, we have studied the notion of hybrid conformance from the literature, as well600

its associated preorder, called hybrid refinement. We have presented a logical characterisation601

of both relations in Metric Temporal Logic. Since the notions of refinement and conformance602

allow for some deviations (in time and value), the characterisation is expressed in terms of a603

relaxation of the set of formulae satisfied by a system. The relaxation operators corresponding604

to the two relations differ considerably – while for hybrid refinement it suffices to perform605

relaxation on the level of propositions only, characterising hybrid conformance requires606

relaxing bounds of intervals in temporal operators. We note that with hybrid conformance607

we obtain stronger characterisation result; it holds in particular under both existential and608

universal interpretation of the satisfaction relation.609

We have also showed that the existing relaxation scheme proposed by Abbas, Fainekos, and610

Mittelmann is too lax to serve for a characterisation, i.e., there is a class of non-conforming611

systems that do satisfy all relaxations of the specification properties. Hence, we proposed612

a tighter notion of relaxation and showed that it is the appropriate notion to provide a613

characterisation of hybrid conformance.614

Our preservation and characterisation results for hybrid refinement are formulated us-615

ing the existential interpretation of the satisfaction relation, while our results for hybrid616

conformance hold both for the existential- and universal interpretation of the satisfaction617

relation. This is inherent to our notion of hybrid refinement and cannot be remedied in any618

straightforward manner, as far as we could investigate. We envisage that there could be619

other definitions of hybrid refinement that are well-behaved in this respect and we would like620

to study and propose such notions in the future.621

As another line of future research, we would also like to investigate the possibility622

of characterising Skorokhod conformance with Freeze Temporal Logic and the notion of623

relaxation provided by Deshmukh, Majumdar, and Prabhu [16]. Coming up with the notion624

of characteristic formulae is another avenue for our future research, which leads to a new625

technique for checking hybrid conformance.626
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