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Abstract Family-based behavioral analysis operates on a single specification
artifact, referred to as family model, annotated with feature constraints to
express behavioral variability in terms of conditional states and transitions.
Family-based behavioral modeling paves the way for efficient model-based
analysis of software product lines. Family-based behavioral model learning in-
corporates feature model analysis and model learning principles to efficiently
unify product models into a family model and integrate the behavior of vari-
ous products into a behavioral family model. Albeit reasonably effective, the
exhaustive analysis of product lines is often infeasible due to the potentially
exponential number of valid configurations. In this paper, we first present a
family-based behavioral model learning techniques, called FFSMDiff . Subse-
quently, we report on our experience on learning family models by employing
product sampling. Using 105 products of six product lines expressed in terms
of Mealy machines, we evaluate the precision of family models learned from
products selected from different settings of the T-wise product sampling cri-
terion. We show that product sampling can lead to models as precise as those
learned by exhaustive analysis and hence, reduce the costs for family model
learning.
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1 Introduction

Several technology companies, such as ABB [117], Boeing [111], Philips [81,80],
and Siemens [82], have been facing an increasing demand for mass production
and customization of software products [97]. To cope with this need, they have
been investing in establishing common platforms to build software families
using production line principles [114]. Software product lines (SPL) provide a
means to support the mass production and customization of software systems
[35]. Unlike traditional systems, which are tailored for a specific use, SPLs are
developed for reuse and with reuse. Thus, products are not created anew but
derived from assets managed as commonalities and variabilities [83].

Analysing (e.g., validating and verifying) the system-level functionalities of
an SPL on a product-based basis is very demanding due to the potentially ex-
ponential number of valid products, e.g., the Linux kernel and its 6,320 features
[22]. Explicit models have been used to support the analysis and development
of high-quality systems. They help software engineers in program comprehen-
sion [15], software refactoring [108], model checking [14], and model-based test-
ing [124]. Family-based modeling approaches have been developed to facilitate
SPL analysis without going through each and every product individually [120].
Such approaches typically involve two types of family-based models: structural
and behavioral [97]. Family-based structural models, such as feature models
[70], capture the presence and absence of features in various products. Family-
based behavioral models, such as featured finite state machines [58], capture
the functionality of features and their interactions. Family-based behavioral
models are often referred to as a family model [120,93] or 150% model [107,
24] and are the corner-stone of efficient model-based SPL behavioral analysis.

More specifically, family-based behavioral analysis techniques have been
developed for efficient test case generation [13,20,58] and model checking
[104,119] of SPLs. Family models have been used for conformance analysis
[56], probabilistic model checking [128,30], and real-time software testing [85].
Nevertheless, the creation and maintenance of family models are difficult and
time consuming due to crosscutting features [93] and the traceability between
the family and feature models can become hard to maintain [107]. Thus, as new
requirements emerge and products evolve, the lack of maintenance may lead
to outdated and incomplete models [133]. Additionally, in practice, many soft-
ware development environments do not have a structured SPL development
process in place and rely on individual product models without knowledge
about their commonalities and variabilities [63]. To remedy these issues, we
propose an approach for learning behavioural family models of SPLs.

In recent years, we have seen a resurgence of interest in model learning
[125,2], particularly supervised techniques for learning state-based models [7,
110]. This has led to successful applications in industrial practice [2] and em-
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pirical studies to evaluate the performance of new algorithms and tools for
model learning [90]. Our approach builds upon these recent attempts and aims
to abstract a family-based state machine model from individually learned or
hand-crafted product models.

We introduce the Featured Finite State Machine Difference (FFSMDiff ) al-
gorithm, a technique that employs a similarity measure for state-based mod-
els [134] to identify similar behavior in various products specified as Mealy
machines [57], annotate conditional states and transitions with feature con-
straints, and integrate them into a succinct family model. Our technique is
discussed in terms of a Featured Finite State Machines (FFSM), a family-based
formalism that unifies Mealy Machines of SPLs into a single representation to
enable an efficient model-based analysis of SPLs [58,56]. However, the ideas
surrounding our algorithm can be extended to other family-based notations
[19], such as Modal Transition Systems (MTS) [78], various extensions of MTS
[52,77,17,16], and Featured Transition System (FTS) [33,20].

Additionally, we evaluate the use of product sampling [95,68] to efficiently
choose individual products that are to be analyzed and learn precise family
model. Product sampling techniques, such as T-wise [127], should collectively
cover the behavior of an SPL using a subset of all valid combinations of T se-
lected features [95,68]. Hence, they should address family model learning with
reasonable precision and execution costs lower than in an exhaustive analy-
sis. To evaluate the precision of learned models and the efficiency of learned
models by sampling, we compare the sampling and exhaustive approaches.

To evaluate our approach, we perform an empirical study of its efficiency on
a benchmark set of SPLs [58,32,105,46,45]. Through this empirical evaluation,
we aim to answer the following research questions:

(RQ1) Is our approach effective in learning succinct family models with respect
to the total size of the products under learning?

(RQ2) Is our approach effective in learning succinct family models with respect
to the total size of the hand-crafted models?

(RQ3) Is the size of learned family models influenced by the configuration simi-
larity degree of the products under learning?

(RQ4) Is our approach effective in learning precise family models compared to
those obtained by exhaustive analysis?

Regarding (RQ1) and (RQ2), we evaluate the succinctness of the learned
family model with respect to the individual product models and the hand-
crafted family-based specifications. We describe succinctness in terms of the
number of transitions and states as these are factors that influence the com-
plexity of model-based techniques [26,14] and that are used to interpret the
language and structure of state-based models [134]. Regarding (RQ3), we show
that our approach is effective when it can identify reuse and leads to more suc-
cinct family models by integrating the reused features. Hence, we set out to
test the correlation between the degree of reuse and the succinctness of learned
models. Finally, regarding (RQ4), we test the effectiveness of various sampling
techniques in learning precise family models.
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This paper builds upon and extends on preliminary results of a conference
paper that has been published in the proceedings of the 23rd International
Systems and Software Product Line Conference (SPLC 2019) [42]. Besides
providing a more detailed explanation throughout the paper, we have intro-
duced new parameters for model comparison and merging; we have incorpo-
rated three extra models in our benchmark, including a state machine model
from a real system [105]; and we have evaluated the precision of family models
learned by sampling. We briefly summarize our contributions as follows:

1. We introduce a technique to learn family models from individual product
specifications by means of state-based model comparison and feature model
analysis;

2. We present an experiment evaluating our technique and showing its effec-
tiveness for learning succinct family models in terms of numbers of states
and transitions;

3. We show that the amount of feature reuse is a factor that affects the size
of learned family models;

4. We evaluate the effectiveness of family models learned by sampling against
those learned by exhaustive analysis.

The remainder of this paper is structured as follows: In Section 2, we intro-
duce the fundamental background concepts used in this study, such as SPLs,
sample-based analysis for SPLs, finite state machines and structural compari-
son of state-based models. In Section 3, we introduce our family model learning
approach and how it incorporates feature model analysis into the process of
structural comparison of state machines. In Section 4, we present a process
that employs product sampling to reduce the costs for family model learning.
In Section 5, we discuss an empirical evaluation to evaluate the effectiveness of
our approaches for family model learning and the precision of models learned
by sampling. In Section 6, we discuss some works related to our paper. In Sec-
tion 7, we conclude this paper by presenting our conclusions and future work.
To support the reader, a glossary of symbols is available in Appendix A.

2 Background

This section presents the background concepts and formalisms used in this
study. We introduce SPLs, finite state machines, featured finite state ma-
chines, and the Labeled Transition Systems difference (LTSDiff ) algorithm for
structural comparison of state-based models represented as Labeled Transition
Systems (LTS), a well-known variant of FSM [71]. We follow this particular
ordering in order not to break the logical flow of the presentation on behav-
ioral modeling for SPLs (i.e., the concepts of FSMs and FFSMs are strongly
related by definition) and because no study has ever associated the LTSDiff

algorithm to family models.
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2.1 Software Product Lines

A software product line is a family of products sharing a common and managed
set of features developed in a prescribed way to satisfy the needs of a particular
market segment. Pohl et al. [97] introduces an SPL engineering framework
with two key processes: Domain engineering and Application engineering. This
separation of concerns enables to build robust platforms to develop customer-
specific applications in a shorter time, at lower cost, and with improved quality.

During the domain engineering, the common and variable artifacts, and
the scope of an SPL are defined, managed and constructed. During the ap-
plication engineering, commonalities and variabilities of an SPL are exploited
to achieve the highest possible reuse of domain artifacts. Artifacts generated
during the domain engineering are used to support the creation of software
products. Thus, most of the application artifacts are not developed anew but
reused from domain engineering artifacts with the support of software gener-
ators and valid product configurations. In Figure 1, we illustrate the software
product line engineering framework and the processes of domain and applica-
tion engineering.

Fig. 1: The Software Product Line Framework [120]

Let F be the set of features of an SPL. A product p is defined by a subset of
features p ⊆ F selected from a variability model, such as a feature model [70]. A
feature model captures the structural information and dependencies between
common and variant features of an SPL. Features are concrete, if they are
mapped to any implementation artifact; or abstract, if they are only used to
group other features [122]. These dependencies are denoted as a hierarchically
arranged set of interconnected features where parent-children relationships
indicate dependency relations among features, and cross-hierarchy constraints
are typically denoted by propositional logic formulas [48].

There are four basic types of parental relationships among features:Manda-
tory, if a child feature is included in all products in which its parent appears;
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Optional, if a child is optionally included; Alternative, when only one child
feature can be selected; and Or, when one or more of features can be included.
For cross-hierarchy relationships, we have two typical forms: Requires, if the
implementation of a feature A demands another feature B; and Excludes, if two
features cannot be part of the same product. Propositional logic formulas can
be used to describe more complex and advanced cross-hierarchy constraints
among features [48]. In fact, propositional logic formulas have been extensively
used in the automated analysis of feature models.

Boolean satisfiability solvers have been used as key elements under the
hood of many feature model analysis tools [18]. The SAT4J project [79] is
an example of a satisfiability solver widely used in feature model analysis. It
composes the FeatureIDE [121] library, an Eclipse-based IDE that supports
all phases of feature-oriented software development for SPLs [50].

Feature models have been also extended with cardinality constraints and
attributes to cope with the need for richer specifications [37,38,22]. In this
paper, we investigate the problem of family model learning using an extensive
academic benchmarks [58,32] of SPLs that included non-trivial aspects, such
as the possibility of infinite behavior and the existence of states with similar
or identical behavior in different products.

Let the set of features of a feature model be F , the powerset P(F ) of all
feature combinations is constrained to a subset of valid products P ⊆ P(F )
that satisfy its feature constraints. Feature constraints are propositional logic
formulae that interpret the elements from F in terms of propositional vari-
ables. SAT solvers [79] are often used to detect valid feature models, feature
combinations, core features (i.e., features that are part of all products) and
redundancies [18]. We denote by B(F ) the set of all feature constraints. The
subset Λ ⊆ B(F ) defines all valid product configurations of an SPL. We inter-
changeably refer to products as sets of features and propositions.

The configuration ξ ∈ B(F ) of a product p ∈ P is a feature constraint that
expresses the conjunction of all features included in p and the conjunction of
negated features absent from it, i.e., ξ = (

∧
f∈p f)∧(

∧
f 6∈p ¬f). Given a feature

constraint χ ∈ B(F ), a configuration ξ ∈ Λ satisfies χ, denoted by ξ � χ, iff
the feature constraint ξ ∧ χ is true. Given two feature constraints ωa and ωb
from a feature model FM , and Λa, Λb ⊆ Λ satisfying ωa and ωb, respectively,
we say that ωa and ωb are equivalent under FM if Λa = Λb. To illustrate the
concepts of SPLs, we begin using the Arcade Game Maker feature model as
our running example.

Example 1 (The Arcade Game Maker SPL) The Arcade Game Maker (AGM)
SPL includes three alternative features (i.e., Brickle, Pong and Bowling) and
one optional feature (i.e., Save). In Figure 2, we depict the AGM feature
model. In the feature expressions to come, we typically use the abbreviated
names of features as shown in Figure 2. The AGM feature model has six valid
product configurations, among which three satisfy the feature constraint ¬S,
indicating that the Save feature is absent.
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Fig. 2: The AGM feature model

2.1.1 Product-based analysis of SPL

In product-based strategies, valid products of an SPL are individually specified
and analyzed. While theoretically possible, these strategies are impractical due
to the potentially exponential number of feature combinations [120]. Hence,
one should avoid exhaustive and redundant analysis, and cater for valid feature
interactions [9]. To tackle these issues, combinatorial interaction testing and
similarity analysis have been relevant approaches to optimize the analysis of
product lines. In the next sections, we present two criteria that have been
employed to optimize the analysis SPLs.

Configuration sampling

Combinatorial interaction testing (CIT) aims at using interaction coverage to
sample product configurations [72]. It is based on the observation that most
faults emerge by the interaction between a small number of features [73]. For
interactions between any t features of SPLs, CIT is often referred to as T-wise
testing [95]. The T-wise sampling criterion, defined below, aims at sampling
valid configurations from all possible combinations of selected and unselected
features. These interactions are called a t-set.

Definition 1 (Valid t-set) A valid t-set is a set of features {±f1,±f2, ...,±ft}
satisfying the constraints defined by the feature model FM over the set of
features F , where t < |F |, +fi indicates a selected feature i and −fi an
unselected one. A T-set is invalid if it does not satisfy the constraints of FM .

Definition 2 (T-wise coverage) The t-wise coverage of a set of configurations
TCS = {PC1, PC2, . . . , PCm} is the ratio Tt =

# ∪m
i=1Tt,PCi

# Tt,FM
, where Tt,PCi

is
the set of t-sets included within the configuration PCi, Tt,FM is the set of all
possible valid t-sets in FM , and #A denotes the cardinality of a set A.

Sample-based techniques are known to improve the efficiency of SPL anal-
ysis by discarding products that may already be covered by other products
[120]. However, such analysis may be incomplete and miss product specific
behaviors. Higher-order feature interaction coverage is known for its improved
fault detection capabilities [115,96]. Thus, for larger T values, the T-wise cov-
erage should lead to more complete analysis. The Chvatal algorithm [31] is an
example of technique for T-wise product sampling [68] that is available in the
FeatureIDE workbench [121].
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Configuration similarity

Studies in software testing have shown that similar test cases tend to have
equivalent fault detection capabilities, and no additional gain should be ex-
pected when these are simultaneously executed [27]. To mitigate these issues,
similarity metrics have been used as test prioritization criteria [137,27] for
access control systems [23,40] and SPLs [61,4].

In configuration similarity, a similarity metric describes a similarity rela-
tion between two configurations as a numeric value. Similarity metrics often
range from zero, if product configurations are totally distinct; to one, if they
implement the same set of features.

The Hamming distance is a well-known measure [47] that has been used in
the context of SPLs to calculate the similarity between product configurations.
It is represented as the normalized number of common selected and unselected
features for the two configurations as follows:

Definition 3 (Configuration similarity) The configuration similarity between
two product configurations pi, pj from a feature model FM with the set of
features F is defined as shown in Equation 3.1.

confSim(pi, pj , F ) =
|pi ∩ pj |+ |(F\pi) ∩ (F\pj)|

|F |
(3.1)

In the confSim() metric, |pi ∩ pj | denotes the number of common features
selected between pi and pj and |(F\pi) ∩ (F\pj)| represents the number of
common unselected features between them. These two values are normalized
by the total number of features |F |.

2.1.2 Family-based analysis of SPLs

Family-based analysis relies on domain artifacts that incorporate knowledge
about valid feature combinations to perform efficient model-based analysis of
SPLs, e.g., model-based testing [21] and model checking [104,119]. Thus, not
every individual product has to be analyzed, and redundant computations are
minimized or avoided [120]. The performance family-based strategies is mainly
influenced by the number of features, the size of feature implementations, and
the amount of reuse during feature combinations [25].

In this section, we introduce the Featured Finite State Machine notation
[58,54] to express the individual features and feature combinations as finite
state machines extended with feature constraints. We start defining finite state
machines [57] as a behavioral model to specify product families and hence, its
featured extension for family-based modeling.

Definition 4 (Finite state machine) A finite state machine (FSM) is a sep-
tupleM = 〈S, s0, I, O,D, δ, λ〉 where S is the finite set of states, s0 ∈ S is the
initial state, I is the set of inputs, O is the set of outputs, D ⊆ S × I is the
specification domain, and δ : D → S and λ : D → O are the transition and
output functions, respectively.
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Initially, an FSM is in the initial state s0. Given a current state si ∈ S, when
a defined input x ∈ I, such that (si, x) ∈ D, is applied, the FSM responds
by moving to state sj = δ(si, x) and producing output y = λ(si, x). The
concatenation of two input sequences α and ω is denoted by α · ω. An input
sequence α is a prefix of β, denoted by α 6 β, when β = α · ω, for some
sequence ω. An input sequence α is a proper prefix of β, denoted by α < β,
when β = α·ω, for ω 6= ε. The prefixes of a set T of input sequences are denoted
by pref(T ) = {α|∃β ∈ T, α < β}. When T = pref(T ), it is prefix-closed.

An input sequence α = x1 · x2 · ... · xn ∈ I∗ is defined in state s ∈ S if
there are states s1, s2, ..., sn+1 such that s = s1 and δ(si, xi) = si+1, for all
1 ≤ i ≤ n. Transition are often represented as a quadruple (si, x, y, sj) with
the source state, input, output, and destination states, respectively, as their
components; or by directed edges labeled with input and output symbols, i.e.,
si

i/o−−→ sj . Transition and output functions are lifted to sequences of input
in the standard way. Namely, for the empty input sequence ε, δ(s, ε) = s and
λ(s, ε) = ε. For an input α·x defined in state s, we have δ(s, α·x) = δ(δ(s, α), x)
and λ(s, α · x) = λ(s, α)λ(δ(s, α), x).

An input sequence α ∈ I∗ is a transfer sequence from s to s′ when δ(s, α) =
s′. An input sequence γ is a separating sequence for si, sj ∈ S when λ(si, γ) 6=
λ(sj , γ). Two states si, sj ∈ S are equivalent when for all α ∈ I∗, defined
in both in si and sj , we have that λ(si, α) = λ(sj , α), otherwise they are
distinguishable. An FSM is complete when D = S × I, otherwise it is partial.

An FSM is deterministic when, for each state si and input x, there is
at most one possible state sj = δ(si, x) and output y = λ(si, x). When all
states of an FSM are pairwise distinguishable, it is minimal. When all states
of an FSM are reachable from s0, it is initially connected. When every state is
reachable from all states, it is strongly connected.

Example 2 (FSM for an AGM product) In Figure 3, we show an FSM for the
AGM product derived from the feature constraint ξ = B∧¬S. In this product
FSM, we have the states S = {Start Game,Bowling Game,Pause Game},
inputs I = {Start ,Pause,Exit} and outputs O = {0 , 1}. Transition and out-
put functions are represented by directed edges labeled with input and output
symbols. The initial state is indicated by an edge from a black dot.

Pause GameBowling GameStart Game
Start/1

Pause/1Start/1
Exit/1 Pause/1

Exit/1 Pause/0Start / 0
Exit / 0

Fig. 3: Example of FSM [58]
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In this study, we focus on complete, deterministic, minimal, and initially
connected FSMs, which are hereafter referred to as finite state machines. This
is a reasonable assumption as FSMs are suitable abstraction models for testing
reactive systems [57,26,29] and specifying the semantics of richer notations
[59,112]. Furthermore, the ideas surrounding our proposal can be extended to
non-connected, non-minimal and non-deterministic product models [134].

Definition 5 (Featured Finite State Machine) An FFSM is a septuple
〈F,Λ,C, c0, Y,O, Γ 〉, where: F is a finite set of features, Λ is the set of product
configurations, C ⊆ S × B(F ) is a finite set of conditional states, where S is
a finite set of state labels, B(F ) is the set of all feature constraints, and C
satisfies the condition:

∀(s, φ) ∈ C, ∃ξ ∈ Λ|ξ � φ (5.1)

c0 = (s0, true) ∈ C is the initial conditional state of the FFSM, Y ⊆ I×B(F )
is a finite set of conditional inputs, where I is the finite set of input symbols,
O is the finite set of output symbols, and Γ ⊆ C × Y × O × C is the set of
conditional transitions satisfying the condition:

∀((s, φ), (x, φ′′), o, (s′, φ′)) ∈ Γ,∃ξ ∈ Λ|ξ � (φ ∧ φ′ ∧ φ′′) (5.2)

Conditions (5.1) and (5.2) ensure that all conditional states and transitions
are present in at least one valid product of the SPL. A conditional state c =
(s, φ) ∈ C is alternatively denoted by s[φ].

A conditional transition (c, (x, φ), o, c′) from conditional state c to c′ with

conditional input x and output o is alternatively denoted c
x[φ]/o−−−−→ c′. The

logical operators and, or and not are denoted by the symbols &, |, and ¬,
respectively. An omitted condition means that the condition is true.

Given an FFSM FF = 〈F,Λ,C, c0, Y,O, Γ 〉 and a configuration ξ ∈ Λ,
the product derivation operator ∆ξ [58] parameterized by the configuration
ξ derives a product FSM ∆ξ = (S, s0, I, O,D, δξ, λξ), where: S = {s|(s, φ) ∈
C ∧ (φ � ξ)} is the set of states; s0 = s is the initial state where (s0, φ) = c0;
and D = {(s, x, o, s′)|((s, φ), (x, φ′), o, (s′, φ′′)) ∈ Γ ∧ ξ � (φ ∧ φ′ ∧ φ′′)} is the
set of completely defined transitions derived from Γ to ξ. The transition and
output functions δξ and λξ are defined in terms of the transitions in D.

Example 3 (The Arcade Game Maker FFSM) Figure 4 depicts an FFSM for
the AGM SPL. In this example, the conditional state Save Game[S] and all
conditional transitions reaching or leaving it are implemented by all products
implementing feature S. In Figure 3, the FSM is an example of product derived
using the configuration ξ = (AGM∧A∧M∧L∧V ∧Y ∧P∧W∧¬S∧¬B∧¬N).

To make FFSMs suitable for model-based testing [124], Fragal, Simao and
Mousavi [58] proposed a validation techniques to check if it satisfies the basic
properties of FSMs, i.e., determinism, completeness, initially connectedness,
and minimality, at the product line level. Added to this, they also show that
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Start/1

Start/1

Start/1Start/1
Pause/1

Save[S]/1

Start/1

Pause/1
Save[S]/1

Save[S]/1

Pause/1
Pause[W]/1

Exit/1

Start/1

Start/1

Exit/0
Start/0

Save[B]/0

Pause/0

Save[N]/1

Exit/1

Start/0

Exit/0
Pause[¬W]/1
Pause[W]/0

Save/0
Exit[¬S]/0

Start/0
Save[S]/0

Exit[W & ¬S]/1
Exit[¬W | S]/0

Start/1
Exit[S]/1

Pause[¬W]/0

Start/1
Save Game[S]Pause Game

Pong[N]

Bowling[W]

Brickles[B]

Star t  Game

Fig. 4: FFSM of the AGM [54]

the SPL-level validation is sound, i.e., if an FFSM satisfies these properties,
so do all the FSM products that can be derived from it.

Recently, FFSMs have been employed to generate configurable test suites
that can be pruned using feature constraints and product configurations [56].
The readability of FFSMs also has been improved by grouping up conditional
states and transitions into hierarchical entities [55]. Thus, FFSMs have the
prospect of serving as a suitable models basis for family-based analysis.

2.2 Structural comparison of state-based models

According to Walkinshaw and Bogdanov [134], structurally comparing two
state machines is a difficult task which involves establishing equivalence rela-
tionships between states and transitions. To achieve this goal, they proposed
LTSDiff , an algorithm to compute the precise difference between two LTSs, a
well-known variant of FSM [71]. In this section, we discuss the LTSDiff algo-
rithm in terms of FSMs.

2.2.1 Similarity score

In the LTSDiff algorithm, the differences between two FSM models Mr =
〈Sr, s0r , Ir, Or, Dr, δr, λr〉 and Mu = 〈Su, s0u , Iu, Ou, Du, δu, λu〉 are described
in terms of states and their surrounding transitions matching input and output
symbols. To achieve this, it first calculates the set of matching transitions for
all states a ∈ Sr, b ∈ Su using the individual number of pairs of states that
can be reached by matching transitions, as follows:

Succa,b = {(c, d, i, o) ∈ Sr × Su × (Ir ∪ Iu)× (Or ∪Ou), such that
δr(a, i) = c, δu(b, i) = d, and
λr(a, i) = λu(b, i) = o}
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Second, a global similarity score is calculated by aggregating the scores of
states connected to the original pair as follows:

SG
Succ(a, b) =

1

2

∑
(c,d,i,o) ∈ Succa,b

(1 + k × SG
Succ(c, d))

|
∑out

r (a)−
∑out

u (b)|+ |
∑out

r (b)−
∑out

u (a)|+ |Succa,b|

An attenuation ratio k is used to give precedence to state pairs that are
closer to the original pair of states and the notation

∑out
r (a) refers to the

set of labels of outgoing transitions for state a of Mr. Thus, the expression
|
∑out
r (a) −

∑out
u (b)| + |

∑out
r (b) −

∑out
u (a)| denotes the number of outgoing

transitions from both states a and b that do not match each other.
Given two FSMsMr andMu, the global similarity score SGSucc(a, b) is used

to build a system of linear equations, such that each equation corresponds to
the SGSucc(a, b) for one specific pair of states (a, b) ∈ Sr × Su.

The global similarity is calculated both in terms of future behavior (i.e.,
outgoing transitions) and past behaviors (i.e., incoming transitions). The global
similarity score for incoming transitions SGPrev(a, b) is calculated in a similar
manner. Consider the systems of equations for SGSucc(a, b) and S

G
Prev(a, b), the

similarity scores for all pairs (a, b) are averaged as follows:

S(a, b) =
SGSucc(a, b) + SGPrev(a, b)

2

Example 4 (Illustration of a system of linear equations) In Table 1, we depict
the coefficients of our system of equations for the comparison of the two FSMs
shown in Figures 3 and 5. State pairs are represented by the first two letters
of their respective names.

Pause GamePong GameStart Game
Start/1Exit/1

Pause/1Start/1

Exit/1

Exit/0
Pause/0

Start/0 Pause/0

Fig. 5: FSM of an alternative product from the AGM SPL

In the leftmost column, we indicate the respective state pair of each row. In
the mid columns, we denote the coefficients for state pairs reachable via match-
ing transitions outgoing from its respective row’s state pair. In the rightmost
column, we indicate the number of matching transitions for an specific row’s
state pair. The rightmost value is calculated as the summation of the unitary
value in the global similarity score’s numerator. A solution for this system of
equations indicates the similarity degrees for each state pair.
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Pair (St,St) (St,Po) (St,Pa) (Bo,St) (Bo,Po) (Bo,Pa) (Pa,St) (Pa,Po) (Pa,Pa) #Match

(St,St) 10.0 0.0 0.0 0.0 -0.5 0.0 0.0 0.0 0.0 1
(St,Po) -0.5 8.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 2
(St,Pa) -0.5 0.0 8.0 0.0 -0.5 0.0 0.0 0.0 0.0 2
(Bo,St) 0.0 0.0 0.0 9.5 0.0 0.0 0.0 0.0 0.0 1
(Bo,Po) 0.0 0.0 0.0 0.0 7.5 0.0 0.0 0.0 -0.5 2
(Bo,Pa) 0.0 0.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 0
(Pa,St) 0.0 0.0 0.0 0.0 -0.5 0.0 7.5 0.0 0.0 2
(Pa,Po) -0.5 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 1
(Pa,Pa) -0.5 0.0 0.0 0.0 -0.5 0.0 0.0 0.0 5.5 3

Table 1: Illustration of a system of linear equations

2.2.2 The LTSDiff algorithm

The comparison of two FSMs is performed in a similar fashion to how we
manually navigate in an unfamiliar landscape using a map. In Algorithm 1,
we describe this process as proposed by Walkinshaw and Bogdanov [134].

Algorithm 1: The LTSDiff algorithm [134]
1 Input: FSM Mr, FSM Mu, k, t, r;
2 PairsToScore = computeScores(Mr,Mu, k);
3 KPairs = identifyLandmarks(PairsToScore, t, r);
4 if KPairs == ∅ and S(s0r , s0u ) > 0 then
5 KPairs = (s0r , s0u );
6 end
7 NPairs = ∪(a,b)∈KPairsSurr(a, b)−KPairs;
8 while NPairs 6= ∅ do
9 while NPairs 6= ∅ do

10 (a, b) = pickHighest(NPairs, PairsToScore);
11 KPairs = KPairs ∪ (a, b);
12 NPairs = removeConflicts(NPairs, (a, b));
13 end
14 NPairs = ∪(a,b)∈KPairsSurr(a, b)−KPairs;
15 end

16 Add={b1
a/b−−→ b2∈Du| 6 ∃(a1

a/b−−→ a2∈Dr∧(a1, b1)∈KPairs∧(a2, b2)∈KPairs)};

17 Rem={a1
a/b−−→ a2∈Dr| 6 ∃(b1

a/b−−→ b2∈Du∧(a1, b1)∈KPairs∧(a2, b2)∈KPairs)};
18 Kpt = KPairs;
19 return (Add,Rem,Kpt);

First, we compute the similarity scores for all state pairs of the models,
as indicated the previous section. Hence, in Line 3, we use a filtering function
denoted by identifyLandmarks() to select the top t% most equivalent pairs,
i.e., those pairs with score above t. If one state is matched to several others, a
ratio r includes only those pairs that are at least r times as good as any other
match. If no state pair is identified as landmark, then in Line 4-6 the initial
states are mapped and selected as initial landmark. Parameters t, k and r can
be adapted depending on how many similar transitions the models have. If
there are many similar transitions, the threshold should be higher, to make
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sure that we start the matching process from state pairs that clearly stand out
compared to the others pairs.

Second, in Line 7, the algorithm starts from the initial landmarks to find
surrounding states reachable via incoming and outgoing transitions matching
input/output labels. Once the initial members of theKPairs set are found, we
use the Surr() function to search for all surrounding state pairs reachable via
incoming and outgoing transitions matching labels. These surrounding states
are added to the NPairs set of matched state pairs to be analyzed.

Third, we begin an iterative process where we pick one state pair of highest
similarity degrees (a, b) ∈ NPairs, incorporate (a, b) into the KPairs set
of common transitions, and remove every state pair conflicting with (a, b)
from the NPairs set, i.e., (x, y) is conflicting with (a, b) if (x, y) = (a, ·) or
(x, y) = (·, b). Each of these steps are shown in Lines 10, 11 and 12, respectively,
and repeated until there are no elements left in the NPairs set. In Line 14,
we discard all surrounding state pairs reachable via matching transitions. This
iterative process is repeated until there are no pairs left in the NPairs set,
as indicated between Lines 8-15. At the end of this process, the KPairs set
is used to derive the sets of transitions added, removed and kept by checking
matching transitions for all states in the KPairs set.

The worst-case complexity for solving this system of linear equations is
O((|Sr| × |Su|)3), where |Sr| and |Su| are the number of states in each of the
compared FSM models. However, in practice, the average complexity is lower
due to the sparse nature of the produced matrices [134].

2.2.3 Model precision

Originally, the LTSDiff algorithm [134] has been proposed to identify struc-
tural differences between two state-based models reverse engineered by model
learning algorithms [76,36]. This structural difference is categorized in terms
of a confusion matrix [113]. In Table 2, we show the confusion matrix used
to compute the structural difference between two FSMs, namely the reference
modelMr and the targetMu. These respectively indicate the system’s internal
behavior and reverse engineered model.

Target Mu

in Du not in Du

Reference Mr
in Dr TP = Dr −Rem FN = Rem

not in Dr FP = Add TN = ∅

Table 2: The confusion matrix to compute the performance metrics for model
learning algorithms

In this confusion matrix, the set of true positives TP is derived from the set
of correctly learned transitions, i.e., Dr −Rem. The set of false positives FP
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is denoted by the set of extra transitions Add, i.e., those that were incorrectly
hypothesized. The set of false negative FN is defined as the set of removed
transitions Rem, i.e., those that should be in the learned model Mu but are
missing. The set of true negatives TN is empty because it refers to impossible
transitions, i.e., those that should be in none of the models Mr or Mu.

Based on these sets, performance metrics, such as Precision, Recall and
F-measure, can be computed for model learning algorithms [134]. Precision
tells the proportion of transitions in Du that are also in Dr, and Recall tells
the proportion of transitions in Dr that are also in Du. In Table 3, we show
the formula used to calculate the aforementioned performance metrics.

Measure Formula Description
Precision |TP |

|TP∪FP | Proportion of transitions
from Mu that are in Mr

Recall |TP |
|TP∪FN| Proportion of transitions

from Mr that are in Mu

F-Measure 2×Precision×Recall
Precision+Recall

Harmonic mean between
Precision and Recall

Table 3: Performance metrics for comparing FSMs

3 Learning family models from product specifications

Family models have been exploited as theoretical foundation for efficient SPL
analysis techniques, e.g., model-based testing [21] and model checking [104,
119]. Albeit reasonably efficient, family-based analysis is a challenging task
because the creation and maintenance of family models is time consuming and
error-prone, especially if there are crosscutting features and large models [107].
Additionally, as requirements change and product instances evolve, the lack of
maintenance may render outdated family models [133].

In this section, we introduce the FFSMDiff algorithm, a family model learn-
ing technique that builds succinct FFSM models [58,56] for an SPL by inte-
grating feature model analysis into the process of structural comparison of
state-based models [134]. Although our technique is discussed in terms of FF-
SMs, it can be extended to non-connected, non-minimal and non-deterministic
models [134] and other family-based modeling approaches [19], such as FTSs
[33,20], as the FSM notation is a variant of LTS where labels indicate in-
put/output pairs.

The FFSMDiff algorithm allows to (i) learn a new FFSM model from two
product FSMs, or (ii) include a product FSM into an existing FFSM. The
former approach is applicable when there is no FFSM existing a priori, and
the latter if there is a new configuration ξu 6∈ Λr not included in an FFSM FFr
specifying a set of configurations Λr, respectively. In both cases, we assume
that the feature model, the FSMs, and the configurations of each product
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under learning are known a priori. This means that the product FSMs shall
be previously hand-crafted or learned using some variant of model learning [7,
110,41]. Furthermore, the product FSMs shall satisfy the basic properties of
testing. These properties are also assumed to be valid for the existing FFSM
that will incorporate new product behavior [58].

3.1 The FFSMDiff algorithm

In the FFSMDiff algorithm, we employ the structural comparison of state-
based models proposed by Walkinshaw and Bogdanov [134] to match product
models. Hence, we learn FFSMs by merging them into an unified family model
where differences are indicated by feature constraints. To date, this is the first
study to employ automata learning principles for learning family models.

In Algorithm 2, we depict the pseudocode for the FFSMDiff algorithm and
discuss the main changes that we incorporated to employ the idea of state-
based model comparison as a family model learning algorithm.

Algorithm 2: The FFSMDiff algorithm
1 Input: Model Mr, Model Mu, k, t, r;
2 PairsToScore = computeScores(Mr,Mu, k);
3 KPairs = identifyLandmarks(PairsToScore, t, r);
4 NPairs = ∪(a,b)∈KPairsSurr(a, b)−KPairs;
5 while NPairs 6= ∅ do
6 while NPairs 6= ∅ do
7 (a, b) = pickHighest(NPairs, PairsToScore);
8 KPairs = KPairs ∪ (a, b);
9 NPairs = removeConflicts(NPairs, (a, b));

10 end
11 NPairs = ∪(a,b)∈KPairsSurr(a, b)−KPairs;
12 end

13 Add={b1
a/b−−→ b2∈Du| 6 ∃(a1

a/b−−→ a2∈Dr∧(a1, b1)∈KPairs∧(a2, b2)∈KPairs)};

14 Rem={a1
a/b−−→ a2∈Dr| 6 ∃(b1

a/b−−→ b2∈Du∧(a1, b1)∈KPairs∧(a2, b2)∈KPairs)};
15 Kpt = KPairs;
16 FFr,u = mergeAndAnnotate(Mu,Mr, Add,Rem,Kpt);
17 return (FFr,u);

First, to identify the landmarks between product models, we have adapted
the identifyLandmarks() function from Algorithm 1 to assume the state pair
(s0r , s0u) as a default landmark. Hence, we search for all pairs likely to be
equivalent, given the threshold t and ratio r parameters. The state pairs iden-
tified as satisfying the threshold t and ratio r are returned to the set KPairs
of common transitions (i.e., commonalities), as shown in Line 3. Since the state
pair (s0r , s0u) is taken by default as an initial landmark, any pair with s0r or
s0u is also discarded. Additionally, we eliminated the risk for having an empty
KPairs set, as shown in Lines 4-6 of Algorithm 1.
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Second, we employ the resulting sets Add,Rem to identify product-specific
states that will receive a presence condition indicating the particular product
that it is associated with, and the setKpt is used to indicate the matched states
that will be annotated with the conjunction of both simplified configurations.
Conditional transitions departing from matching states that also match I/O
labels must be unified, otherwise they shall be represented by distinct transi-
tions with their respective simplified configurations. The process of matching
and annotating states and transitions is indicated by the mergeAndAnnotate()
function shown in Line 16. As the LTSDiff , the FFSMDiff also has a (worst-
case) complexity of O((|Sr| × |Su|)3) that, in practice, the is often lower due
to the sparse nature of the produced matrices.

In the next section, we formally describe how this mergeAndAnnotate()
process is performed for learning a new FFSM from two products. Afterwards,
we extend the formalities for this idea to the task of incorporating new product-
specific behavior into an existing FFSM.

3.2 Learning a new FFSM

Let Mr = 〈Sr, s0r , Ir, Or, Dr, δr, λr〉 and Mu = 〈Su, s0u , Iu, Ou, Du, δu, λu〉
be the FSMs of two products pr and pu that implement configurations ξr =
(
∧
f∈pr f) ∧ (

∧
f 6∈pr ¬f) and ξu = (

∧
f∈pu f) ∧ (

∧
f 6∈pu ¬f). To learn a new

FFSM from Mr and Mu, there are two assumptions: (i) Mr and Mu are FSMs
built a priori (e.g., using automata learning [7,125]), (ii) their respective fea-
ture model and configurations ξr and ξu are known a priori. To learn new
FFSMs from two product FSMs, we proceed as follows:

Definition 6 (FFSM learned from two configurations) An FFSM learned
from 〈Mr,Mu〉 is a septuple FF = 〈F,Λ,C, c0, Y,O, Γ 〉, where

– F = (pr ∪ pu) is the set of features implemented by the two products
– Λ = {ξr, ξu} is a smallest set composed by the two configurations,
– C ⊆ (Sr ∪ Su ∪ (Sr × Su))×B(F ) is the set of conditional states where

∀si ∈ Sr, sj ∈ Su | (si, sj) ∈ KPairs · ((a, b), ξr|ξu) ∈ C,
∀si ∈ Sr,@sj ∈ Su | (si, sj) ∈ KPairs · (si, ξr) ∈ C,
∀sj ∈ Su,@si ∈ Sr | (si, sj) ∈ KPairs · (sj , ξu) ∈ C

(6.1)

– c0 = ((s0r , s0u), true) ∈ C is the initial conditional state,
– Y ⊆ (Ir ∪ Iu)×B(F ) is a finite set of conditional input symbols,
– O = (Or ∪Ou) is the finite set of output symbols
– Γ ⊆ C × Y ×O × C is the set of conditional transitions where
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– two transitions (si, x) ∈ Dr and (sj , x) ∈ Du are unified in the same
conditional transition if
∀(si, x) ∈ Dr, (sj , x) ∈ Du | λr(si, x) = λu(sj , x) = o,

δr(si, x) = sk, δu(sj , x) = sl,

(si, sj), (sk, sl) ∈ KPairs ·
((si, sj), φ), (x, (ξu|ξr)),o, ((sk, sl), φ′′)) ∈ Γ

(6.2)

– otherwise, for two transitions (si, x) ∈ Dr and (sj , y) ∈ Du, there are
two independent conditional transitions defined as follows:

∀(si, x) ∈ Dr, (sj , x) ∈ Du | λr(si, x) = or, δr(si, x) = sk,

λu(sj , y) = ou, δu(sj , y) = sl, ·
((si, φr), (x, ξr),or, (sk, φ

′′
r )) ∈ Γ,

((sj , φu), (y, ξu),ou, (sl, φ
′′
u)) ∈ Γ

(6.3)

Condition 6.1 ensures that product states are either unified into one or
two distinct conditional states. These are annotated either with the disjunc-
tion or individual configurations, respectively. Condition 6.2 denotes when
two transitions shall be unified due to their matching labels and conditional
states. Finally, Condition 6.3 describes the case where two transitions cannot
be merged and hence, there are two distinct conditional transitions one for
each configuration.

To guarantee the mapping between the initial states of the products, we set
the state pair (s0r , s0u) as the initial conditional state for the learned FFSM
model. This state pair also helps to steer the identification of commonalities
between product FSMs. To reduce the complexity of feature constraints, the
product configurations are simplified by discarding the core features [18] ex-
pressed in their associated formulas.

Example 5 (FFSM learned from two product configurations) In Figure 6, we
depict a fragment of the FFSM learned by comparing and merging the two
product FSMs shown in Figures 3 and 5.

Bowling*Pong
(W&¬S&¬B&¬N)|(N&¬S&¬B&¬W)

Start[(W&¬S&¬B&¬N)|(N&¬S&¬B&¬W)]/1

Exit[(N&¬S&¬B&¬W)]/1
Start Game

[True]

Exit[(W&¬S&¬B&¬N)|(N&¬S&¬B&¬W)]/1

Exit[(W&¬S&¬B&¬N)]/0
Start[(W&¬S&¬B&¬N)|(N&¬S&¬B&¬W)]/0

Exit[(W&¬S&¬B&¬N)]/1
Exit[(N&¬S&¬B&¬W)]/0

Pause[(N&¬S&¬B&¬W)]/0

Pause[(W&¬S&¬B&¬N)]/1

Fig. 6: Fragment of the FFSM learned for the AGM SPL

In this example, the states Pong Game and Bowling Game were merged into
one state Bowling*Pong where there is one conditional transition with input
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symbol Exit for each configuration. The feature constraint (W∧¬S∧¬B∧¬N)
is an example of simplified configuration for the product in Figure 3.

3.3 Including new product behavior into an existing FFSM

Let the model FFr = 〈Fr, Λr, Cr, c0r , Yr, Or, Γr〉 be an FFSM learned from
a set of product configurations Λr. If the FFSM FFr does not include the
behavior of a product FSM Mu = 〈Su, s0u , Iu, Ou, Du, δu, λu〉 specifying a
configuration ξu 6∈ Λr, a new FFSM FF that includes the product behavior
from ξu can be learned by matching and merging the models 〈FFr,Mu〉.

To include a new product into an existing FFSM, we adapted the Definition
6 to compare product models against FFSMs, we introduce another definition
of how an existing family model incorporates novel product behavior described
in terms of a product FSM. Thus, there are three required assumptions: (i)
FFr and Mu are state machine models built a priori, (ii) configuration ξu is
known in advance, and (iii) the FSM and FFSM under learning share a feature
model that is known a priori. To include a new product-specific behavior into
an existing FFSM, we proceed as follows:

Definition 7 (FFSM learned from FFr and configuration ξu)
An FFSM learned from 〈FFr,Mu〉 is a septuple FF = 〈F,Λ,C, c0, Y,O, Γ 〉

where FFr is a reference FFSM and Mu is the FSM specifying an updated
product pu where

– F = Fr ∪ {pu} is the set of features in FFr and implemented by pu
– Λ = Λr ∪ {ξu} are the configurations in FFr and implemented by pu,
– C ⊆ (Sr ∪ Su ∪ (Sr × Su))×B(F ) is the set of conditional states where

∀(si, φa) ∈ Cr, sj ∈ Su | (si, sj) ∈ KPairs · ((si, sj), φa|ξu) ∈ C,
∀(si, φa) ∈ Cr,@sj ∈ Su | (si, sj) ∈ KPairs · (si, φa) ∈ C,

∀sj ∈ Su,@si ∈ Sr | (si, sj) ∈ KPairs · (sj , ξu) ∈ C
(7.1)

– c0 = ((c0r , s0u), true) ∈ C is the initial conditional state,
– Y ⊆ (Yr ∪ Iu)×B(F ) is a finite set of conditional input symbols,
– O = (Or ∪Ou) is the finite set of output symbols
– Γ ⊆ C × Y ×O × C is the set of conditional transitions where

– two transitions ((si, φi), (x, φr), o, (sk, φk)) ∈ Γr and (sj , x) ∈ Du are
combined into the same conditional states if

∀((si, φi), (x, φr), o, (sj , φj)) ∈ Γr, (sk, x) ∈ Du | λu(sj , x) = o,

δu(sj , x) = sl,

(si, sj), (sk, sl) ∈ KPairs ·
((si, sj), (φ|ξu)), (x, (φr|ξu)), o, ((sk, sl), (φ′′|ξu)) ∈ Γ

(7.2)
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– otherwise, for a conditional transition ((si, φi), (x, φr), or, (sk, φk)) ∈ Γr
and a transition (sj , y) ∈ Du, there are two conditional transitions
defined as follows:

∀(si, φi) ∈ Cr, (sj , x) ∈ Du | λu(sj , y) = ou,

δu(sj , y) = b2 ·
((si, φr), (x, φr), or, (sk,φ

′′
r )) ∈ Γ

((sj , φu), (y, ξu), ou, (sl,φ
′′
u)) ∈ Γ

(7.3)

In addition to the procedure of including new product behavior, we also
have extended our FFSMDiff algorithm [42] to identify the sets of transitions
added, removed and kept. Thus, we can quantify the behavioral overlap be-
tween an updated product model Mu and a reference FFSM FFr. To identify
the amount of behavioral overlap, we use the concept of precision between two
models Mu and FFr in terms of their sets of common transitions [134].

Family model learning has been proposed as an approach to build feature
finite state machine models and learn presence conditions indicating feature-
specific and product-specific behavior in terms of conditional states and tran-
sitions [42]. Since family models are expected to represent all product line vari-
ants within the same artifact [107], the most straightforward method should
be to analyze all valid configurations in a brute-force fashion. However, this is
only feasible for product lines with not too many members [120]. To address
this issue, we present an approach that employs product sampling on family
model learning.

4 Incorporating Product Sampling into Family Model Learning

Analysing an SPL on a product-based basis is very demanding and cumber-
some as there is a huge number of possible product configurations. Thus, we
propose to incorporate product sampling into the family model learning so it
can be ran without the need for exhaustive learning.

For large SPLs, a typical software analysis approach is to sample product
configurations such that reasonable statements on the behavior of the entire
product line are possible [120,127]. Product sampling techniques, such as T-
wise [95,68], shall collectively cover the behavior of a product line. Hence, they
should pave the way for learning family models with reasonable precision and
cost lower than exhaustive analysis.

In our approach, we assume there is an arbitrary product sampling tech-
nique sample() that generates a minimal subset of configurations Csmpl to be
considered during the sampling process, such as the Chvatal algorithm [68]. In
Algorithm 3, we depict our approach for learning family models by sampling.

Let Csmpl = {ξ1, ξ2, . . . , ξn} be the list of sampled product configurations
under learning by an arbitrary product sampling technique, referred to as
sample(), In the family model learning by sampling process, we start by first
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Algorithm 3: Learning Family Models by Sampling Configurations
1 Input: Feature model FM and Learning parameters k, t, r;
2 Output: Family model learned by sampling FFn;
3 Csmpl = {ξ1, ξ2, . . . , ξn} = sample(FM); // List of sampled configurations
4 M1 = buildFSM(ξ1, FM); // Build a product FSM Mi for ξi
5 M2 = buildFSM(ξ2, FM);
6 FF1 = FFSMDiff (M1,M2, k, t, r); // Learn new FFSM
7 foreach j ∈ {2, . . . , n− 1} do
8 Mj+1 = buildFSM(ξj+1, FM);
9 FFj = FFSMDiff (FFj−1,Mj+1, k, t, r); // Learn partial family model

10 end
11 return(FFn);

building a new family model FF1 for the two product modelsM1 andM2. Sec-
ond, given an initial FFSM FF1, the learning by sampling enters into an iter-
ative stage where novel product-specific behavior expressed in terms of a state
machine Mj+1 is included in a partial family model FFj . This family model
is said to be partial as it describes only a subset of valid product instances.
Again, product FSMs Mj+1 may be nonexistent and hence, buildFSM() may
be required to build FSMs. In the buildFSM() step, product-specific FSM
models can be either hand-crafted or built by means of automata learning [7,
125]. At the end of this iterative stage, a family model FFn learned from all
product configurations ξi ∈ Csmpl is constructed. To evaluate the benefits of
the product sampling criteria, in the next section we present few experiments
to quantify the precision of such models learned by sampling.

5 Empirical evaluation

Several studies have underscored the importance of feature interaction cov-
erage in product sampling [127]. Thus, we designed a set of experiments to
analyze our family-based learning technique with the purpose of evaluate its
effectiveness in learning succinct models using exhaustive analysis. Hence, we
extended our investigation to evaluate whether feature interaction coverage
metrics can alleviate the cost of family model learning and collectively cover
the behavior of SPLs. Particularly, we applied the T-wise coverage criteria and
analyzed the precision of models learned by sampling [95,68].

In this section, we present the context of our experiment, selected vari-
ables, formulated hypotheses, experiment design, and subject systems. Next,
we present the analysis and interpretation of results and threats to validity
for our empirical evaluation. We close this section discussing the implica-
tions and limitations of our study. This section is organized based on rec-
ommendations by Wohlin et al. [136]. For the sake of reproducibility, we
have made a web page describing the artifacts (e.g., source-code, scripts, FF-
SMs, FTSs, FSMs, feature models) used and generated in this study available
at https://damascenodiego.github.io/learningFFSM/. The repository has
been structured based on recommendations by Mendez et al. [89].

https://damascenodiego.github.io/learningFFSM/
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5.1 Methodology

According to Thüm et al. [120], the effectiveness of family-based analysis
should be mainly influenced by the number of features, the size of feature
implementations (e.g., modeling, coding artifacts) and the amount of reuse
among configurations, rather than the number of valid configurations [120].
Therefore, for our technique to qualify as an effective family-based learning
technique, we expect to learn succinct FFSMs where states and transitions
are annotated with simplified configurations.

By succinct, we mean that the FFSMs learned are smaller than the prod-
ucts under learning and hand-crafted models, especially if there is high feature
sharing. By simplified, we mean that product configurations are modified by
discarding core features from feature constraints using SAT solvers [79].

Additionally, we expect that family models learned by sampling product
configurations shall collectively cover the behavior of a product line and be
at least as precise as those models recovered by exhaustive analysis. Thus,
we designed a set of experiments to measure the succinctness and precision
the learned family models and answer our research questions. In Table 4, we
present our hypotheses about each proposed research question.

RQ Hypotheses Description

RQ1 HRQ1
0 The size of learned FFSMs is equal to the total size of the pairs

of products under learning
HRQ1

1 The size of learned FFSMs is smaler than the total size of the
pairs of products under learning

RQ2 HRQ2
0 The learned FFSMs are larger than hand-crafted models

HRQ2
1 The learned FFSMs have at most the same size as hand-crafted

models

RQ3 HRQ3
0 The size of learned FFSMs is not influenced by configuration

similarity
HRQ3

1 The size of learned FFSMs is influenced by configuration simi-
larity

RQ4 HRQ4
0 The FFSMs learned by sampling configurations are less precise

than those learned by exhaustive analysis
HRQ4

1 The FFSMs learned by sampling configurations can be as precise
as those learned by exhaustive analysis

Table 4: Hypotheses

As a measure of succinctness, we used the size of the FFSMs learned from
product pairs. We describe size in terms of number of transitions as it is one
of the factors that influence the complexity of model-based techniques [26,14]
and that is used to interpret the language and structure of FSMs [134]. To
complement our analysis, we also measured the number of states.

To measure the statistical significance, we used the Mann-Whitney test to
check if there was significant difference (p < 0.05) between the sizes of the
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learned FFSM and the reference model, i.e., the product pair or the hand-
crafted family model. To measure the scientific significance [69,10], we used
the Vargha-Delaney’s Â effect size [126,135] to assess the probability of the
learned FFSMs being more succinct than the reference model. If Â < 0.5,
the learned FFSM is smaller than the pair of products. If Â = 0.5, they have
equivalent sizes. To categorize the magnitude of the Â effect size, we used the
intervals between Â and 0.5 implemented in the effsize package [62,123]:
negligible < 0.147 ≤ small < 0.33 ≤ medium < 0.474 ≤ large.

As a measure of configuration similarity, we applied the Hamming distance
between product configurations with respect to normalized number of common
selected and unselected features [4]. Thus, we analyzed the impact of config-
uration similarity on family model succinctness by calculating the Pearson’s
correlation coefficient between the ratio of the size of the learned FFSM with
respect to the total size of the product pairs, on one hand, and the similarity
between configurations, on the other hand.

As a measure of precision, we used the concept of model precision proposed
by Walkinshaw and Bogdanov [134] for evaluating the performance of reverse
engineering techniques. Inspired by their observations, we gradually changed
our parameter values to constraint the possibilities of matches and applied the
same value for all product lines. If product states were too homogeneous, with
many similar transitions, we increased the thresholds to make sure that we
started from state pairs that clearly standed out, as Walkinshaw and Bogdanov
[134] indicate. Hence, we set the learning parameters for the attenuation ratio
as k = 0.5, the threshold of most equivalent pairs as t = 0.4 and the ratio for
best matches as r = 1.4.

5.2 Experiment Design

To answer RQ1 and RQ2, we implemented the FFSMDiff algorithm on top
of the LearnLib framework [67] for dealing with the state machine models,
the SAT4J solver [79] for feature model analysis, the FeatureIDE [121] library
for product sampling and configuration similarity, and the Apache Commons
Mathematics library [8] for solving the systems of linear equations. We used
the FFSMDiff implementation to combine the FSM models into FFSMs for
all pairs of product configurations. Then, we checked whether there were sig-
nificant and relevant differences between the sizes of the learned FFSM, the
pair of products under learning and the hand-crafted models. In Figure 7, we
illustrate our experiment to answer the RQ1 and RQ2.

To answer RQ3, we normalized the size of the learned FFSMs by the
total size of the product pairs to the interval between 0.5, if both product
FSMs are equivalent; and 1.0, otherwise. Based on this normalized size, we
calculated the Pearson’s correlation coefficient between the normalized size of
learned FFSMs and configuration similarity to measure the impact of similarity
between product configurations on the size of learned family models. For the
statistical analysis, we used the R statistical package [101].
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Fig. 7: Experiment design - Learning FFSMs from product pairs

To answer RQ4, we used the FeatureIDE workbench [121] to generate
subsets of valid products satisfying the feature-wise (aka. 1-wise), pair-wise
(aka. 2-wise), 3-wise, 4-wise and all-valid configurations criteria. Particularly,
we used the Chvatal algorithm [31] to perform T-wise product sampling [68]
that is available in the FeatureIDE workbench [121]. In Figure 8, we illustrate
our experiment to answer the RQ4.

Configuration n

Configuration 4

Product   
Sampling   

(1)

Configuration 3
Configuration 2
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...

FFSMDiff     1 - wise     
(Feature-wise)     
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Custom Artifacts
Generated Artifacts

Legend: 
Reused Artifacts

Partial family model FF t
b/1[Φ2]

a/0[Φ1]

Fig. 8: Experiment design - Learning FFSMs by product sampling

Let {ξ0, ξ1, . . . , ξm} ⊆ B(F ) be a subset of valid configurations generated
by some arbitrary sampling criteria, such that they are sorted by configuration
similarity [4]. For each sampled subset, we iteratively learned partial FFSMs by
merging the FSMs of the configurations

⋃j−1
i=0 (ξi) with its next configuration

ξj . To evaluate the precision of the partial family model learned by sampling,
we used the FFSMDiff to measure how many transitions from all valid products
were included into the FFSMs learned by sampling. The same t, k, r parameters
used for learning family models were taken to calculate the precision of models
learned by sampling.
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5.2.1 Subject systems

In order to evaluate our hypotheses, we searched in the literature of model-
based SPL analysis, existing open source projects, and benchmarks for subject
systems accompanied by 1) a feature model, 2) models of individual products,
and preferably, 3) a behavioral family model. Items 1 and 2 form the basis for
the application of our technique and item 3 was used to evaluate our learning
technique against the provided models.

We selected 105 Mealy machines derived from six abstract representations
of SPLs [58,32,105,46,45]. While one of these abstract representations of SPLs
has been already made available as a set of FSMs [58], the other five sets of
FSMs had to be hand-crafted from LTS models instantiated from academic
benchmarks of SPLs [32,105,46,45]. In Table 5, we present the SPLs in terms
of numbers of features, valid configurations, and total of states and transitions
in its family model.

SPL Feature model Family model

ID Name Features Valid conf. States Transitions

AGM Arcade Game Maker 13 6 6 35

VM Vending Machine 9 20 14 197

WS Wiper System 8 8 13 112

AEROUC5 Aero UC5 7 9 25 450

CPTERMINAL Card Payment 13 30 11 176

MINEPUMP Minepump 9 32 25 575

Table 5: Description of the SPLs under learning - Feature and family models

To instantiate these product FSMs, we used the VIBeS tool [44] to derive
LTSs for every valid product of each SPL. For each LTS state, we created one
FSM state. For every valid input of an LTS state, we added an FSM transi-
tion returning 1. For every missing transition, we added a self-loop transitions
returning 0. This process was hand-crafted by the first author of this paper,
who has former experience in modeling software systems for model-based test-
ing [39,40] and automata learning [41]. Moreover, this process was partially
automated using Bash and Python scripts that are included in our lab package.

Although these are not fully realistic systems, we believe these academic
benchmarks are more representative than random models, which may consti-
tute very rare and special cases in which our techniques do not perform well.
They comprise many non-trivial aspects, such as the existence of infinite be-
haviour, states with similar or identical behaviour in different products [42]
and distinct input alphabets [32] that can make family model learning more
difficult. Additionally, these models constitute widely used benchmarks for
family-based analysis techniques [34,12,33,21,20,45,118]. Since the AGM has
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been discussed before, in the next sections, we briefly present the other five
subject systems used in this study.

The Vending Machine SPL

The Vending Machine (VM) is an SPL that we hand-crafted [42] based on
LTSs derived from a collection of illustrative examples of FTS models [32]. In
Figure 9, we depict the VM feature model.

Fig. 9: The VM feature model

In the VM SPL, product instances shall feature at least one and at most
three beverages (i.e., Coffee - COF, Tea - TEA, and Cappuccino - CAP), they
support one currency (i.e., Dollar - DOL or Euro - EUR) and can play one op-
tional Ringtone - TON. The VM SPL constitutes an interesting case as it can
derive FSMs with distinct input alphabets and languages. Among the main
characteristics of the derived product FSMs, we highlight two main differences:
the possibility to add extra states for each beverage; and changes in the valid
input symbols of outgoing transitions departing from the initial state depend-
ing of the supported currency. Finally, the VM SPL also shows a "requires"
relationship explicit in the feature model as its corresponding propositional
formula.

The Wiper System SPL

The Wiper System (WS) is another SPL that we hand-crafted [42] based on
models from the same collection of SPLs aforementioned [32]. In Figure 10,
we depict the feature model of the WS SPL.

Our WS SPL has two subsystems: the Sensor to detect rain and the Wiper
itself; available in two qualities, namely, high and low; and one optional feature
for permanent movement PermanentWiper. A high quality sensor sHigh can
discriminate between heavy and light rain, whereas a low quality sensor sLow
can only distinguish between rain and no rain. Similarly, the wHigh and wLow
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Fig. 10: The WS feature model

quality wipers can operate at two and one speeds, respectively. Each of these
features lead to significant changes in the structure and language of its derived
product FSM models.

The Aero UC5 SPL

The Aero UC5 (AEROUC5) model has been originally presented by Samih
et al. [105] as a set of extended Markov models designed by engineers. It is
an industrial situational awareness system for helicopters flying in degraded
visual environments that has been employed as a benchmark in SPL research
studies [46,45]. The AEROUC5 feature model has been originally composed
by 25 features and more than 5 million valid configurations [130].

We adapted the AEROUC5 SPL because there were only four features that
were used in the behavioural model of the products [130]. Hence, the original
model had a huge amount of identical product models. We have thus restricted
the feature model to only those four concrete features used in the behavioural
models as shown in Figure 11.

Fig. 11: The Aero UC5 feature model

Our adapted version of the feature model is composed by four features
related to displaying (i) real object or (ii) 3D conformal visual cues on a head-
tracked Helmet, and marking (iii) intended landing positions or (iv) obstacles
on ground using an Obstacle Warning System. This SPL is intended to be a
more realistic subject as it has been designed by engineers and is one of our
largest behavioral model in terms of number of states and transitions.



28 Damasceno, C.D.N., et al.

The Card Payment Terminal SPL

The Card Payment Terminal (CPTERMINAL) is another SPL originally de-
signed as an FTS [46,45]. In Figure 12, we depict the feature model for the
Card Payment Terminal product line.

Fig. 12: The Card Payment Terminal feature model

This product line has been defined by a software engineer based on EMV
and PCI norms [46,45]. The Card Payment Terminal FTS describes the be-
havior of one terminal that accepts card payment with DirectDebit and/or
CreditCard. It accepts a card owner authentication method (i.e., Signature
and optionally PIN code), and with a synchronous (Online) or asynchronous
(Offline) connection to the payment service [131]. The CPTERMINAL SPL
also includes a "requires" relationship explicit as its corresponding proposi-
tional formula. To derive FSMs, we have used the same approach applied to
the AEROUC5 SPL.

The Minepump SPL

The Minepump (MINEPUMP) product line has been presented by Classen et
al. [33]. The purpose of this system is to keep a mine shaft clear of water while
avoiding the danger of methane related explosions. In Figure 13, we show the
feature model for the Minepump SPL.

It monitors the mine shaft using the WaterRegulator and MethaneDetect
features. The system is activated once the water level reaches a preset thresh-
old, but only if the methane is below a critical limit. Similarly to the AER-
OUC5 and CPTERMINAL SPLs, the FSMs for the Minepump SPL were
derived from an FTS model [132].



Learning by Sampling 29

Fig. 13: The Minepump feature model

5.3 Analysis of Results

In this section, we discuss the main results of our experiments in terms of
the four defined RQs and the Hypotheses shown in Table 4. For the sake of
space, we will only plot and highlight the main findings of our experiments.
The full set of plots and tabulate results are available in our online repository
under the EMSE tag1. In the boxplots, the red dashed lines indicate the
number of transitions or states in the products under learning and the original
hand-crafted model.

5.3.1 RQ1 – Is our approach effective in learning succinct family models
with respect to the total size of the products under learning?

Regarding the succinctness of the learned FFSMs, we observed that on average
all learned FFSMs presented fewer transitions than their respective pairs of
products under learning. In Figure 14, we show boxplots for the sizes of the
learned FFSMs and the total size of the pairs of products under learning in
terms of number of transitions. The number of transitions of the original hand-
crafted family model is indicated by a red dashed line.

In terms of number of states, we also found that the learned FFSMs had
fewer states than their pairs of products under learning. Figure 15 shows the
boxplots for the numbers of states in the learned FFSMs and the total number
of states in the pair of products under learning.

To assess the statistical difference and significance of our results, we ran
the Mann-Whitney test and Vargha-Delaney’s Â effect size to check the sig-
nificance (p < 0.05) and magnitude of the difference between the sizes of the
learned FFSMs and the pairs of products under learning. In Table 6, we present
the p-values and effect sizes comparing the sizes of our learned family models
against the pairs of product under learning in terms of states and transitions.

As indicated by Figures 14 and 15, as well as by Table 6, there were sta-
tistically significant differences between the sizes of the learned FFSMs and
the pair of products under learning. For the effect sizes, we also found that
the differences had large magnitude. Thus, our results support the hypothesis

1 https://github.com/damascenodiego/learningFFSM/releases/tag/EMSE

https://github.com/damascenodiego/learningFFSM/releases/tag/EMSE
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Fig. 14: Number of transitions in the learned FFSMs and pairs of products

# of Test AGM VM WS CPTERMINAL MINEPUMP AEROUC5

States
MW < .001 < .001 < .001 < .001 < .001 < .001

VD 0 0.037 0.050 0 0.005 0

Transitions
MW < .001 < .001 < .001 < .001 < .001 < .001

VD 0.075 0.174 0.146 0.032 0.120 0

VD: Vargha-Delaney’s effect size MW: Mann-Whitney test

Table 6: Results for the Mann-Whitney test and Vargha-Delaney’s effect size:
Learned FFSM vs. Product pair

HRQ1
1 that the sizes of learned FFSMs is at most equal to the total size of

products under learning.

5.3.2 RQ2 – Is our approach effective in learning succinct family models
with respect to the total size of the hand-crafted models?

To evaluate the succinctness of the learned FFSMs, we also compared the size
of hand-crafted models against the FFSMs learned from pairs of products. In
Figures 14 and 15, the size of the original hand-crafted FFSM in terms of
number of transitions and states is indicated by red dashed lines.
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Fig. 15: Number of states in the learned FFSMs and pairs of products

To compare the sizes of the hand-crafted models and the FFSMs learned
from product pairs, we used the Mann-Whitney test and Â effect size. Table
7 shows the results for the Mann-Whitney test and effect size comparing the
size of the learned FFSMs against the size of hand-crafted models.

# of Test AGM VM WS CPTERMINAL MINEPUMP AEROUC5

States
MW < .001 < .001 < .001 < .001 < .001 < .001

VD 0 0.35 0 0.22 0 0

Transitions
MW < .001 < .001 < .001 < .001 < .001 < .001

VD 0 0.09 0 0 0 0.13

VD: Vargha-Delaney’s effect size MW: Mann-Whitney test

Table 7: Results for the Mann-Whitney test and Vargha-Delaney’s effect size:
Learned FFSM vs. Hand-crafted model

By analyzing the results of the Mann-Whitney test, we found statistically
significant differences (p < 0.01) between the sizes of FFSMs learned from all
SPLs. The Vargha-Delaney’s effect sizes indicated differences of large magni-
tude where FFSMs learned from product pairs included fewer transitions than
their hand-crafted versions. These findings persisted for the number of states,



32 Damasceno, C.D.N., et al.

except for the VM SPL where we found a small magnitude on the difference
between the number of states of the FFSM models learned from product pairs.
Thus, our results support the hypothesis HRQ2

1 that learned FFSMs have at
most the same size as hand-crafted FFSMs.

5.3.3 RQ3 – Is the size of learned family models influenced by the
configuration similarity degree of the products under learning?

In addition to comparing the size of learned FFSMs against the size of products
under learning, we analyzed the relationship between learned family model
size and configuration similarity using the Pearson’s correlation coefficient. In
Figure 16, we show scatter plots for the configuration similarity degree against
the size of learned FFSMs for all pairs of products of each SPL.

R = − 0.84 , p = 2.3e-06

R = − 0.65 , p = 1.1e-06

R = − 0.76 , p < 2.2e-16

R = − 0.52 , p < 2.2e-16

R = − 0.79 , p = 2.9e-07

R = − 0.73 , p < 2.2e-16
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Fig. 16: Scatter plots for the relationship between the normalized size of the
learned FFSM and configuration similarity

A configuration similarity equal to 1.0 means that both products have
the same feature configuration. A ratio between the size of learned FFSM
and total size of products equal to 0.5 means that the products analyzed
implement equivalent behavior, otherwise they have some variability expressed
by mismatching transitions.

By analyzing the Pearson correlation coefficient, we found strong negative
correlations between FFSM size and configuration similarity for the VM, WS,
AEROUC5 and MINEPUMP product lines; very strong negative correlation
for the AGM product line; and moderate negative correlation for the CPTER-
MINAL. These results indicate that FFSMs learned from product models with
high configuration similarity tend to be smaller than those built from prod-
ucts implementing distinct sets of features. Therefore, our results support the
hypothesisHRQ3

1 that the size of FFSMs is influenced by configuration similar-
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ity and our approach can exploit common features and produce more succinct
FFSM models when these are prone to behavioral similarity.

5.3.4 RQ4 – Is our approach effective in learning precise family models
compared to those obtained by exhaustive analysis?

For each T ∈ {1, 2, 3, 4}, we have used the T-wise sampling criteria to generate
subsets of valid product configurations and learn FFSM models by sampling.
To evaluate the precision of learning by sampling, we used the all-valid con-
figurations criteria to derive all product FSMs and build reference FFSMs for
each SPL. In Table 8, we depict the sizes of the subsets of products generated
by each configuration sampling criteria.

SPL Size of the sampled subset generated by T-wise
Feature-wise Pair-wise 3-wise 4-wise All-valid

AGM 3 6 6 6 6
VM 2 6 13 19 20
WS 2 5 8 8 8

AEROUC5 3 6 9 9 9
CPTERMINAL 3 8 16 24 30
MINEPUMP 3 7 13 24 32

Table 8: Number of configurations in the subsets generated by each criteria

To evaluate the precision of the models learned by sampling, we have used
the FFSMDiff to measure the proportion of transitions from the analyzed
models (i.e., learned by sampling) that are also in the reference models (i.e.,
individual FSMs of all valid products). Thus, a precision equals to 1 indi-
cates that all transitions from all valid products are included into the FFSM
learned by sampling. Figure 17 shows the precision of the FFSM learned by
each sampling criteria compared against the full set of models from all valid
products.

As our results indicate, model precision turned out to be higher for larger
values of T . For most of the product lines, excluding the AGM, we found
a significant difference between the models learned by feature-wise sampling
and all-valid configurations, i.e., exhaustive analysis. By comparing exhaustive
analysis against feature-wise sampling, we found effect sizes categorized as
medium to large with the exhaustive criteria reaching higher precision.

Higher interaction strengths are known by their improved fault detection
capabilities [115,96]. Similarly, our results corroborate to these findings as they
indicate that family models learned by 3- and 4-wise sampling tend be more
precise than those built by feature-wise and pairwise sampling.

As shown in Table 8, the 3- and 4-wise sampling criteria generated the
same number of configurations as the exhaustive criteria for the AGM, WS and
AEROUC5 product lines. Thus, similar precision levels should be expected.
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Fig. 17: Model precision by sampling criteria

The results for the Mann-Whitney and Vargha-Delaney’s tests corroborate
these findings as they indicated no significant difference between the precision
of models learned by 3-wise, 4-wise and all-valid sampling criteria.

For the VM, CPTERMINAL and MINEPUMP product lines, we found
that models learned by 3-wise and 4-wise sampling reached precision levels
similar to those learned by using the exhaustive criteria. For these product
lines, we found either no significant differences or effect sizes categorized as
negligible to small between the models learned by the 3-wise, 4-wise and all-
valid sampling criteria. These findings indicate that product sampling can be
helpful at reducing the costs for recovering family models from product families
without analysing all-valid products.

For the AEROUC5 and MINEPUMP product lines, we found that FFSMs
learned by exhaustive analysis did not reach precision levels equal to 1. We as-
sociate this to a possibly high number of state pairs with equal scores returned
by the identifyLandmarks() function. Thereafter, multiple possible maps be-
tween states pairs were found byour algorithm where the selected pairs deemed
some transitions as removed and affected precision. These results support our
hypothesis HRQ4

1 that FFSMs learned by sampling can be at least as precise
as those learned by running exhaustive analysis.

5.4 Threats to validity

In this section, we discuss the threats to validity of the methods used in this
paper. To do this, we follow the recommendations by Wohlin et al. [136].

Conclusion validity: These threats concern the relationship between
treatment and outcome of our investigation. To avoid the risk of violating
assumptions of statistical tests, we have opted for the Mann-Whitney non-
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parametric statistical test. Despite these actions, there are still threats to con-
clusion validity due to the risk of random heterogeneity in our subject systems
as these are academic models in their majority.

External validity: These concern the generalization of our results to in-
dustrial SPLs. Our results are based on six subjects, of which one of them has
been inspired by a real system [105]; the small number of real product lines
and the fact that most feature models did not have complex constraints pose a
threat to external validity. Another variable that will form a threat to external
validity is the variability inherent to the valid products of our subject systems.
For some of our SPLs, the behavioral difference between products made the
exhaustive analysis the only criteria able to recover family models fully pre-
cise. In these cases, sampling techniques may not be applicable and hence,
configuration prioritization [61] may be required. The impact of prioritization
techniques in family model learning is out of the scope of this study.

Internal validity: These threats concern issues that may indicate a causal
relationship, when there is none. As the validity of experiments is highly de-
pendent on the reliability of the measures and treatment implementation, we
designed our experiments on top of three widely used tools for state-machine
learning [99], SAT solving [79], and SPL analysis [121]. The number of product
models and the diverse characteristics in the academic benchmarks used in our
study support that the internal validity of our results is good.

Construct validity: These are concerned the ability to draw correct con-
clusions about the treatment and outcomes. Two factors that will form threats
to construct validity are the nature of the hand-crafted FFSMs used as ground-
truth models and the subsets of product configurations sampled using T-wise
criteria. Highly experienced modellers will be able to produce more concise
representations and subsets of product configurations better than profession-
als with less experience. In addition to that, configuration subsets sampled by
T-wise criteria may be still large, compared to the set of all-valid products. In
these cases, domain-specific expertise may be useful to optimize family model
learning. The fact the modeller in our case was an expert both in SPL and in
the formal modelling language, mitigates the risk for our results.

5.5 Discussion

What are the implications for practitioners and researchers? While
exhaustive learning may be suitable for small product lines, in large SPL
projects, it becomes impractical. Our proposal aims to recover domain-level
artifacts (i.e., family models) from application-level artifacts (i.e., finite state
machines). Thus, we believe that our technique can enable model-based anal-
ysis techniques, such as regression testing, performance analysis, and product
sampling, to cases where family models are missing or incomplete. To employ
our technique, we expect engineers to have skills on model learning, reverse
engineering, and feature model analysis.
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In regression testing, family model learning could be employed to support
test suite optimization and reduce the potentially large number of test cases
generated from product-based techniques [56]. In performance analysis, fam-
ily model learning could be employed to support non-functional testing by
incorporating conditional probabilities for family-based probabilistic model
checking [128] and conditional time guards for stochastic real-time analysis
of software product lines [86]. In product sampling, iterative techniques, such
as IncLing [3], could incorporate partial family models to check for feature
interactions, e.g., by testing if richer product variants subsume the behav-
ior/properties of its constituents without unexpected behavioral changes, i.e.,
interaction problems [127].

What types of systems may it work/not work? In our learning by
sampling technique, there is an assumption that sampled products shall collec-
tively cover the behavior of product families and have their models specified a
priori. However, if there is no such behavioral overlap, then products learned
by sampling may never be precise enough and exhaustive learning should be
required. If that is the case, an iterative sampling process could be employed
for prioritizing product configurations for learning novel and unseen behavior
and testing, if a partial family model already includes the behavior of a given
product.

Regarding the size of product models, the worst-case complexity indicates
a cubic growth in the cost for learning. However, due to the sparse nature of
the produced matrices, the FFSMDiff algorithm tends to scale well. Figure 18
shows the distribution of times required to learn an FFSM for all pairs of prod-
uct models. The average time to learn models from products with total size of
40 states lies below 3000 milliseconds and these results corroborate the results
by Walkinshah and Bogdanov [134] where their algorithm was comparatively
cheap.
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How are the different notions of variability represented? Currently,
our approach annotates state and transitions using the disjunction of simpli-
fied configurations. As a result of this design decision, the representation of
feature constraints is limited to a unique format (i.e., OR with ANDs). To
overcome this limitation, more sophisticated presence-condition simplification
techniques [100] could be used to reduce the complexity of feature constraints.
Other possible solutions are the usage of feature model refactoring and special-
ization [18] to come up with the constrains for conditional state and transitions.

To which other models this technique can be applied? We expect
that our technique can be applied to learn other behavioral models for soft-
ware product lines such as MTS [78,52,77,17,16] and FTS [33,20]. Regarding
deterministic subsets of these two models, we expect that our technique can
be readily applied without much modifications. Learning non-deterministic
models, however, requires further investigation.

6 Related Work

In this section, we discuss our approach in terms of related work and how it can
be helpful in the respective context. Studies related to ours are in the fields of
state-machine learning, product sampling, family-based analysis, comparison
of state models, reverse engineering feature models, and SPL evolution.

6.1 State-machine learning

As software requirements change and systems evolve, the lack of maintenance
may render outdated and incomplete models [133] and hamper the application
of model-based techniques [87]. To tackle these issues, state-machine learning,
also known as automata learning [7], has become popular technique to auto-
mate the construction of behavioral models.

State-machine learning has been harnessed for black box model checking
[94], real-world protocols [1,53], software evolution [65,43], automatic test gen-
eration [98], and generalization of failure models [28,74]. For an overview of
state-machine learning and applications, we refer the reader to [66,116,2]. The
problem of learning models from SPLs becomes more complex as it has to cope
with products and features that may have their own models, requirements and
code.

Our study improves upon the state-of-the-art by evaluating the quality of
models learned by sampling subsets of valid products. Thus, we pave the way
for more efficient and precise family model learning approaches, which is a
topic that is still understudied [42].
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6.2 Product sampling for SPLs

Due to the number of valid configurations that usually grows exponentially
with the number of features, the exhaustive analysis of SPLs is impractical
[120]. To alleviate this issue, sampling techniques that provide subsets of all
valid products are being used to cover the behavior of SPLs and hence reveal
most faults in all other products [95].

According to Varshosaz et al. [127], product sampling techniques often rely
on feature models [70] and SAT solvers [79] to distinguish valid from invalid
configurations [18]. To support the sampling process, techniques can use meta-
heuristics (e.g., genetic algorithms [49,84]), coverage criteria (e.g., T-wise [95]),
manual selection and semi-automatic selection.

In our work, we have used product sampling to generate subsets of valid
configurations satisfying T-wise coverage. We have used the Chvatal algorithm
[31] implemented in the FeatureIDE workbench [121]. This algorithm has been
adapted by Johansen et al. [68] for product sampling by generating all T-wise
feature combinations. Incremental product sampling algorithms, such as the
IncLing [3], could be employed for family model learning, but this has been
left as future work.

6.3 Family-based analysis of SPLs

Family-based analysis operates on domain artifacts and incorporates knowl-
edge about valid feature combinations, given a feature model. Thus, not every
individual product has to be analyzed [120], as opposed to traditional analysis
strategies that are influenced by the number of valid feature combinations [25].
To achieve this goal, family-based analysis techniques rely on family models.
For an overview on techniques for family-model analysis, testing and modeling,
we refer the reader to recent surveys [120,19,21].

Family models have been exploited as theoretical foundation to perform
efficient model-based testing of SPLs [13,20], family model checking [104,119],
to automate the generation of specifications for individual products [11], to
efficiently validate families of products [58], and to describe fine-grained dif-
ferences among product variants [106]. We believe that our approach is com-
plementary to the aforementioned techniques as it can give insights about
optimizing family model learning to scenarios where there is a large number of
valid product configurations. Our technique is discussed in terms of FFSMs,
but it can be extended to other family-based notations, like FTSs [33,20], as
FSMs can be represented as a variant of LTS labeled with input/output pairs.

6.4 Comparison of state-based models

The comparison of FSMs is an important task for software engineering [134]
such as conformance testing [26], and performance analysis of state-machine
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learning techniques [7,125]. Studies related to ours are by Damasceno et al.
[42], Nejati et al. [91], and Walkinshaw and Bogdanov [134].

Damasceno et al. [42] introduced an approach to compare product FSMs
and build family models [42]. In this paper, we evaluate how product sampling
can help to reduce the costs for learning family models by sampling product
configurations. Product lines may have an exponential number of valid con-
figurations and hence, sampling techniques can be helpful to reduce the effort
required to recover family models.

Nejati et al. [91] presented an approach for matching and merging State-
charts [59]. Their approach relies on two operators for matching and merging
transitions. The latter uses static and behavioral properties to match state
pairs. The former produces a combined model in which variant behaviors are
parameterized using guards on their transitions where temporal properties are
preserved. The authors showed that relying on both operators produces higher
precision than relying on them independently.

Walkinshaw and Bogdanov [134] evaluated two approaches to compute the
precise difference between LTSs in terms of their language and structure. To
compare the language of state-based models, the authors have proposed an
approach based on the proportion of test sequences [29,129] that are classified
in the same way by two models Mr and Mu. Thus, performance metrics, (e.g.,
precision, recall, and F-measure) can be used to compare the languages of
LTS models. A major issue on comparing the language of FSMs is the fact
that some minor differences can mask structural similarities. To tackle this
issue, the authors have proposed an algorithm to compare the structure of
FSMs. The aforementioned approaches are complementary as two models may
have similar state transition structure, but completely different languages, or
vice-versa.

The family model learning process may face scalability issues in large SPLs
as a result of the worst-case complexity required to solve the system of linear
equations. Alternatively, search-based techniques could be used for product
sampling [49] and matching and merging states and transitions of product
and family models [5]. Furthermore, expert knowledge [127] or prioritization
techniques [61] could also be incorporated to identify what products should
be analyzed first. These are left as future work.

6.5 Reverse engineering feature models

Feature models play a central role on the variability management for SPLs [18].
By using SAT solvers [79], feature models can be analyzed to detect invalid
relationships or product configurations, core or dead features, redundancies,
and enumerate or quantify all valid products of an SPL. Unfortunately, com-
panies often develop software variants in an unstructured way and may lack
feature models as their construction is time-consuming and error prone [60].

In this context, several approaches have been proposed to automatically
build feature models from sets of product configurations [60,103,6]. Approaches
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based on Formal Concept Analysis (FCA) show promising possibilities on re-
verse engineering feature models as they can detect interdependencies and
hierarchies between features [6].

Our proposal focuses on the problem of “reverse engineering” family mod-
els from sampled product configurations. In our study, we assume that the
feature model is known a priori. However, we believe that our technique can
be extended to cope with non-existent feature models and learn family and
feature models at once, but the succinctness of the feature constraints may be
compromised. Thus, investigations combining feature model and behavioral
model learning are still required.

6.6 SPL evolution

The tasks of SPL reengineering and refactoring are vital to the maintenance
and evolution of their software products. For an overview on product line
evolution, refactoring and reengineering, we refer the readers to [75,51,88].

A large variety of artifacts have been considered in SPL evolution, but fea-
ture models are by far the most researched ones [88]. Moreover, recent studies
have shown that there is a need for reengineering approaches specifically tai-
lored for agile processes [88], and migration of SPL paradigms [75].

Several studies have investigated model learning techniques to cope with
traditional software evolution and regression testing [109,64]. However, to the
best of our knowledge, there are no works investigating model learning in the
setting of SPLs. Combined with state-machine learning [7], we believe that
our algorithm can support model-based regression testing in SPLs [102] and
family model checking [104,119] in agile processes [92].

7 Conclusion

alumni. In this paper, we present a technique for learning behavioral fam-
ily models in terms of Featured Finite State Machines (FFSMs). Our tech-
nique builds upon a known feature model for a product line and its individu-
ally learned or hand-crafted finite state machines, corresponding to product-
specific models with their respective known sets of features. We presented the
FFSMDiff algorithm, that unifies these product models into an FFSM by em-
ploying a state-based model comparison technique and feature model analysis.
Furthermore, we combined our approach with product sampling to reduce the
cost of exhaustive learning and integrate sampled product models into an ac-
curate family model.

We performed an empirical study of the effectiveness of our approach by
analyzing the succinctness and the accuracy of the learned models. We show
that the learned family models are more succinct than the total size of the
individual product models, particularly when there is a high degree of reuse
among these products. In addition, we also performed a set of experiments to
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investigate whether feature interaction criteria (e.g., T-Wise) can alleviate the
costs for family model learning by sampling valid products to collectively cover
the behavior of product families. Our empirical analysis showed that family
models learned by sampling can be as precise as those learned from exhaustive
analysis. These results pave the way for reducing the costs for recovering family
models from product lines.

This paper extends our previous conference publication [42] by including
three extra models into our empirical evaluation. Our results corroborate our
previous findings where product models were effectively merged into succinct
FFSMs with fewer states, especially if there is high feature sharing among
products. Also the integration of product sampling into the learning process
and the empirical study of the accuracy of the learned models in this respect
are novel in the present paper.

As future work, we envision to investigate three problems: how to incorpo-
rate family models in active model learning, and how to improve the readability
of our family models.

Adaptive model learning is a variant of automata learning [7] that attempts
to reuse input sequences from existing models to speed up state coverage and
identification [64,41]. We believe that the performance of automata learn-
ing algorithms could be improved by reusing partial family models describing
subsets of valid products, in a similar fashion to the standard adaptive model
learning.

For incremental family model learning, we believe that search-based or
interactive techniques could be used to recommend product configurations
to be analyzed and pave the way for an incremental family model learning
framework. Incremental product sampling algorithms, e.g., IncLing [3], could
be employed in combination with model-based testing techniques to test-and-
learn behavioral variability of black-box product instances and incorporate
new product behavior in partial family models.

Finally, to improve the readability of the learned family models, we aim
at investigating alternative approaches for presence-condition simplification.
Currently, our approach annotates conditional state and transitions using the
disjunction of simplified configurations. As a result of this process, the repre-
sentation of feature constraints is limited to a unique format (i.e., OR with
ANDs). To overcome this limitation, more sophisticated presence-condition
simplification techniques [100] could be used to reduce the complexity of fea-
ture constraints. Alternatively, feature model refactoring and specialization
[18] could also be employed to redesign constrained feature models as condi-
tions of conditional state and transitions.
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Appendix

A Glossary of Symbols

This glossary section lists the main symbols and abbreviations that are used in this manuscript
with their following meanings.

SPL Software Product Line
SPLC Software Product Line Conference
SAT4J The boolean satisfaction and optimization library in Java
SAT Boolean satisfiability problem

FFSMDiff The Featured Finite State Machine Difference algorithm
LTSDiff The Labeled Transition System Difference algorithm

F The set of features of an SPL
p A product of an SPL
P(F ) The powerset of all feature combinations
M Symbol identifying a finite state machine
TP True positives
TN True negatives
FP False positives
FN False negatives
FFr,u Featured Finite State Machine learned from two products r and u
FFr Featured Finite State Machine taken as reference model

Surr(a, b) Operation to find surrounding state pairs via matching transitions
buildFSM() Operation to build an FSM for a given configuration of a product line

B(F ) The set of all feature constraints
ξ A product configuration
χ A feature constraint
Â Vargha-Delaney’s effect size

AGM The Arcade Game Maker product line
VM The Vending Machine product line
WS The Wiper System product line

AEROUC5 The Aero UC5 product line
CPTERMINAL The Card Payment product line
MINEPUMP The Minepump product line

CIT Combinatorial Interaction Testing
FSM Finite State Machine
FFSM Featured Finite State Machine
δ Transition function for an FSM
λ Output function for an FSM
ε Empty input sequence
Λ The set of product configurations specified that an FFSM specifies
Γ The set of conditional transitions of an FFSM model

FCA Formal Concept Analysis
LTS Labeled Transition System
MTS Modal Transition System
FTS Featured Transition System
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