
The Agile UML Manual

K. Lano

September 30, 2019

Contents

1 Introduction 2

2 Class diagrams 3
2.1 Drawing a class diagram . 5
2.2 Generating Java . 7
2.3 Bi-directional associations . 9
2.4 Object deletion . 10
2.5 Qualified associations . 10
2.6 Association classes . 10

3 Constraints 11
3.1 Collections . 18
3.2 Type checking . 18
3.3 Differences to OCL . 20

4 Operations 22

5 Use cases 24

6 Model transformations 27
6.1 Bidirectional transformations . 30
6.2 Importing ATL modules . 33
6.3 Importing QVT-R transformations . 38
6.4 QVT-R in-place mode . 42
6.5 Importing ETL modules . 44
6.6 Importing Flock modules . 45

7 Refactoring 48

8 Design patterns 49

9 State machines 50

10 Synthesis of EIS applications 51

11 Mapping to B 52

12 Mapping to Z3 59

13 Mapping to SMV 61

14 Interactions 62

1

15 Interoperation with Eclipse 63
15.1 Exchanging metamodels . 63
15.2 Exchanging models . 64

16 Extensions and importing libraries 64
16.1 External classes and operations . 65
16.2 Adding an import . 65
16.3 Adding a new operator . 65
16.4 Libraries . 66
16.5 Plugins and DSLs . 66

17 The software development process using UML-RSDS 66

18 Current state of the tools 68
18.1 Planned extensions . 68
18.2 Release version history . 68
18.3 Known bugs . 69

A Reserved words 71

B Expression syntax of UML-RSDS 72

C Activity syntax of UML-RSDS 73

D Mappings from UML-RSDS to Java, C#, C, C++ and Python 74

E Read and write frames, definedness and determinacy 75

F Confluence checks 77

G OCL expression semantics 79

H Alternative Z3 mapping 82

I Format of mm.txt file 83

J Transformation synthesis from metamodels 84

1 Introduction

This manual gives a guide to versions from 1.5 (2015) to 1.9 (2019) of the UML-RSDS tools for
model-driven development. From Version 1.8 onwards the tools have been rebranded as “Agile
UML” on Eclipse (https://projects.eclipse.org/projects/modeling.agileuml).

UML-RSDS/Agile UML provides rapid automated construction of software systems (in Java,
C, JSP/Servlets, Python, C# or C++) from high-level UML specifications (class diagrams, use
cases, state machines and activities). The tools are currently free to download and use. In general,
standard UML 2 and OCL 2 is used for specification and design.

The tool can be used as part of software development to reduce coding costs, time and errors,
and to ensure a greater consistency between system components written in multiple languages.
It can ensure the correct and consistent implementation of business data and logic in multiple
system components.

We have simplified OCL notation for ease of use. In particular, two-valued logic is used, and all
collections are either sets or sequences. This also facilitates verification, in cases of high-integrity
systems requiring a high degree of assurance.

2

The software is released for use under the Eclipse EPL-2.0 license
(http://www.eclipse.org/legal/epl-2.0). Copyright in the software remains with Dr
Kevin Lano.

The tools prior to release 1.9 can be downloaded from: https://nms.kcl.ac.uk/kevin.lano/uml2web.
Download the umlrsds.zip file, uncompress, and execute the tool as

java -jar umlrsds.jar

in the main directory, which contains a writable subdirectory called output. Java (v1.4.1 or later)
is required to run the tools. This should bring up the initial screen similar to that shown in Figure
1.

Figure 1: Start screen of UML-RSDS/Agile UML

To explain the simple use of UML-RSDS to rapidly generate applications from UML specifi-
cations, the following example system will be used:

• There is data on the courses, students and lecturers within each department of a college.

• Students are registered for a set of courses, and each lecturer teaches a set of courses.

• The system provides operations to add and remove students from courses, and to modify
the set of courses taught by a lecturer.

2 Class diagrams

This is the central model of UML-RSDS and of UML. The menu options are, in brief:

File menu: options Set name to set the package name of the class diagram model, Recent to
load a recent class diagram (in the file output/mm.txt), Load metamodel to load a class
diagram in either text format, KM3 format, Ecore XML format, or in Excel CSV format. A
menu Load transformation has options Load standard ATL to convert an ATL module (in
output/mm.atl) to UML-RSDS (the option Load refining ATL is for refining mode ATL),
Load Flock to convert a Flock module (in output/flock .txt) to UML-RSDS, Load ETL to
convert an ETL module (in output/mm.etl) to UML-RSDS, Load QVT to convert a QVT-R

3

transformation (in output/mm.qvt) to UML-RSDS. On the main file menu there are further
options: Save to save the current model in text format (into output/mm.txt), Save as, to
save the class diagram to a file in a number of formats, including Save data to save in text
format, Save Ecore to save as an Ecore metamodel definition (in output/My .ecore) and Save
model to save as an instance model of the UML-RSDS design metamodel. Print and Exit
options are also on the File menu. A Convert menu allows XMI data in XML files (by
default, output/xsi .txt) to be converted to model data format (in output/model .txt).

Create menu: options

Class – create an entity type (class), including interfaces and abstract classes

Type – create an enumerated type

Association – create an association between two classes or between a class and itself

Inheritance – draw an inheritance arrow from the subclass to the superclass (the superclass
must be an abstract class or an interface)

Association Class – create an association class

Use Case – create a use case for an enterprise information system, or a general use case

Entity Statechart – create a state machine to define the behaviour of an entity (its life
history)

Operation Statechart – create a state machine to define the algorithm of a specific oper-
ation

Entity Activity – define behaviour of object by an activity (pseudocode)

Operation Activity – define the behaviour of an operation by an activity

Use Case Activity – define the behaviour of a use case by an activity (if a use case includes
one or more others)

Interaction – describe an example of system behaviour by a sequence diagram

GUI – describe a GUI by a text file

Invariant – introduce a constraint for a class or for the system.

Requirements – open a SysML editor to write requirements for the system (versions from
1.6 onwards only).

Edit menu – options to Move, Delete and Modify visual elements, also to modify use cases and
to delete invariants and use cases.

View menu – options to view the invariants, types, operations, activities and use cases of the
system.

Transform menu – options to apply refactoring, refinement or design pattern transformations to
a class diagram or system.

Synthesis menu – options to analyse the constraints of the system and to generate a design,
SMV, B AMN and Z3 code.

Build menu – options to generate Java 4, Java 6, Java 7, C#, C++, C, Python code and EIS/Web
system code.

Extensions menu – options to add (language-specific) imported packages, to define language
extensions, and to execute plugins.

Help menu – brings up help panel on the right of the screen.

4

It is possible to load a class diagram in parts: if a class (with the same name) is defined both in
the current displayed model and in a loaded file, then the union of the features and stereotypes of
the two definitions is taken.

The default action for a mouse press/click on a class, use case or association is to edit that
element.

The following key shortcuts can be used:

• Alt-F, Alt-R for Recent

• Alt-E, Alt-U for Edit Use Case

• Alt-F, Alt-S for Save

• Alt-S, Alt-D for Generate Design

• Alt-S, Alt-J for Generate Java 4

• Alt-S, Alt-6 for Generate Java 6

• Alt-S, Alt-7 for Generate Java 7

• Alt-C for Create menu

The following command-line options can be used:

java -jar umlrsds.jar -gj

loads the model in output/mm.txt , generates the design and Java (4) code of the model.
The command line option:

java -jar umlrsds.jar -gcs

loads the model in output/mm.txt , and generates the design and C# code of the model.
The command

java -jar umlrsds.jar -jsp

loads the model in output/mm.txt , and generates JSP-style web system code for this model.

2.1 Drawing a class diagram

To create our example system, we create the four classes Student , Course, Lecturer , Department .
Classes are created by selecting the Create Class option, entering the name, and clicking on the
location for the class. Figure 2 shows the class definition dialog. Options in the stereotypes field
include abstract for abstract classes, and interface for interfaces. leaf denotes that the class cannot
have subclasses. persistent denotes that the class represents persistent data (eg., data repository
data in an enterprise information system). In this example the default none option is used.

Class names (by convention) should begin with a capital letter, they can then consist of any
further letters or digits. Note that is not a permitted character, but $ is.

The classes are then edited by clicking on the class, or by using the Modify option to add
attributes name : String to each entity, and associations are created, using the dialog of Figure
5: a 1-* association from Department to Lecturer , with role 1 blank and role 2 as staff ; a 1-*
association from Department to Course, with role 1 blank and role 2 as courses; a 1-* association
from Department to Student , with role 1 blank and role 2 as students; a *-1 association from
Course to Lecturer , with role 1 blank and role 2 lecturer ; a *-* association from Student to Course,
with role 1 blank and role 2 taking . Associations are created by selecting Create Association and
dragging the mouse from the source class to the target class. Waypoints can be created by pressing
the space key at the point (provided the class diagram editor panel has focus).

Association stereotypes include implicit (for associations calculated on demand using a pred-
icate, rather than being stored), source (for associations belonging to the source metamodel of a
model transformation), etc. The default none can be used in most cases.

The construction process should produce the class diagram of Figure 3.

5

Figure 2: Class definition dialog

Figure 3: Class diagram

6

2.2 Generating Java

Java code can be generated from this model by the option Generate Java on the Build menu.
The options include Java 4, Java 6 and Java 7. The main difference is that the Java 6 code uses
HashSet to represent unordered association ends, and ArrayList to represent ordered association
ends, whilst the Java 4 code uses Vector for both. The Java 6 version can be more efficient for
systems involving uni-directional unordered associations. Java 7 generation has been added from
version 1.6. This uses templated classes such as ArrayList < A > to represent sequences of A
objects.

The code consists of Java classes for each class of Figure 3, in a file Controller .java, together
with the main class, Controller , of the system. A file SystemTypes.java contains an interface
with utility operations (for computing OCL expressions), and ControllerInterface.java contains
an interface for Controller . These files are in the same Java package pack if this is specified as the
system name. A file GUI .java defines a simple Swing interface for the system, with buttons for
each use case. The file Controller .java is also displayed to the user (Figure 4).

Figure 4: Display of Java

The Java code can be used directly in other applications, a standard interface of operations is
provided for each class C . In the case of the Java 4 generated code, this is:

• A no-argument constructor C () which sets attributes and roles to the default values of their
types.

• A constructor C (T attx , ...,D rolex) which takes input values for each final or frozen instance
attribute and for each 1-multiplicity role.

• An operation setatt(T attx) for each modifiable instance attribute att : T

• An operation setrole(D rolex) for each modifiable instance role role : D .

• An operation setAllf (List objs,T val) to set ob.f to val for each ob : objs for each modifiable
feature f : T .

For sequence-valued roles f there is an operation setAllf (List objs, int ind ,D fx) to set
ob.f [ind] to fx for ob : objs.

7

• Operations setrole(List rolex), addrole(D rolexx), removerole(D rolexx), addAllrole(List objs,D rolexx),
removeAllrole(List objs,D rolexx) for each modifiable many-valued role role : Set(D) or
role : Sequence(D). The removerole and removeAllrole operations are omitted if the role is
addOnly . An operation setrole(int i ,D rolex) is included for sequence-valued roles, to set
the i -th element of role to rolex .

• An operation getrole() : D for a 1-multiplicity role role : D .

• An operation getatt() : T for an attribute att : T .

• An operation getrole() : List for a many-valued role role.

• A static operation getAllf (List objs) : List which returns the set (ie., with duplicate values
removed) of all ob.f values for ob : objs, for any data feature f of the class.

• A static operation getAllOrderedf (List objs) : List which returns the sequence/bag of all ob.f
values for ob : objs, for any data feature f of the class (with duplicate values preserved).
This corresponds to OCL objs→collectNested(f).

• For interfaces I , the above static operations are instead placed in an inner class IOps of I .

• There are also specialised operations for manipulating elements of qualified associations using
qualifier index values.

Both sets and sequences are represented by the Java List type, and are implemented as Vectors.
The Java 6 and 7 code instead uses Collection as a general input type, and HashSet and ArrayList
for sets and sequences, respectively.

One limitation compared to standard UML is that multiple inheritance is not fully supported
(except for implementation in C++). Only multiple interfaces can be inherited by a single class,
not multiple classes. However, unlike Java, such interfaces can contain instance features, which
can be inherited by multiple classes. If this is used to simulate multiple inheritance, then before
synthesising Java, the Refactoring transformation Push down abstract features should be used to
copy such features down to all subclasses, thus achieving the effect of multiple class inheritance.

A language rule of UML-RSDS is that any class with at least 1 subclass must be abstract, and
classes with no subclass must be concrete (in a completed specification).

Controller .java contains a public set of operations to modify the objects of a system:

• An operation setatt(E ex ,T attx) for each modifiable instance attribute att : T of class E .

• An operation setrole(E ex ,D rolex) for each modifiable instance role role : D of E .

• Operations op(E ex , pardec) andAllEop(List exs, pardec) for each update operation op(pardec)
of class E .

• Operations List AllEop(List exs, pardec) for each query operation rT op(pardec) of class E .

• Operations addrole(E ex ,D rolexx), removerole(E ex ,D rolexx) for each modifiable many-
valued role role : Set(D) or role : Sequence(D) of class E . removerole is omitted if the role
is addOnly .

• An operation public rT uc(pardec) for each general use case uc of the system.

Note that objs.op(e) is interpreted by the Controller operation AllEop(objs, e) and always returns
a sequence-typed result (representing a bag of values) even if objs is set-valued.

Generation of C# follows the same structure as for Java, with classes E.cs for each UML class
E, Controller.cs and SystemTypes.cs being produced. C# ArrayList is used in place of Java List.
If a system name is specified, this name is used as the C# namespace name of the generated code.
In Visual Studio, all code can be included in a single Project.cs file. To add timing information,
the C# class Stopwatch can be used, with operations Start, Stop and ElapsedMilliseconds.

8

For C++, class declarations are placed in a file Controller.h, code is placed in Controller.cpp.
Note that for Visual Studio, the Controller.cpp code becomes the text of the main Application.cpp
file, and all necessary libraries are #included in this, as is Controller.h. The C++ time() function
from < ctime > can be used to analyse the execution time of generated code.

For C, a header file app.h is generated separately to a code file app.c, the latter also depends
upon the ocl.h library (in the /libraries subdirectory).

For Python, all code is generated in one app.py file.
Tables 21, 22 in the appendix show in detail the mapping of UML and OCL to Java 4, Java 6,

Java 7, C#, C++, C and Python.

2.3 Bi-directional associations

Associations with an inverse can be specified by filling in the ‘Role 1’ field in the association
creation dialog (Figure 5).

Figure 5: Create association dialog

If the association is drawn from class E1 to class E2, then an inverse association from E2 to
E1 will be created also. The inverse association is treated as a feature of E2. The generated
Java code will automatically maintain the two associations as mutual inverses: updates to the
forward association will generally cause updates to the inverse association also, and vice-versa.
This maintenance code is in the Controller operations such as addrole2(E1 e1x, E2 e2x) and
killE2(E2 e2x).

In some cases, the existence of an inverse association may enable more efficient code to be
produced. However, it also closely semantically links the classes E1 and E2, so that these must
be contained in the same code module. In general, bidirectional associations should only be
introduced if they are necessary for the system being developed, ie., navigation in both directions
along the association is required for the functionality of the system.

If one end of a bidirectional association is {addOnly}, then the other end is also implicitly
{addOnly} (for a many-valued opposite end), or {frozen}, for a single-valued opposite end (because
a change to the opposite end of object x requires removal of x from any existing forward role sets).

Bidirectional association management is not supported by the C or Python translators, for
these the specifier must perform their own data management.

9

2.4 Object deletion

An object or set of objects x of class E is deleted by a statement x→isDeleted(). This deletion
means that the objects are no longer valid elements of E , and leads to several further possible
effects:

1. x is removed from any association which has E as an end class.

2. x is removed from any superclass of E .

3. If an association r : F → E has multiplicity 1 at the E end, then any F object linked to x
by r is also deleted (since each existing F object must have exactly one valid associated E
object).

4. If an association r : E → F or r : E → Collection(F) is an aggregation (composition
association) at the E end, then any F objects linked to x by r will also be deleted: this is
the ‘deletion propagation’ semantics of aggregation.

The generated Java/C#/C++ code carries out this succession of deletion actions via operations
killE , killF , etc, of the Controller class. If cascaded deletions in cases 3 and 4 are not intended,
then the F objects should be unlinked from x before the deletion of x .

If an association end is {addOnly}, then objects of the class at this end can only be deleted if
they do not occur in any role set of this association.

Object deletion is not currently supported by the C or Python translators.

2.5 Qualified associations

A qualified association br from class A to class B represents a String-indexed map from each A
object to individual B objects or to sets of B objects (depending on if the multiplicity at the B end
is 1 or not). The multiplicity at the A end is assumed always to be *, and this end is un-named.
Qualified associations cannot be static.

Given such an association, the Java code generated for A will represent br as a Java Map, and
include operations to modify and read br , based on the index values. For many-valued br , the
operations are:

• An operation setbr(String ind ,List rolex) to set br [ind] to a set rolex of B objects.

• Operations addbr(String ind ,B rolexx), removebr(String ind ,B rolexx), to add/remove
rolexx from br [ind].

• An operation getbr(String ind) : B to return br [ind].

Corresponding operations are also defined in the Controller class. Analogous representations are
used in C# (the Hashtable class) and C++ (the map template class).

Qualified associations cannot be translated to C, Python, B AMN, SMV or Z3. Their values
cannot be stored in/read from model data text files.

2.6 Association classes

An association class is a class C which is also an association between classes A and B (normally
a many-many association). In translation to Java, C#, C++ or B AMN, association classes are
represented by two implicit many-one associations a : C → A and b : C → B . UML does not
permit C to be the same class as A or B , we additionally require A and B to be distinct, and
unrelated to each other or to C by inheritance.

Instances of C should not be created directly, but only as a result of linking an A object to a
B object by the association. Likewise, deleting C objects is a consequence of unlinking A and B
objects.

10

The set of C objects linked to a particular ax : A is C→select(a = ax), likewise for the C ’s
linked to some B object.

The values of association classes cannot be stored in/read from model data text files. Associ-
ation classes are not mapped to C or Python.

3 Constraints

OCL and abbreviated OCL constraints can be used in many places in a UML-RSDS specification:

1. Class invariants

2. Global constraints of a class diagram

3. Operation pre and postconditions

4. Use case pre and postconditions and invariants

5. State machine state invariants and transition guards.

Figure 6 shows the dialog for entering constraints.
A constraint P ⇒ Q on entity E is entered by writing E in the first text area, P in the second

and Q in the third.
This has the logical meaning

E→forAll(P ⇒ Q)

“for all instances of E , if P holds, then Q holds”. Operationally, it means “for all instances of E ,
if P holds, then make Q hold true, if possible”.

The default options (system requirement, non-critical, update code) can be chosen for the other
options in most cases.

E is called the context or scope of the constraint. Local invariants of class C are specified by
naming C in the first field of this dialog. Global constraints forAll-quantified over C also need C
to be entered here. Use case constraints based on class C should have the class name entered as
context (for options Add Postcondition, Add Precondition or Add Invariant on the edit use case
dialog).

If the constraint is a local invariant of a class C , or it is a use case constraint based on C , then
features of C can be written simply by their names in P or Q . Navigation expressions starting
from features of C can also be written.

For example:

c : courses

as an antecedent P and

c.lecturer : staff

as a succedent Q could be an invariant of class Department in our example, expressing that all
courses of the department have their lecturer also within the department. c is an implicit variable,
whose type is inferred as being Course.

The same logical constraint can be alternatively expressed without c by writing

true

as the antecedent P and

courses.lecturer <: staff

11

Figure 6: Constraint dialog

12

as Q . “The lecturers of all courses are members of staff”.
A common simple form of constraint is one that derives the value of an attribute of a class

from other features of the class. For example, if we add an integer attribute numberOfStudents to
Department in Figure 3, we can define its value by the invariant constraint

numberOfStudents = students.size

or

numberOfStudents = students→size()

on Department .
Table 1 defines the basic expressions which may be used in constraints, and their meanings.
A constraint has scope or context the entities to which it implicitly applies (features of such

entities can be written without object references in the constraint, or with the reference self).
The most local context is termed the primary scope of the expression, and feature references
are interpreted as features of this entity by default. Other entities in the scope are termed the
secondary scope.

A local invariant of a class E has primary scope E , as do pre and postconditions of E ’s
instance operations, and state invariants and guards in the entity state machine of E or in its
instance operation state machines. A use case constraint with owner entity E also has primary
scope E .

A predicate P in the body of a select, reject or collect expression e→select(P) has primary
scope the element type of e, if this is an entity type, and secondary scope the scope of the selection
expression.

Expression Meaning as query or update

self The current object of class E : for constraints
with a single scope E

f Attribute/role f of class E , for constraints with scope E
op(e1, ..., en) Invocation of operation op of E , for constraints

with scope E

f [ind] ind element of ordered or qualified
role f of current scope E

E [v] The instance of E with (principal) primary key value v
v single value
E [v] The instances of E with (principal) primary key value in v
v collection

obj .f Data feature f of single object obj
objs.f Collection (set or sequence) of values o.f

for o ∈ objs, collection objs. This is a set if objs is a set or
if f is set-valued.

obj .op(e1, ..., en) Apply op to single object obj
objs.op(e1, ..., en) Apply op to each o ∈ objs, collection objs

Result value is sequence/bag of individual
result values o.op(e1, ..., en) if op has result

value Value of enumerated type, numeric value,
string value “string”, or boolean true, false

Table 1: Basic OCL expressions in Agile UML

The attribute key : String used in the lookup E [v] is the principal primary key of E – the
most locally-defined identity attribute of E , if any such attribute exists, or otherwise the most
locally-defined attribute for which E→isUnique(key) is an invariant of E .

Constraints not only have a declarative meaning at the specification level, defining what
conditions should be maintained by a system, but also they may have a procedural meaning,
defining code fragments which enforce the conditions. For example, the constraint defining

13

numberOfStudents will produce code that modifies this attribute in response to any operation
setstudents, addstudents or removestudents which affects students.

Table 2 shows the logical operators that can be used in constraints, and their declarative
and procedural meanings. The procedural interpretation of a formula P is formally defined as a
statement in the activity language (Appendix C) denoted by stat(P).

Expression e Meaning as query e ′ Meaning as update stat(e)

A => B A′ implies B ′ if A′ then stat(B)

A & B A′ and B ′ stat(A); stat(B)

A or B A′ or B ′

E->exists(P) An existing instance
entity E of E satisfies P ′

e->exists(P) An existing element
expression e in e satisfies P ′

E->forAll(P) All existing instances
entity E of E satisfy P ′

e->forAll(P) All elements
expression e of e ′ satisfy P ′

E->exists1(P) Exactly one existing instance
entity E of E satisfies P ′

e->exists1(P) Exactly one element
expression e of e ′ satisfies P ′

E->exists(x | P) An existing instance Create x : E
concrete entity E x of E satisfies P ′ and make P true for x
e->exists(x | P) An existing element Select an element of e
other expression e x in e satisfies P ′ and apply P to it

E->forAll(x | P) All existing instances for x : E
entity E x of E satisfy P ′ do stat(P)
e->forAll(x | P) All elements x for x : e do stat(P)
expression e of e satisfy P ′

E->exists1(x | P) Exactly one existing instance If no instance of E
concrete entity E x of E satisfies P ′ satisfies P , create

x : E and make P true for x
e->exists1(x | P) Exactly one element If no x : e satisfies P ,
other expression e x of e satisfies P ′ select some x : e and

apply P to it

Table 2: Logical operators and interpretations

There are some special cases in the operational use of the exists and exists1 quantifiers:

• In the case of E→exists1(x | x .id = v & P) or E→exists(x | x .id = v & P) where id is
the principal primary key of concrete entity E , a lookup for E [v] is performed first, if this
object exists then (i) the update effect of P is applied to it (unless P already holds for it).
Otherwise, (ii) a new instance of E is created and the formula x .id = v & P is applied to it.

• If E is abstract, or of the form F@pre for an entity F , then only the lookup and part (i) of
this functionality is performed. Likewise for general expressions e in place of E .

Although checking for existence of an x with x .id = v does affect the efficiency of the implemen-
tation, it is necessary to ensure correctness: it would be invalid to create two or more objects with
the same id value.

From Version 1.8 we have introduced the concept of “least change” object creation, via the
operator →existsLC . This avoids the creation of a new object to satisfy the RHS, if any object
can be found which partly satisfies the RHS (at least one conjunct is already true).

Table 3 lists the comparitor operators and their meanings.

14

Expression e Meaning as query e ′ Meaning as update stat(e)

x : E x is an existing Create x as a new
E entity type instance of E instance of E

(for concrete E)
x : s x is an element of s Add x to s
s collection

s->includes(x) Same as x : s Same as x : s
s collection

x / : E x is not an existing
E entity type instance of E
x / : s x is not an element of s Remove x from s
s collection

s->excludes(x) Same as x / : s Same as x / : s
s collection

x = y x ’s value equals Assign y ’s value
y ’s value to x

x < y x ’s value is less
x , y both than y ’s. Likewise
numbers, or for >, <=, >=,
both strings / = (not equal)

s <: t All elements of s are Add every
s, t also elements of t element of
collections s to t

t->includesAll(s) Same as s <: t Same as s <: t

s / <: t s is not a subset Remove all
collections of t elements of s
s, t from t

t->excludesAll(s) No element of Remove all
collections s, t s is in t elements of s

from t

Table 3: Comparitor operators

15

x : E for an entity type (classifier) E corresponds to x .oclIsKindOf (E) in OCL [19] and to
x instanceof E in Java and to x is E in C#.

Numeric operators for integers and real numbers are shown in Table 4. Instead of OCL Integer
and Real, we use types int (32 bit signed integers) and double (signed double precision floating
point numbers) which correspond to the types with these names in Java, C++ and C#. long

(64-bit integers) is currently supported in provisional form. All operators take double values as
arguments except as noted. Three operators: ceil, round, floor, take a double value and return an
int.

Expression Meaning as query

-x unary subtraction
x + y numeric addition, or

string concatenation (if one
of x, y is a string)

x - y numeric subtraction
x * y numeric multiplication
x / y integer division (div) if

both x, y are integers,
otherwise arithmetic division

x mod y integer x modulo integer y
x.sqr Square of x
x.sqrt Positive square root of x
x.floor Floor integer of x
x.round Rounded integer of x
x.ceil Ceiling integer of x
x.abs Absolute value of x
x.exp e to power x
x.log e-logarithm of x
x.pow(y) y-th power of x
x.sin sine of x (given in radians)
x.cos cosine of x (given in radians)
x.tan tangent of x (given in radians)
Integer.subrange(st,en) Sequence of integers starting at st

and ending at en, in order

Table 4: Numeric operators

Other math operators in common between Java, C, C# and C++ are: log10, cbrt, tanh,
cosh, sinh, asin, acos, atan. These are double-valued functions of double-valued arguments. Some
functions may not be available in old versions of Java (log10, cbrt, tanh, cosh, sinh) or C (cbrt).

String operators are shown in Table 5. Notice that since strings are sequences of characters
(single-character substrings), all sequence operations should be expected to be applicable also to
strings.

String positions in OCL are numbered starting at 1, as are sequence positions.
A pre-state expression f@pre for feature f can be used in operation postconditions and use

case postcondition constraints, but not elsewhere. In an operation postcondition, f@pre refers to
the value of f at the start of the operation, ie., the same value as denoted by f in the operation
precondition. Occurrences of f without @pre in the postcondition refer to the value of f at the
end of the operation. So, for example:

op()

pre: b > a

post: b = b@pre - a@pre

decrements b by a. Since a itself is not updated by the operation, there is no need to use pre with
a, and the operation should be written as:

16

Expression Meaning as query

x + y string concatenation
x->size() Length of x
x->first() First character of x
x->front() Substring of x omitting last character
x->last() Last character of x
x->tail() Substring of x omitting first character
x.subrange(i,j) substring of x starting at i-th

position, ending at j-th
x->toLowerCase() copy of x with all characters in lower case
x->toUpperCase() copy of x with all characters in upper case
s->indexOf(x) index (starting from 1) of s at which the first

subsequence of characters of s equal to
string x occurs. Default is 0

s->hasPrefix(x) string x is a prefix of s
s->hasSuffix(x) string x is a suffix of s
s->characters() sequence of all single character substrings of s in same order as in s
s.insertAt(i,s1) copy of s with string s1 inserted at position i
s->count(s1) number of distinct occurrences of s1 as a substring of s
s->reverse() Reversed form of s
e->display() displays expression e as string on standard output
s1 - s2 string s1 with all occurrences of

characters in s2 removed
e->isInteger() true if e represents an int value
e->isReal() true if e represents a double value
e->toInteger() returns the value if e represents an int value
e->toLong() returns the value if e represents a long value
e->toReal() returns the value if e represents a double value

Table 5: String operators

17

op()

pre: b > a

post: b = b@pre - a

3.1 Collections

There are two kinds of collection in UML-RSDS: sets and sequences. Sets are unordered collections
with unique membership (duplicate elements are not permitted), sequences are ordered collections
with possibly duplicated elements. If br is an unordered * role of class A, then ax .br is a set for
each ax : A. If br is an ordered * role of class A, then ax .br is a sequence for each ax : A. The
further two OCL collection types, ordered sets and bags, can be defined in terms of sequences.

Table 6 shows the values and operators that apply to sets and sequences. We intend to add a
→concatenateAll operation, →oclIsTypeOf and binary →any operator in version 2.0.

For sequences, s a t should be used instead of s\/t , which produces the set union of two sets,
and s→append(x) should be used instead of s→including(x).

s→at(i) for a sequence s can also be written as s[i] in our notation, if s is an identifier or
navigation expression using ′.′.

st = sq for set st and sequence sq is always false, even if both st and sq are empty. Two
sets are equal iff they contain exactly the same elements, two sequences are equal iff they contain
exactly the same elements in the same order.

Of particular significance are collection operators which construct new collections consisting of
all elements of a given collection which satisfy a certain property (Table 7).

Any order in the original collection is preserved by select and reject , ie., if they are applied to
a sequence the result is also a sequence. In the operators select and reject without variables, an
element of the first argument, s, can be referred to as self .

From Version 1.9 there is prototype support for aMap(T1,T2) type and operatorsmp→including(x , y),
mp→excludingKey(x), mp→excludingValue(y) on these. Map values cannot be saved or loaded
from models, and can only be used for internal processing within operations.

3.2 Type checking

For each expression in a specification, its type and element type (for a collection-valued expression)
are determined, according to Tables 8, 9 and 10. The least common supertype (LCS) of the types
of x1, x2 is the most specific type which includes both types. The least common numeric supertype
LCNS is double if either is double, otherwise long if either is long , otherwise int .

The OCL standard does not define - or ∩ when the first argument is a sequence. For convenience
we define these as:

sq − col = sq→reject(x | col→includes(x))
sq ∩ col = sq→select(x | col→includes(x))

so that they are sequence-valued.
A subtle aspect of the semantics of collect is that the result of st→collect(e) can contain

duplicate values for sets st , and the cardinality of the result equals that of st . This is in accordance
with the OCL behaviour of collectNested , which should return a Bag of the evaluation results.

Errors may be reported during initial type-checking in the cases:

• An operation is used prior to its definition.

• An implicitly-typed let variable is used in a constraint or operation.

These errors should not arise in subsequent type-checking of the same specification. If errors are
encountered after re-running the type check, then there is probably an error in your specification.

18

Expression Meaning as query

Set{} empty set
Sequence{} empty sequence
Set{x1, x2, ..., xn} set with elements x1 to xn
Sequence{x1, x2, ..., xn} sequence with elements x1 to xn
s->including(x) s with element x added
s->excluding(x) s with all occurrences of x removed
s - t s with all occurrences of elements

of t removed
s->prepend(x) sequence s with x prepended as first element
s->append(x) sequence s with x appended as last element
s->count(x) number of occurrences of x in sequence s
s->indexOf(x) position of first occurrence of x in s
x\/y set union of x and y
x/\y set intersection of x and y

x a y sequence concatenation of x and y
x->union(y) Same as x\/y
x->intersection(y) same as x/\y
x->unionAll(e) union of y.e for y : x
x->intersectAll(e) intersection of y.e for y : x
x->symmetricDifference(y) symmetric difference of x, y
x->any() Arbitrary element of non-empty

collection x
x->subcollections() set of subcollections of collection x
x->reverse() reversed form of sequence x
x->front() front subsequence of sequence x
x->tail() tail subsequence of sequence x
x->first() first element of sequence x
x->last() last element of sequence x
x->sort() sorted (ascending) form of sequence x
x->sortedBy(e) x sorted in ascending

order of y.e values (numerics or strings)
for y : x

x->flatten() Expand out all nested collections in x
x->sum() sum of elements of collection x
x->prd() product of elements of collection x
x->max() maximum element of collection x
x->min() minimum element of collection x
x->asSet() set of distinct elements in collection x
x->asSequence() collection x as a sequence
s->isUnique(e) true if the collection of values of x.e

for x : s has no duplicates
x->isDeleted() destroys all elements of collection x.

Can also be used on individual objects x

Table 6: Collection operators

Expression Meaning as query

s->select(P) collection of s elements satisfying P
s->select(x | P) collection of s elements x satisfying P
s->reject(P) collection of s elements not satisfying P
s->reject(x | P) collection of s elements x not satisfying P
s->collect(e) collection of elements x.e for x : s
s->collect(x | e) collection of elements x.e for x : s
s->selectMaximals(e) collection of s elements x which have maximal x.e values
s->selectMinimals(e) collection of s elements x which have minimal x.e values

Table 7: Selection operators

19

Expression Type Element type

x + y String (if one of x, y –
is a string), otherwise
LCNS

x - y LCNS of the types –
x * y LCNS of the types –
x / y LCNS of the types –
x mod y int –
x.sqr double –
x.sqrt double –
x.floor int –
x.round int –
x.ceil int –
x.abs double –
x.exp double –
x.log double –
x.pow(y) double –
x.sin double –
x.cos double –
x.tan double –
Integer.subrange(st,en) Sequence int

Table 8: Numeric operators types

3.3 Differences to OCL

UML-RSDS supports most features of the OCL 2.4 standard library [19]. Omitted are:

• OclAny, OclVoid, OclInvalid: omitted due to absence of suitable semantics. The imple-
mentation of OCL in UML-RSDS (and for B, Z3 and code translations) has a two-valued
logic. Association ends of multiplicity 0..1 are treated as sets (or sequences, if ordered) of
maximum size 1. There are no explicit null or invalid elements. Null elements cannot be
defined, and are not permitted to be members of association ends or other collections.

Thus a test for e == null is Set{e}→size() = 0. The oclIsUndefined() operator has been
introduced from version 1.7.

• OclMessage: replaced by invocation instance expressions on sequence diagrams.

• UnlimitedNatural: not needed for internal use within models.

• Integer, Real: replaced by int, long, double. The reason for this is to ensure that the speci-
fication semantics of these types corresponds to their semantics in the generated executable
(in Java and C#) and in B. A long (64-bit) integer type has also been added.

• max, min between two values: expressed instead by generalised max, min operations on
collections. These apply also to collections of strings.

• oclIsTypeOf(T), flatten() for arbitrary nested collections, and equalsIgnoreCase() (to be
included).

• closure() is only included in the form objs→closure(r) or objs.r→closure() where r is an
association role name defined for elements of objs. r must be many-valued.

• xor logical operator: this can be expressed using the other logical operators. The operators
and , implies are written as &, =>. The if-then-else-endif operator is included from version
1.8.

• Set, sequence and string subtraction uses the - operator, extending OCL in the case of
sequences and strings.

20

Expression Type Element type

Set{} Set –
Sequence{} Sequence –
Set{x1, x2, ..., xn} Set LCS of types of x1 to xn
Sequence{x1, x2, ..., xn} Sequence LCS of types of x1 to xn
s->including(x) Type of s LCS of type of x and element type of s
s->excluding(x) Type of s Element type of s
s - t Type of s Element type of s
s->prepend(x) Sequence LCS of type of x, element type of s
s->append(x) Sequence LCS of type of x, element type of s
s->count(x) Integer (int) –
s->indexOf(x) Integer (int) –
x − y Type of x Element type of x
x\/y Sequence if x, y LCS of element types of x, y

ordered, otherwise Set
x/\y Type of x Element type of x

x a y Sequence LCS of element types of x and y
x->union(y) Same as x\/y Same as x\/y
x->intersection(y) same as x/\y same as x/\y
x->symmetricDifference(y) Set LCS of element types of x, y
x->any() Element type of x –
x->subcollections() Set Type of x
x->reverse() Sequence Element type of x
x->front() Sequence Element type of x
x->tail() Sequence Element type of x
x->first() Element type of x –
x->last() Element type of x –
x->sort() Sequence Element type of x
x->sortedBy(e) Sequence Element type of x
x->flatten() Type of x Element type of

elements of x
x->sum() String if any element of x –

is a String, otherwise least common
numeric supertype of x element types

x->prd() Least common numeric –
supertype of elements of x

x->max() Element type of x –
x->min() Element type of x –
x->asSet() Set Element type of x
x->asSequence() Sequence Element type of x
s->isUnique(e) Boolean –
x->isDeleted() Boolean –

Table 9: Collection operators types

21

Expression Type Element type

s->select(P) Type of s Element type of s
s->select(x | P) Type of s Element type of s
s->reject(P) Type of s Element type of s
s->reject(x | P) Type of s Element type of s
s->collect(e) Sequence Type of e
s->collect(x | e) Sequence Type of e
s->selectMaximals(e) Type of s Element type of s
s->selectMinimals(e) Type of s Element type of s
s->unionAll(e) Sequence if s type and Element type of e

e type Sequence,
otherwise Set

s->intersectAll(e) Set Element type of e
s->flatten() Type of s Element type of s elements

Table 10: Selection operators types

• OrderedSet and Bag are omitted: both can be represented by sequences.

• Tuples and the cartesian product of two collections: very rarely used in modelling. The
same effect can be achieved by introducing a new class with many-one associations directed
to the tuple component entities, and similarly for ternary or higher-arity associations.

• collectNested in OCL is the same as collect in UML-RSDS, ie., no flattening or merging of
duplicated elements takes place.

• The one operator is expressed by exists1.

• The any operator is available only in the form col→any().

substring and subsequence are combined into a single subrange operation.
Sets can be written with the notation {x1, ..., xn} instead of Set{x1, ..., xn}. Intersection and

union can use the mathematical operators ∩ and ∪ written as /\ and \/. Likewise, subtraction
on collections is written using -.

Additional to standard OCL are the operators s→isDeleted(), s→unionAll(e), s→intersectAll(e),
s→selectMinimals(e), s→selectMaximals(e) and s→subcollections(), and the Integer .subrange(i , j)
constructor.

Qualified or composition associations and association classes are not yet fully supported: Java,
C#, C++ and B can be defined for these associations, but their values cannot be stored in or
retrieved from models. Only binary associations are supported.

4 Operations

Operations can be added to classes using the Modify option, and the edit class dialog (Figure 7)
and the operation definition dialog (Figure 8).

In the operation dialog both the precondition and postcondition predicate should be entered,
"true" can be entered to denote no constraint.

Query operations must have a result type, and some equation result = e as the last conjunct
in each conditional case in their postcondition (as in Figure 8 and the factorial example below).
Update operations normally have no return type, but this is possible. A typical form of query
operation has a series of if-then cases

(Cond1 => P1) & ... & (Condn => Pn)

These are mapped to a design of the form

22

Figure 7: Edit class dialog

Figure 8: Operation definition dialog

23

if Cond1’ then P1*

else if ...

else if Condn’ then Pn*

In contrast, if an operation does not have the query stereotype, then these cases are sequenced:

if Cond1’ then P1* ;

... ;

if Condn’ then Pn*

Operations can be defined recursively, for example:

factorial(i : int) : int

pre: i >= 0

post:

(i <= 1 => result = 1) &

(i > 1 => result = i*factorial(i-1))

Recursive update operations cannot be expressed in B, but recursive query operations can be.
Operations can be called by the notation obj .op(params) as usual. Such calls are expressions,

in the case of query operations, and statements in the case of update operations. If op is a query
operation then this expression can be used within other expressions as a value of its declared
return type. Update operations should not be used as values or in contexts (such as conditional
tests or constraint antecedents) where a pure value expression is expected.

Query operations with at least one argument, or instance scope query operations with no argu-
ments can be stereotyped as cached , which means that caching is used for their implementation:
the results of operation applications are stored in order to avoid recomputation of results. This
can make a substantial difference to efficiency in the case of recursive operations. Only operations
owned by a class (not an interface or use case) can be cached.

For example, for the function defined as:

f(x : Integer) : Integer

pre: x >= 0

post:

(x = 0 => result = 1) &

(x = 1 => result = 2) &

(x > 1 => result = f(x-1) + f(x-2))

there are 331,160,281 calls to f when evaluating f (40) without caching, and an execution time of
7.5s. With caching there are only 41 calls, and an execution time of 10ms. However, the user
should ensure that cached behaviour is really what is intended – if the operation result could
legitimately change if the operation is invoked at different times with the same argument values
then this stereotype should not be used.

For C++, caching is restricted to operations with at most one parameter. Caching is not yet
supported by the C code generator.

5 Use cases

Use cases of a system represent the externally available services that it provides to clients, either
directly to users, or to other parts of a larger system.

Two forms of use case can be defined in UML-RSDS:

• EIS use cases – simple operations such as creating an instance of an entity, modifying an
instance, etc, intended to be implemented using an EIS platform such as Java Enterprise
Edition. These are described in Section 10.

24

• General use cases – units of functionality of arbitrary complexity, specified by constraints
(pre and postconditions of the use case). These are particularly used to specify model
transformations (Section 6). They are visually represented as ovals in the class diagram.
They may have their own attributes and operations, since use cases are classifiers in UML.
Use case invariants can also be defined for general use cases.

Figure 9 shows the UML-RSDS dialog for creating use cases.

Figure 9: Use case dialog

Figure 10 shows the UML-RSDS dialog for modifying general use cases.

Figure 10: Use case edit dialog

In addition, an interactive editor has been introduced (from version 1.6) for modifying use
cases (Figure 11). In this editor, postconditions are written as:

E::

Pre => Post

for a constraint with context entity E, assumption Pre and conclusion Post. The syntax:

::

Pre => Post

25

is used if there is no context entity (type 0 constraint). To check the syntax of a constraint,
position the cursor after its end, and select option Check. Constraint text can be copy/pasted
within the use case, and between use cases (with multiple editors open).

Figure 11: Use case editor

General use cases can be structured and composed using several different mechanisms:

• extend : one use case can be declared as an extension of another, to provide additional
functionality to the base use case.

• include: one use case can be included in one or several other use cases, to define a sub-
operation or process of the base use cases. This can be used to factor out common sub-
processes.

• Parameterisation: a use case can be given typed parameters to make it generic and reusable.

• Inheritance: a use case can inherit another, to specialise its effect. This is not yet supported
by the tools.

Basic use cases (use cases without activities or included use cases) can be composed together using
extend. This has the effect of conjoining the postconditions of the extension and extended use
cases to form the postconditions of the composed use case, and likewise for preconditions and
invariants. It acts like a conjunction combinator of use cases (assumed to be mutually consistent).
A new use case with the conjoined postconditions is added to the system model.

More complex use cases/services can be composed from these basic use cases using include
and use case activities. If use cases uc1, ..., ucn are included in use case uc, in that order, then
the composed effect of uc includes executing uc1, ..., ucn after uc’s own effect. Alternatively, an
activity for uc can invoke the included use cases in complex algorithms.

The elementary example of a “Hello world” program can be defined as a single postcondition

"Hello world!"->display()

of a use case on an empty metamodel.
A simple example of a use case for our teaching system could have the single postcondition

(with no entity context)

Lecturer->exists(k | k.name = "Mike")

which creates a lecturer object with name “Mike”.
The option Use Case Dependencies on the View menu allows the dependencies between use

cases and classes to be seen: a red dashed line is drawn from a use case to each class whose data
it may modify, and a green dashed line is drawn from each class read by the use case, to the use
case.

26

6 Model transformations

Model transformations in UML-RSDS are defined by UML use cases, the postconditions of these
use cases define the transformation effect. Both the source and target metamodels are represented
as parts (possibly disjoint and unconnected parts) of the same class diagram. Each use case
postcondition constraint Cn usually has context some source metamodel entity E , and defines
how elements of E are mapped to target model elements.

Figure 12 shows an example where the source metamodel consists of a single entity A with
attribute x : int , and the target metamodel consists of entity B with attribute y : int , and there
is a use case a2b with a single postcondition constraint:

A::

x > 0 => B->exists(b | b.y = x*x)

on context A. The constraint specifies that a new B object b is created for each ax : A with
ax .x > 0, and b.y is set to the square of ax .x .

Figure 12: A to B transformation

Assumptions of a transformation can also be defined, as precondition constraints of its use
case. In this example we assume that the target model is initially empty, ie:

B.size = 0

A valid transformation invariant constraint could be:

B::

A->exists(a | a.x > 0 & y = a.x*a.x)

on B . This expresses that every B must have been derived from a corresponding A.
The following steps are taken to define a transformation:

• Define the metamodels, as a single class diagram or separate class diagrams.

• Create a general use case, for the transformation.

• Edit the use case, adding pre and postcondition and invariant constraints as required. The
order of the postcondition constraints determines the order of execution of the corresponding
code segments.

• On the synthesis menu, select Generate Design to analyse the use case and generate a design-
level description as operations and activities.

• Select Build Java (Java 4, 6 or 7) to produce an executable version of the transformation,
which will be contained in the output directory files Controller .java, GUI .java, ControllerInterface.java
and SystemTypes.java.

27

• The transformation implementation can be compiled using javac Controller .java, javac
GUI .java and then executed by the command java GUI . This opens up a simple dialog to
load the input model and execute individual transformations.

Input models are specified in a file in.txt, output models are created in out.txt, together
with XMI versions in xsi.txt.

• Executable implementation in the other supported languages is also possible.

The text format for models in in.txt and out.txt is very simple, consisting of lines of text
of three possible forms:

e : T

declaring that e is an instance of concrete entity T ,

e.f = v

declaring that the attribute or 1-multiplicity role f of e has value v , and

obj : e.role

declaring that obj is a member of the many-valued role role of e. For sequence-valued roles, the
order in which these membership assertions occur in the file is the order of elements in role. There
must be spaces around the = and : operators (and no spaces around .).

Instances of entity types with stereotypes auxiliary , external or externalApp are not saved to
out.txt.

For example, we could have the example model

a1 : A

a1.x = 5

a2 : A

a2.x = 3

b1 : B

b1.y = 2

for our elementary transformation example. Running the transformation on this input model
produces the following output model:

a1 : A

a1.x = 5

a2 : A

a2.x = 3

b1 : B

b1.y = 2

b2 : B

b2.y = 25

b3 : B

b3.y = 9

Qualified associations and association classes cannot be represented in models, however these could
be used for internal processing of a transformation, as auxiliary metamodel elements.

Example transformations are given on the UML-RSDS website, in the zoo subdirectory, eg.,
mmuml2Ca, mmcra17 andmmpn2sc. The UML to C translator is a large transformation example,
its specifications are included in the mmuml2Ca and mmuml2Cb metamodel files.

Four categories of postconditions Cn are distinguished:

1. Type 0: Cn has no context classifier, for example

28

::

"Hello world!"->display()

The constraint dialog field for the context entity is left empty when defining such constraints.

2. Type 1: a context classifier E exists, and wr(Cn), the set of entity types and features written
by Cn, is disjoint from rd(Cn), the set that it reads (write and read frames are defined in
Table 25). Such Cn are implemented by a for-loop over E . For example, the constraint

A::

x > 0 => B->exists(b | b.y = x*x)

given above is type 1. E (in this case A) is specified in the context entity field of the
constraint dialog (Figure 6).

3. Type 2: wr(Cn) has common elements with rd(Cn), but the context classifier E itself is
not in wr(Cn), nor are other entity types/features in the assumptions of Cn. These are
implemented by a simplified fixed-point iteration over E .

4. Type 3: as type 2, but wr(Cn) includes the context classifier or other assumption entity
types/features. For example, to delete all A objects with negative x values, we could write:

A::

x < 0 => self->isDeleted()

on context A. For such constraints a general fixed-point implementation is used, however it
is often the case that this can be optimised by omitting checks that the conclusion of Cn
already holds (in the above example, the conclusion obviously never holds for some self : A
before the application of the constraint). A dialog box is presented asking for confirmation of
this optimisation, during the Generate Design step. Answer y to confirm the optimisation.

Distinct postcondition constraints should be ordered so that Cm preceeds Cn if wr(Cm) has
common elements with rd(Cn).

For the above example this means that the correct order is:

A::

x < 0 => self->isDeleted()

A::

x > 0 => B->exists(b | b.y = x*x)

since the first writes A and the second reads A: this order ensures that the invariant identified
above actually is maintained by the transformation.

Constraint analysis during the Generate Design step identifies any potential problems with the
ordering of constraints.

Pre-state expressions in use case postcondition constraints refer to the values of the entity
types at the start of the execution phase for the constraint (in the case of entity types E@pre
defined as the context of the constraint), or the values of features of individual objects at the
start of application of individual applications of the constraint (for features f@pre). A prestate
feature obj .f@pre should only be applied to instances obj of a prestate entity E@pre, unless E
itself is not written by the constraint. It is bad practice to both read x .f@pre and write x .f for
the same object x in the same constraint, this can lead to a failure of confluence, and to constraint
implementations that do not establish the constraint (or at least, not those parts of the constraint
that use f@pre).

f@pre can be used for features f of the context classifier of the constraint, or x .f@pre for
features of one of the outer-level variables x of the constraint (introduced in its antecedent), but

29

cannot be used for features of variables x of exists(x | P), etc, self of select(P), etc, or other
internal variables within a constraint.

An example of the use of prestate entities and features is the computation of the one-step
composition of pairs of edges in a graph: if e1 and e2 are joined head-to-tail at the same node,
then create a new edge that directly links e1’s source to e2’s target (but do not iterate this process
any further):

::

e1 : Edge@pre & e2 : Edge@pre & e2.src@pre = e1.trg@pre =>

Edge->exists1(e3 | e3.src = e1.src@pre & e3.trg = e2.trg@pre)

The iterations of e1 and e2 over Edge@pre restricts the composition step to operate only upon
pre-existing edges, not upon any e3 created by the step itself. The use of src@pre and trg@pre
emphasises that the features of pre-existing edges are not changed by the constraint. Taken to-
gether, these annotations allow a simple double for-loop implementation of the constraint (because
its set of written entities and features are disjoint from its set of read entities and features) rather
than a fixpoint implementation.

Variables may also be used to express let definitions, by placing an equation v = exp in the
assumption of a constraint. v can then be used in place of exp in the conclusion. Such v should
only be used in read-only contexts after their definition.

6.1 Bidirectional transformations

Support for bidirectional transformations is provided by the option to reverse a use case (on the
edit use case menu). This option generates a new use case whose postconditions are derived as
inverses of the postconditions of the original use case: these inverse constraints are often also
invariants of the original use case. A type 0 or type 1 constraint

Si→forAll(s | SCond(s) ⇒ Tj→exists(t | TCond(t) & Pi,j (s, t)))

is inverted to a constraint of the form

Tj→forAll(t | TCond(t) ⇒ Si→exists(s | SCond(s) & P∼
i,j (s, t)))

where the predicates Pi,j (s, t) define the features of t from those of s, and are invertible: an
equivalent form P∼

i,j (s, t) should exist, which expresses the features of s in terms of those of t .
In the general case of entity merging/splitting the inverse of

Si1→forAll(s1 | ... Sin→forAll(sn | SCond(s1, ..., sn) ⇒
Tj1→exists(t1 | ... Tjm→exists(tm | TCond(t1, ..., tm) &

P(s1, ..., sn, t1, ..., tm))...)) ...)

is:

Tj1→forAll(t1 | ... Tjm→forAll(tm | TCond(t1, ..., tm) ⇒
Si1→exists(s1 | ... Sin→exists(sn | SCond(s1, ..., sn) &

P∼(s1, ..., sn, t1, ..., tm))...))...)

Tables 11 and 12 show examples of inverses P∼ of predicates P .
For bx, we use statLC (P) for the procedural interpretation of expressions P , instead of stat(P).

This represents least-change semantics: an update is only performed if P does not already hold,
or if the update would make no change in the case P holds.

statLC (v = e) is the same as stat(v = e), v ′ := e ′.
statLC (v : e) is the same as stat(v : e) for sets e, but for sequences it is

if v ′ : e ′ then skip else stat(v : e)

30

P(s,t) P∼(s, t) Condition

t .g = s.f s.f = t .g

t .g = s.f .sqrt s.f = t .g .sqr f , g non-negative
t .g = s.f .sqr s.f = t .g .sqrt f , g non-negative

t .g = s.f .exp s.f = t .g .log g positive
t .g = s.f .log s.f = t .g .exp f positive

t .g = s.f .pow(x) s.f = t .g .pow(1.0/x) x non-zero, independent of s.f
t .g = s.f .sin s.f = t .g .asin −1 ≤ t .g ≤ 1
t .g = s.f .cos s.f = t .g .acos −1 ≤ t .g ≤ 1
t .g = s.f .tan s.f = t .g .atan

t .b2 = not(s.b1) s.b1 = not(t .b2) Boolean attributes b1, b2

t .g = K ∗ s.f + L s.f = (t .g − L)/K f , g numeric
Numeric constants K ,L
K ̸= 0

t .g = s.f + SK s.f = t .g .subrange(1, t .g .size − SK .size) String constant SK

t .g = SK + s.f s.f = t .g .subrange(SK .size + 1, t .g .size) String constant SK

t .r = s.f→characters() s.f = t .r→sum() String feature f , sequence r

R(s, t) & Q(s, t) R∼(s, t) & Q∼(s, t)

Table 11: Inverse of predicates

P(s,t) P∼(s, t) Condition

t .rr = s.r→reverse() s.r = t .rr→reverse() r , rr ordered association ends

t .rr = s.r→last() s.r→last() = t .rr rr single-valued, r ordered

t .rr = s.r→first() s.r→first() = t .rr rr single-valued, r ordered

t .rr = s.r→including(s.p) s.r = t .rr→front() & rr , r ordered association ends
t .rr = s.r→append(s.p) s.p = t .rr→last() p 1-multiplicity end

t .rr = s.r→prepend(s.p) s.r = t .rr→tail() & rr , r ordered association ends
s.p = t .rr→first() p 1-multiplicity end

t .rr = Sequence{s.p1, s.p2} s.p1 = t .rr→at(1) & rr ordered association end
s.p2 = t .rr→at(2) p1, p2 1-multiplicity ends

t .rr = s.r→select(P) s.r→excludesAll(x | P(x) & r , rr
t .rr→excludes(x)) set-valued

→includesAll(t .rr→select(P))

t .rr = s.r→reject(P) s.r→excludesAll(x | not(P(x)) & r , rr
t .rr→excludes(x)) set-valued

→includesAll(t .rr→reject(P))

t .rr = s.r→sort() s.r = t .rr→asSet() r set-valued, rr ordered
t .rr = s.r→asSequence()

t .rr = s.r→sort() s.r = (s.r ∩ t .rr)a (t .rr − s.r) r sequence-valued

t .rr = s.r→asSet() s.r = (s.r ∩ t .rr)a (t .rr − s.r)→asSequence() r sequence-valued

Table 12: Inverse of predicates on associations

31

Similarly for <:, / : and / <:.
statLC (P & Q) is statLC (P); statLC (Q) under the assumption that P ⇒ [statLC (Q)]P . This

is ensured if wr(Q) is disjoint from wr(P) and rd(P).
statLC (if C then P else Q endif) is

if C

then statLC(P)

else statLC(Q)

under the assumptions C ⇒ [statLC (P)]C and ¬ C ⇒ [statLC (Q)]¬ C . These are ensured if
wr(P) and wr(Q) are disjoint from var(C).

For s→forAll(x | P), statLC is defined as for x : s do statLC (P).
For existential quantifiers E→exists(e | P1 & ... & Pn), their statLC effect only creates a new

e in cases where there is no existing e : E that satisfies P partially or completely. In the case of
partial satisfaction the updates only for the unsatisfied conjuncts are carried out. This can also
be written as E→existsLC (e | P1 & ... & Pn).

If E has a primary key pk and a conjunct Pi is of the form e.pk = value, then statLC (E→exists(e |
P1 & ... & Pn)) is

var e : E;

e := createByPKE(value);

statLC(Pred)

Where Pred is P1 & ... & Pn with Pi omitted.
Otherwise, statLC (E→exists(e | P1 & ... & Pn)) has the form:

var e : E;

var eset : Set(E);

eset := E.allInstances();

if eset->isEmpty()

then

e := createE();

statLC(P1 & ... & Pn)

else

(e := eset->any();

eset := eset->select(P1);

if eset->isEmpty()

then

e := createE();

statLC(P1 & ... & Pn)

else

(e := eset->any();

eset := eset->select(P2);

if eset->isEmpty()

then

statLC(P2 & ... & Pn)

else

... case for 3 ...))

The general case for k ≥ 2, k < n is

e := eset->any();

eset := eset->select(Pk);

if eset->isEmpty()

then

statLC(Pk & ... & Pn)

else

... case for k+1 ...

32

For n, if Pk is an assignment result = e, then the code of the case is simply e := eset→any(); result :=
e. Otherwise it is

e := eset->any();

eset := eset->select(Pn);

if eset->isEmpty()

then

statLC(Pn)

else

e := eset->any()

By reusing e : E instances where possible, the redundant creation of instances is avoided, how-
ever this also introduces the possibility of conflicts where one target instance is required to have
conflicting attribute values to satisfy a constraint wrt 2 source instances.

statLC produces code that is around 2 to 5 times slower than stat code (for Java 4).
The inversion procedure can be generalised by using view complements as in [16]. In particular,

any P(s, t) which computes a sequence-valued feature t .g = v(s.f) from sequence-valued s.f by
recursion on the elements of s.f can be reversed to s.f = u(s.f@pre, t .g) for a recursively-defined
view update function u.

If v is:

v(x) = if x .size = 0 then Sequence{}
else if P1(x .first , x .tail) then Sequence{v1(x .first)}a v(x .tail)
else if ...
else v(x .tail) endif

Then u is defined by:

u(x , y) = if x .size = 0 then Sequence{}
else if P1(x .first , x .tail) then Sequence{u1(x .first , y .first)}a u(x .tail , y .tail)
else if ...
else u(x .tail , y .tail) endif

where ui is an update function inverse to vi .
This definition includes select , reject and collect cases on sequences, and other functions on

sequences, eg., that omit/include elements based on their position in the sequence.
General use cases may have static attributes att , defined using the add attribute option on the

edit use case menu. These attributes may be used to define data used by all of the constraints of
the use case but which is not present in the metamodel it operates upon. In the generated code,
the attributes become local attributes of the class Uc corresponding to the use case. They should
be referred to as Uc.att .

Use cases may have static operations, in the implementation these also become operations of
the class Uc. Use case operations can be called from within the use case postconditions. They
have no instance context so must be supplied with all necessary data as parameters. They should
be referred to as Uc.op(pars).

6.2 Importing ATL modules

ATL [5] is one of the leading hybrid model transformation languages. It has a specialised syntax
and a more imperative orientation compared to UML-RSDS.

Transformation definitions can be given in ATL syntax and imported into UML-RSDS using
the File/Load transformation menu option ‘Load standard ATL’. A class diagram expressing the
source and target metamodels should already exist and be loaded into UML-RSDS before selection
of the ‘Load standard ATL’ option. The file mm.atl is loaded. Source entity types should have
the stereotype ‘source’, and target entity types should have the stereotype ‘target’.

33

ATL UML-RSDS

Module Use case
Matched rule Use case postcondition
Lazy rule Operation invoked from postconditions
Unique lazy rule Operation using caching to

avoid recreating existing objects
Implicit rule invocation Object lookup using object indexing

or traces
Attribute helper Local attribute of use case
Function helper Operation
Action blocks of Operation with activity, invoked
matched rules from postcondition representing the rule
Action blocks of Operation with activity, invoked
called/lazy rules from operation representing the rule

Table 13: Correspondence of ATL and UML-RSDS

Table 13 shows the mapping of ATL (standard mode) elements to UML-RSDS. We assume
that all rule inheritance has been statically expanded out so that only leaf rules exist.

The expression language of ATL is closely based upon OCL, as is that of UML-RSDS. There
are only two significant points of difference in the languages: (i) in UML-RSDS collections are
either sequences or sets, and bags and ordered sets are represented in terms of sequences; (ii)
0..1-multiplicity association ends r are treated as sets (or sequences) of maximum size 1. Thus
r .oclIsUndefined() in ATL is expressed by r→isEmpty() in UML-RSDS, and the value of such r
when defined is r→any() in UML-RSDS. OCL operators div , one, iterate, <>, let occuring in
ATL expressions must also be translated to UML-RSDS OCL. ATL ordered sets, bags, tuples and
maps are not currently translated to UML-RSDS.

We denote the UML-RSDS expression equivalent of an ATL expression e by e ′.
Given an ATL module

module M;

create OUT : T from IN : S;

rule r1

{ from s1 : S1, ..., sm : Sm (SCond)

to t1 : T1 (TCond1), ..., tk : Tk (TCondk)

do (Stat)

}
...

rule rn { ... }

the following steps are taken to produce a UML-RSDS specification:

1. A use case M ′ is defined, operating on metamodels IN $S and OUT$T , where each entity or
enumerated type E in S is renamed to IN $E to form the input language IN $S and likewise
for T .

2. Each input and output entity type is given a new identity attribute (primary key) $id :
String . This is used to express 1–0..1 tracing relationships between the source and target
models. The attributes only need to be added to the entity types that are maximal in the
inheritance hierarchies of IN $S and OUT$T . Distinct hierarchies have disjoint sets of $id
values.

3. Each matched rule ri is represented by a postcondition constraint ri ′ of M ′, operating on the
first input entity type IN $S1 of the rule, and with the other input variables as (implicitly)
quantified LHS variables of ri ′. The input conditions SCond are directly translated to a

34

LHS condition SCond ′ of ri ′. Any using variables are added with their definitions to the
LHS condition of ri ′. The output variables become exists-quantified variables of the RHS of
ri ′.

4. The output conditions TCondj are expressed as expressions TCondj ′ as follows. An assign-
ment

f ← e

to a feature f of output variable tj is interpreted as

tj .f = e ′

where e ′ is the UML-RSDS interpretation of e. Any implicit type conversion from an ex-
pression p in e of a source entity type SEnt to a target entity type TEnt is expressed as

OUT$TEnt [p.$id]

in e ′. This is the (default) target object corresponding to p. Likewise for implicit type
conversions from Set(SEnt) to Set(TEnt) and from Sequence(SEnt) to Sequence(TEnt).

5. thisModule.resolveTemp(s, t) becomes TEnt [t + “ ” + s.$id] for s : SEnt mapped by some
rule to TEnt . This provides lookup for non-default target objects.

6. If an action block Stat is specified, then a new update operation opri(s2 : IN $S2, ..., sm :
IN $Sm, t1 : OUT$T1, ..., tk : OUT$Tk) is introduced to IN $S1, and this operation has
activity given by the interpretation Stat ′ of Stat as a UML-RSDS activity.

7. The resulting RHS of ri ′ has predicate

OUT$T1→exists(t1 | t1.$id = $id & ... &
OUT$Tk→exists(tk | tk .$id = “tk ” + $id & TCond1′ & ... & TCondk ′ &

s1.opri(s2, ..., tk))...)

8. Before mapping to UML-RSDS, the ATL rules are sliced and split if necessary so that rules
do not read target entity types TEnt until after all creations and updates of instances of
TEnt have been performed. Rules that read TEnt and that precede (or are equal to) rules
which create/update TEnt instances are split into initial rules whose output bindings do
not involve type conversions from input entity types to output types, followed (after all the
original rules of the ATL module) by linking rules which perform the remaining bindings
and the do actions of the original rules. All the initial rules are therefore (according to the
UML-RSDS semantics) executed before any of the linking rules. Rules which do not involve
type-conversion bindings do not need to be split. This corresponds to the ATL semantics
in which a matching (target object creation) phase precedes initialisation (target object
linking).

9. The translation of lazy and called rules r is similar, except that the translated constraint r ′

is used as the postcondition of an operation r of the first input entity type of the rule. Calls
thisModule.r(v1, ..., vm) to the rule are interpreted as calls v1.r(v2, ..., vm) of this operation.
The operation r is stereotyped as ≪ cached ≫ in the case of unique lazy rules.

The ATL module is read from a text file in output/mm.atl .
The translation from ATL to UML-RSDS also includes update-in-place transformations. We

adopt the convention that if the same declaration tj : Tj occurs in both from and to clauses of an
ATL rule, this means that tj is updated by the rule, not created by it. Then such variables do not
have an Tj→exists(tj | tj .$id = $id &...) quantifier in the corresponding UML-RSDS constraint
conclusion, instead each reference tj .f to a feature of tj in the rhs e of a binding p ← e in the to
clause is interpreted as tj .f@pre.

This permits translation of rules such as

35

rule rr {

from s1 : S1, t1 : T1 (true)

to t1 : T1

(r <- t1.r->including(s1))

}

into:

IN $S1 ::
t1 : OUT$T1 ⇒

t1.r = t1.r@pre→including(self)

Likewise, the class diagram refactoring transformation of [6] can be defined as:

rule r1 {

from c : Entity, p : Property

(c.specialisation->size() > 1 and

c.specialisation.specific.ownedAttribute->includes(p) and

c.ownedAttribute.name->excludes(p.name) and

c.specialisation.specific->forAll(g |

g.ownedAttribute->exists(q | q.name = p.name and q.type = p.type)))

to c : Entity

(ownedAttribute <- c.ownedAttribute->including(p))

do

{ for (p1 in c.specialisation.specific.ownedAttribute)

{ if (p1.name = p.name)

{ p1->isDeleted(); }

}

}

}

Adding p to c.ownedAttribute implicitly removes it from the ownedAttributes of its previous entity,
due to the 0..1 multiplicity of the opposite association end.

Table 14 compares ATL and UML-RSDS as transformation languages. Generally, ATL is
better suited to separate-models transformations such as migrations, whereas UML-RSDS has full
support for update-in-place transformations such as refactorings.

ATL UML-RSDS

System modularisation Modules, rules, Use cases, operations,
libraries, helpers constraints, classes

Rule modularisation Inheritance, called Called operations,
rules operation inheritance

Rule scheduling/ Implicit Explicit ordering
priorities
Multiple input No Yes
elements in rules
Direct update of input No Yes
models
Transformation In ATL interpreter In Java, C#, C++, C
implementation
Analysis Runtime rule Data dependency, confluence,

conflicts detected determinacy, rule conflicts

Table 14: Comparison of ATL and UML-RSDS

An additional conversion, of refining mode ATL modules to UML-RSDS, is at an experimental
stage and can be used by the option ‘Load refining ATL’. Refining mode (ATL 2010 version)

36

provides a restricted form of update-in-place semantics by executing rules to create updated or
new source model elements, or to delete elements. The source model is read by the rules, and
their effects are applied to the target model, which is initially a copy of the source [5].

Given a refining mode ATL module

module M;

create OUT : S refining IN : S;

rule r1

{ from s1 : S1, ..., sm : Sm (SCond)

using { v1 : Typ1 = val1; ... }
to t1 : T1 (TCond1), ..., tk : Tk (TCondk)

do (Stat)

}
...

rule rn { ... }

the following steps are taken to produce a UML-RSDS specification:

1. A use case M ′ is defined, operating on metamodels IN $S and OUT$S , these have copies
IN $E and OUT$E of the classifiers and enumerated types E of S .

2. Each entity type is given a new identity attribute (primary key) $id : String . This is used
to express tracing relationships between the source and target (copy) models.

3. The first phase of M ′ copies the source model data to the target model.

4. Each matched rule ri is represented by a postcondition constraint ri ′ of the second phase
of M ′, operating on the first input entity type IN $S1 of the rule, and with the other input
variables as (implicitly) quantified LHS variables of ri ′. The input conditions SCond are
directly translated to a LHS condition SCond ′ of ri ′, with self replacing s1. Any using

variables are added with their definitions to the LHS condition of ri ′.

5. The output conditions TCondj are expressed as expressions TCondj ′ as follows. An assign-
ment f ← e to a feature f of output variable tj is interpreted as tj .f = e ′ where e ′ is the
UML-RSDS interpretation of e. For source object(s) e of class IN $E , the interpretation is
OUT$E [e.$id], the corresponding copied object(s) in the target model.

6. If an action block Stat is specified, then a new update operation opri(s2 : S2, ..., sm :
Sm, t1 : T1, ..., tk : Tk) is introduced to S1, and this operation has activity given by the
interpretation Stat ′ of Stat as a UML-RSDS activity.

7. The resulting RHS of ri ′ has predicate

OUT$T1→exists(t1 | t1.$id = $id & ... &
OUT$Tk→exists(tk | tk .$id = “tk ” + $id & TCond1′ & ... & TCondk ′ &

s1.opri(s2, ..., tk))...)

The semantics of Ti→exists(ti | ti .$id = val in UML-RSDS is that ti is only created if there
does not already exist a Ti object Ti [val] with the given $id value – if there is such an
object, it is selected and updated. The $id is a Key in terms of QVT [18].

8. The translation of lazy rules r is similar, except that the translated constraint r ′ is used
as the postcondition of an operation rop of the first input entity type of the rule. Calls
thisModule.r(v1, ..., vm) to the rule are interpreted as calls v1.rop(v2, ..., vm) of this opera-
tion. The operation rop is stereotyped as ≪ cached ≫ in the case of unique lazy rules.

9. The special form of deletion rules:

37

rule r

{ from s1 : S1 (SCond)

to drop

}

are interpreted as: IN $S1 ::

SCond ′ & $id : OUT$S1.$id & t1 = OUT$S1[$id] ⇒ t1→isDeleted()

which deletes the target object t1 corresponding to s1. Cascading delete is used in both
ATL and UML-RSDS. Deletion rules are applied after all creation and update rules.

We have permitted multiple input elements in ATL rules, since these are representable in UML-
RSDS as a natural extension of single-input rules. Iterative target patterns are not treated by
this translation. These are a deprecated feature of ATL since ATL 2.0. Reflective operations and
resolveTemp are not supported in ATL expressions for this translation.

The ATL refining mode does not support direct update-in-place transformation in the usual
sense, where a single model is both read and written by rules. To support direct update-in-place
semantics in ATL we adopt the convention that if the same declaration tj : Tj occurs in both from
and to clauses, this means that tj is directly updated by the rule. Then such variables do not
have an OUT$Tj→exists(tj | tj .$id = $id & ...) quantifier in the conclusion of the corresponding
UML-RSDS constraint, instead each reference tj .f to a feature of tj in the rhs of a binding p ← e
in the to clause is interpreted as tj .f@pre. Such rules both write and read the target model.

6.3 Importing QVT-R transformations

QVT is an OMG standard language for model transformation [18], consisting of relational (QVT-
R), operational (QVT-O) and core (QVT-Core) languages. In this section we describe the semantic
mapping from QVT-R to UML-RSDS. This provides a formal semantics of QVT-R in terms of
the UML subset supported by UML-RSDS.

An example transformation, from UML to relational databases, is given in [18]:

transformation tau(uml1 : SimpleUML, rdb1 : SimpleRDMS) {

top relation Class2Table

{ checkonly domain uml1 c : Class { name = n, attribute = a: Attribute {name = an} };

enforce domain rdb1 t : Table { name = n, column = col: Column{name = an} };

where { Attribute2Column(a,col) }

}

relation Attribute2Column

{ checkonly domain uml1 a : Attribute { type = t:Type { name = tn } };

enforce domain rdb1 c : Column { coltype = tn };

}

}

The name attributes of Class and Table are identities/keys, and attribute and column are set-
valued roles.

Table 15 expresses the correspondence between QVT-R and UML-RSDS language elements.
In the following we assume that a QVT-R transformation is executed in the direction of the

enforce domains as targets, with the checkonly domains as sources. Other execution variations can
be modelled in a similar way. We assume that top-level relations are not called in where clauses.
We will use the QVT-R metamodel classes such as TemplateExp and Relation from [18] to define
the mapping details.

An ObjectTemplateExp ote of the form

e : E { f1 = val1, ..., fn = valn } { P }

38

QVT-R element UML representation in UML-RSDS

RelationalTransformation UseCase
Relation (isTopLevel = true) Use case postcondition
Relation (isTopLevel = false) Operation of use case
Relation Variable Variable defined in constraint antecedent
RelationDomain (isEnforceable = false) Constraint antecedent
RelationDomain (isEnforceable = true) Constraint succedent
Variable bindings Let/quantified variable bindings
Check-before-enforce Unique instantiation
semantics semantics
Key attributes Identity attributes

Table 15: Correspondence of QVT-R and UML-RSDS

occurring in a checkonly domain is interpreted as a constraint antecedent predicate cpred(ote, bound)
formed as a conjunction of the interpretations of each PropertyTemplateItem fi = vali as follows,
where bound is a list of the variables bound in the relation logically prior to the template:

• If vali is itself an ObjectTemplateExp, such as x : F {g1 = w1, ..., gm = wm}, the interpre-
tation is applied recursively to the items of vali , to produce a predicate cpred(vali , bound).
The result for fi = vali is x = e.fi & cpred(vali , bound ∪ {x}) if fi is single-valued, or
x : e.fi & cpred(vali , bound ∪ {x}) if fi is collection-valued.

x is considered to be bound by the first conjunct in both cases.

• Otherwise, if vali is an unbound variable, vali ̸∈ bound , and fi is single-valued, the predicate
is vali = e.fi . If fi is collection-valued, the predicate is vali : e.fi .

Subsequently, vali is considered to be bound.

• If vali is a bound variable or other expression, the predicate is e.fi = vali or vali : e.fi .

For the domain root variable e, the predicate e : E is added as the first conjunct of the result.
Any additional predicate P of the domain is added as the final conjunct of cpred(ote, bound).

The checkonly domain template

uml1 c : Class {name = n, attribute = a : Attribute{name = an}};

is therefore interpreted as: c : Class & n = c.name & a : c.attribute & an = a.name.
For enforce domains, the interpretation of ote as a constraint succedent predicate is epred(ote, bound)

formed as follows:

• If vali is itself an ObjectTemplateExp, such as x : F{g1 = w1, ..., gm = wm}, the result
for fi = vali is F→exists(x | e.fi = x & epred(vali , bound ∪ {x})) if fi is single-valued, or
F→exists(x | x : e.fi & epred(vali , bound ∪{x})) if fi is collection-valued. The quantification
on x is omitted if x is already in bound prior to the ObjectTemplateExp.

• Otherwise, if fi is single-valued, the predicate e.fi = vali . If fi is collection-valued, the
predicate vali : e.fi .

The root variable e of the domain is ∃-quantified over its type, if it is not already bound. Any
additional predicate P of the domain is added as the final conjunct of epred(ote, bound).

The enforce domain template

rdb1 t : Table {name = n, column = col : Column {name = an}};

is therefore interpreted as:

Table→exists(t | t .name = n & Column→exists(col | col : t .column & col .name = an))

39

For each relation r (top or non-top) we introduce an auxiliary trace entity r$trace which has
attributes/references consisting of the root variables of all domains of r , and attributes for the
root variables of object templates occuring within these, together with other variables that occur
in the when clause.

The main interpretation of a QVT top-level Relation r with multiple (at least one) source
domains, and multiple (at least one) target domains is then a constraint Conr which has antecedent
the conjunction of predicates e : E & cpred for each source domain

checkonly domain src e : E { f1 = val1, ..., fn = valn }

and succedent the conjunction of predicates epred for each target domain

enforce domain trg e : E { f1 = val1, ..., fn = valn }

In addition, the when clause is interpreted as a predicate whenp and conjoined to the antecedent,
and the where clause is interpreted as a predicate wherep and conjoined to the succedent. An
additional when clause is that the source domain elements do not already appear in some trace:

not(r$trace→exists(rx | rx .e1 = e1 & ... & rx .ek = ek))

where the ei are all the root/subordinate object variables of the source domains of r , plus addi-
tional when variables. The extended whenp is denoted whenpx .

An additional where predicate, always incorporated into the succedent of Conr for separate-
models transformations, is the creation of a trace object for this rule application:

r$trace→exists(rx | rx .e1 = e1 & ... & rx .en = en)

where the ei are all the features of the trace. Note that n > k . The extended where predicate is
denoted wherepx .

A RelationCallExp of r(x1, ..., xm) in a when clause of relation r ′ is interpreted by the corre-
sponding query predicate

rx : r$trace & x1 = rx .e1 & ... & xm = rx .em

Where the ei are the domain root variables of r . The xi are then considered bound within the
relation r ′.

Thus in general, Conr has the form:

::
whenpx &

∧
cdom cpred(cdom) ⇒∧

edom epred(edom) & wherepx

Where the conjunction is taken over all source domains in the antecedent, and over target domains
in the succedent. The scope of exists quantifiers in the succedent is extended to the end of the
constraint.

If the when clause contains disjunctions, then ConR is split into multiple constraints, one for
each disjunct.

Conr deals with the case where the relation has not previously been executed for the source
elements. In addition, to handle change-propagation for cases where a source-target relation has
been established but targets may need to be modified to remain consistent with modified source
elements, we define a constraint Presr for r with the schematic structure

r$trace ::
whenp &

∧
cdom cpred(cdom) ⇒∧

edom epred(edom) & wherep

Where the conjunction is taken over all non-target domains in the antecedent, and over target
domains in the succedent. Again, the scope of exists quantifiers from the epred formulae are
extended over the remainder of the constraint, and Presr is split into cases for each when disjunct.

40

The interpretation of Class2Table as a mapping transformation rule therefore consists of two
postcondition constraints. The first, PresClass2Table , handles the case where the rule has previously
been executed, and performs only updates (but does not recreate the domain objects or trace) to
re-establish the relation if necessary. The second, ConClass2Table , is used in the case that a trace
record for the relation does not already exist.

PresClass2Table is:

Class2Table$trace ::
n = c.name & a : c.attribute & an = a.name ⇒

t .name = n & col : t .column & col .name = an &
attribute2column$op(a, col))

ConClass2Table is:

::
c : Class & n = c.name & a : c.attribute & an = a.name &

not(Class2Table$trace→exists(c2t | c2t .c = c & c2t .a = a)) ⇒
Table→exists(t | t .name = n &

Column→exists(col | col : t .column & col .name = an &
attribute2column$op(a, col) &
Class2Table$trace→exists(c2t |

c2t .c = c & c2t .a = a &
c2t .col = col & c2t .t = t)))

Check-before-enforce semantics is assumed for E→exists(x | P): a new E object x is only created if
there is not already one which satisfies the predicate P . statLC semantics is used for the procedural
interpretation of the UML-RSDS constraints derived from the QVT-R specification.

The ConR constraint creates target objects and a trace for source elements which have not yet
been mapped. The logical interpretation highlights a flaw in the original specification: that a table
and column are created in the same relation (the logic is of the form ∀ c ∀ a ∃ t ∃ col). It is better
practice to separate these actions into different relations, so that the logic becomes ∀ c ∃ t ∀ a ∃ col .

A QVT-R relational transformation τ is interpreted as a use case τ with three sequential sub-
use cases. Presτ has postconditions Presr for each relation r of τ , and Conτ includes Conr for
each top-level Relation r of τ . As in Medini-QVT, we consider that the order of these relations is
significant (projects.ikv.de/qvt). For non-top-level relations r , a constraint Opr is used to form the
postcondition of an update operation opr which has parameters the root variables of the relation
domains of r . Opr is formed as for Conr , but without antecedent conjuncts e : E for the root
variables of the checkonly relation domains, and without quantifiers E→exists(e | ...) for the root
variables of the enforce relation domains of r . It is assumed that all the operation parameters (the
domain root variables) are bound at the point of call.

For example, the non-top relation

relation Attribute2Column

{ checkonly domain uml1 a : Attribute { type = t : Type { name = tn }};

enforce domain rdb1 c : Column { coltype = tn };

}

has the interpretation as an operation

attribute2column$op(a : Attribute, c : Column)
post : t = a.type & tn = t .name ⇒ c.coltype = tn &

Attribute2Column$trace→exists1(a2c |
a2c.a = a & a2c.c = c & a2c.t = t)

These operations are added as owned operations of the use case representing the transformation.
exists1 is used here to avoid re-creating a trace if it already exists.

41

QVT-R has the semantic feature of implicit deletion: if a relation is not satisfiable for an
existing element of the target model, which matches the target domain pattern of the relation,
then this element should be deleted. We express this semantics by deleting any target element
which does not appear in any trace relation after execution of the main transformation:

E ::
not(r1$trace→exists(r1 | r1.e1 = self)) & ... & not(rm$trace→exists(rm | rm.em = self)) ⇒

self→isDeleted()

where the rk, k = 1 to m, are all the relations in which the target entity E occurs as the type of
a target object variable ek : E . The constraint is denoted CleanTargetE .

For the above example this produces the constraint

Table ::
not(Class2Table$trace→exists(class2table | class2table.t = self)) ⇒

self→isDeleted()

in the case of Table, and

Column ::
not(Attribute2Column$trace→exists(attribute2column | attribute2column.c = self)) ¬(Class2Table$trace→exists(c2t | c2t .col = self))
⇒

self→isDeleted()

in the case of Column.
The cleanup constraints are executed in a sub use case Cleanupτ after the main transformation

constraints.
The invariant for a transformation is in three parts: (i) that any target object must appear as

the target domain of some trace; (ii) that all trace objects in R$trace satisfy the logical relation
defined by R; (iii) that source objects that satisfy the conditions of rule R appear together in some
trace.

The CleanTarget rules establish (i), the Pres rules establish (ii), the Con rules establish (iii).
For separate-models transformations, CleanTarget does not invalidate (ii) or (iii) because they
only update the target model, not the source or trace.

The invariant implies that if a source-target tuple (s, t) for s : S , t : T satisfies relation R,
then it appears in R$trace and vice-versa. This holds since if (s, t) satisfy R after execution of
the transformation, then s must appear as the source elements in some tr ∈ R$trace, because R
would have been executed for s and some t ′ : T would have been created or selected as a match
for s. Also, t must appear as a target element in some tr ′ ∈ R′$trace, where R′ creates elements
t : T , otherwise t would have been deleted by the cleanup rules.

If R is the only relation that creates T elements, then R = R′ and there are tuples (s, t ′), (s ′, t)
both in R$trace. If R was executed on s ′ before s, then t would already exist when R is executed
on s, and hence – by the check-before-enforce semantics of QVT-R, would be selected as a match
for s, hence t ′ = t . If R was executed on s before s ′ then again t ′ = t by the check-before-enforce
property, and the result follows.

6.4 QVT-R in-place mode

The semantics of in-place transformations is described very briefly in [18] and it is unclear how this
semantics interacts with aspects such as implicit deletion and change propagation. The translation
to UML-RSDS described above can be used to give a semantics for in-place QVT-R specifications,
but with a fixed-point execution model.

An example of an update-in-place transformation is a graph processing transformation, op-
erating on models of a language NodeMM with a single entity type Node, with a key attribute
name : String and a many-many symmetric association neighbours on Node. The transformation
should remove all nodes which do not have a single neighbour. In UML-RSDS this would be
written as:

42

Node:: neighbours->size() /= 1 => self->isDeleted()

and this has a fixpoint implementation: nodes with no neighbours, or with more than one neigh-
bour, are deleted until no such nodes remain.

In contrast, the ATL refining mode implementation only deletes nodes which have more/less
than one neighbour in the initial model:

module M;

create OUT : NodeMM refining IN : NodeMM;

rule r1

{ from n : Node (n.neighbours->size() <> 1)

to drop

}

This has the translation

IN$Node::

OUT$Node->exists(node | node.name = name)

IN$Node::

node = OUT$Node[name] =>

node.neighbours = OUT$Node[neighbours.name]

IN$Node::

node = OUT$Node[name] &

neighbours->size() /= 1 => node->isDeleted()

The first two constraints copy the source model to the target. In the final constraint, target
elements are deleted if they correspond to source elements with neighbours→size() ̸= 1. All the
constraints are of type 1. For this ATL version nodes in the result model need not have one
neighbour, for example if the initial graph had three nodes linked in a chain: a — b — c, then b
would be deleted, leaving a and c with 0 neighbours.

In QVT-R the transformation could be expressed as:

relational transformation (nodemm : NodeMM)

{ top relation cleangraph

{ checkonly domain nodemm n : Node { };

enforce domain nodemm n : Node { };

when { n.neighbours->size() = 1 }

}

}

This has the Con constraint:

::

n : Node & n.neighbours->size() = 1 &

not(cleangraph$trace->exists(cleangraph | cleangraph.n = n)) =>

cleangraph$trace->exists(cleangraph | cleangraph.n = n)

(The Prescleangraph rule is vacuous in this case).
The cleanup rule expresses that if the above relation is not applicable, then the node is deleted:

Node::

not(cleangraph$trace->exists(cleangraph | cleangraph.n = self)) =>

self->isDeleted()

In addition for this mode we add a cleanup constraint that if a tuple (s, t) is in R$trace and
does not satisfy the antecedent of R, then it is deleted. Here this means:

cleangraph$trace::

not(n.neighbours->size() = 1) =>

self->isDeleted()

The sequence Presτ ; Conτ ; Cleanupτ is iterated until the conditions (i), (ii) and (iii) hold.

43

6.5 Importing ETL modules

The Epsilon Transformation Language (ETL) is a hybrid transformation language similar in many
respects to ATL, but with a more complex execution semantics [7]. Table 16 shows the mapping of
ETL elements to UML-RSDS. As with the translation from ATL to UML-RSDS, we assume that
all rule inheritance has been statically expanded out so that only concrete (non-abstract) rules
exist. Likewise for module import. We map rule code blocks to UML-RSDS operations, because
of the procedural nature of ETL rules.

ETL UML in UML-RSDS

Module M Use case M ′

Pre/Post block, Non-lazy rule Operation, and use case postcondition invoking the operation
Lazy rule Operation invoked via equivalent() operation
Implicit rule invocation Object lookup using traces; object creation
Statement blocks Operation with activity, invoked

from postcondition
Operation Use case or entity operation

Table 16: Correspondence of ETL and UML-RSDS

An ETL transformation rule

rule R

transform s : S

to t1 : T1, ..., tn : Tn

{ guard: G

code

}

is mapped to a postcondition

S::

G[self/s] =>

T1->exists(t1 | ... Tn->exists(tn |

$Trace->exists($t1 | $t1 : $trace & $t1.target = t1) & ...

$Trace->exists($tn | $tn : $trace & $tn.target = tn) &

R(t1,...,tn)) ...)

Where R is a new operation of S with activity code[self /s1]. $Trace is a new auxiliary entity
which records trace links between source and target elements. The interpretation creates target
objects, and trace objects for each target element, then calls the body code operation R to carry
out bindings of the target object features.

A lazy rule

@lazy

rule R

transform s : S

to t1 : T1, ..., tn : Tn

{ guard: G

code

}

is instead mapped to an operation R() : T1 of S , with pre and postconditions

pre:

G[self/s]

post:

44

T1->exists(t1 | ... Tn->exists(tn |

$Trace->exists($t1 | $t1 : $trace & $t1.target = t1) & ...

$Trace->exists($tn | $tn : $trace & $tn.target = tn) &

$R(t1,...,tn) & result = t1) ...)

Where $R is a new operation of S with activity code[self /s1]. As with non-lazy rules, the effect
of the interpretation is to create target elements and corresponding trace objects, and to perform
bindings. Additionally, the first target element is returned as the result of the rule.

equivalent() : $OUT is defined as an operation of the superclass $IN of all source entity types.
It has the schematic definition

equivalent() : $OUT

post:

result = if $trace->notEmpty() then $trace.target->any()

else if self : S1 then self->oclAsType(S1).LR1()

...

else if self : Sm then self->oclAsType(Sm).LRm()

endif ... endif else null endif

Where LR1 to LRm are all the lazy rules in the transformation, and their source entity types
are S1 to Sm respectively. This returns the first target element corresponding to the source self
object, if this exists, otherwise, it applies a matching lazy rule to create and return the target.

Further details of the mapping and an example are given in [14].
An operation

operation T op(pars) : RT

{

code

}

is mapped to an operation of T with the same signature, and with activity defined by code.

6.6 Importing Flock modules

Flock is an Epsilon language for migration transformations [20]. It defines migrations by combi-
nations of deletion, retyping and migration rules, and by implicitly copying source model elements
to the target model if they conform to the target language and there is no explicit rule that they
satisfy. The translation to UML-RSDS creates a use case for the Flock module, and constraints
to define the explicit and implicit rules of the module.

Table 17 shows the mapping of Flock elements to UML-RSDS.

Flock UML-RSDS

Module Use case
Deletion rule Guard on use case postcondition
Retyping rule for E Use case postcondition (if no migration rules for E)

or part of migrate rule postcondition
Migrate rule for E Postconditions based on retyping rules for E ,

with operation to define body of rule
Object lookup using migrated and equivalent Object lookup using object indexing
Body code blocks Operation with activity, invoked

from postcondition
Operation Operation of context entity type

Table 17: Correspondence of Flock and UML-RSDS

45

Each entity type E of the source language is renamed to IN $E , and each entity type F of
the target language is renamed to OUT$F . Each root class of the source or target language is
extended with a new principal primary key $id : String . Each deletion rule

delete E when: Del

is expressed by a new additional guard not(Del) for each retyping and migration rule on E or on
a subtype of E.

We make use of the following semantics-preserving transformations on Flock specifications: 1)
Each retyping rule

retype E to F when: Cond

on an abstract class E can be replaced by rules

retype Ei to F when: Cond

on each concrete leaf subclass Ei of E , and likewise for migrate rules. 2) For each concrete leaf
source class E which is also a concrete leaf class in the target language, a default retyping rule rE

retype E to E when: Cond

is added, where Cond is the conjunction of not(Condi) for each condition Condi of an explicit
retyping rule for E . Cond is true if there are no explicit retyping rules for E . These transformations
assist in the translation to UML-RSDS and in identifying errors such as contradictory retyping
rules.

As with ATL, the representation of a Flock module m is formed of two phases in UML-RSDS:
in the first phase for each retyping rule

retype E to F when: Cond

a constraint

Cond ′ ⇒ OUT$F→exists(f | f .$id = $id)

on IN $E is added. Cond ′ substitutes self for original in Cond . Finally, for concrete source entity
types E which are also target language entity types, and are concrete entity types in the target
language, a constraint

Cond ′ ⇒ OUT$E→exists(e | e.$id = $id)

on IN $E is added, for the implicit retyping rule rE of E to itself.
In the second phase the migration and retyping rules are used together to define feature values

of the target objects. For each migration rule:

migrate E when: Cond1 ignoring ig

{ body }

on E , and each retyping rule

retype E to F when: Cond2

on E , a (potential) constraint on IN $E is:

f = OUT$F [$id] & Cond1 & Cond2 ⇒
f .att = att & ... & f .r = FRef [r .$id] & self .op(f)

is included in the phase, provided that Cond1 and Cond2 are consistent. The attribute att and
role r values of IN $E are copied to corresponding features of OUT$F for all same-named and
compatible-typed features which do not appear in ig ∪{$id}∪wr(body). FRef is the element type

46

of r for OUT$F . op is an operation of IN $E with activity the translation of body to a UML-RSDS
activity, and with parameter migrated : OUT$F . f plays the role of migrated in the Flock code,
self represents original . An expression exp.equivalent() is interpreted as ET [exp.$id] where ET is
the expected element type of the result. Likewise for exp.equivalents(). Additionally the implicit
retyping rE is combined with the migrate rule, if this rule exists.

If there is no migrate rule for E , then the second phase constraints for E are derived from the
retyping rules. They have the form:

f = OUT$F [$id] & Cond2 ⇒
f .att = att & ... & f .r = FRef [r .$id]

The attribute att and role r values of IN $E are copied to corresponding features of OUT$F for
all same-named and compatible-typed features, except for $id . FRef is the element type of r for
OUT$F . The default retyping is also given a phase 2 constraint if it exists.

As an example, the process migration example of [20] is translated as follows. The Flock
specification

delete Port when: not(original.isInput()) and not(original.isOutput())

delete Port when: original.isInput() and original.isOutput()

retype Port to InputPort when: original.isInput()

retype Port to OutputPort when: original.isOutput()

migrate Connector when: true

{ migrated.in := original.from;

migrated.out := original.to

}

is translated to the following constraints:

self.isInput() & not(self.isOutput()) => OUT$InputPort->exists(q | q.$id = self.$id)

self.isOutput() & not(self.isInput()) => OUT$OutputPort->exists(q | q.$id = self.$id)

on IN$Port, expressing the deletion and retyping rules (first phase),

OUT$Component->exists(c | c.$id = self.$id)

OUT$Connector->exists(c | c.$id = self.$id)

self.isInput() & not(self.isOutput()) &

q = OUT$InputPort[self.$id] => q.name = self.name

self.isOutput() & not(self.isInput()) &

q = OUT$OutputPort[self.$id] => q.name = self.name

on IN$Component, IN$Connector and IN$Port, expressing the implicit copy of Component and
Connector (first phase), and the second phase of the retyping of Port. The second phase of implicit
copy for Component and Connector, including the migration rule for Connector, is formed by the
constraints:

c = OUT$Component[self.$id] =>

c.name = self.name &

c.connections = OUT$Connector[self.connections.$id] &

c.ports = OUT$Port[self.ports.$id] &

c.subcomponents = OUT$Component[self.subcomponents.$id]

47

c = OUT$Connector[self.$id] =>

c.name = self.name &

c.in = OUT$InputPort[self.from.$id] &

c.out = OUT$OutputPort[self.to.$id]

on IN$Component and IN$Connector, respectively. These constraints can then be used to verify
invariants of the transformation, such as

OUT$InputPort→forAll(p | IN $Port→exists(q | q .$id = p.$id & q .isInput()))

and to generate a reverse transformation.
Consistency restrictions, such as that two distinct retyping rules must apply to disjoint sets of

objects, can also be expressed using this translation.

7 Refactoring

On the Transform menu a set of class diagram refactorings are provided to help in improving the
structure of a class diagram:

• Remove redundant inheritance: removes generalisations which link classes which already
have a generalisation relationship via an intermediate class.

• Introduce superclass: implements the ‘Extract superclass’ refactoring to identify common
parts of two or more classes.

• Pushdown abstract features: used to copy ‘virtual’ features of interfaces down to subclasses,
in order to implement a form of multiple inheritance.

From version 1.6, Move attribute and Move operation refactorings are also supported.
There are also inbuilt refinement transformations, mainly used for web application construction

(transforming a UML class diagram into a relational database schema):

• Express statemachine on class diagram: creates an enumerated type and conditional ex-
pressions within the owning entity of a statemachine, in order to express the statemachine
semantics.

• Introduce primary key: adds a String-valued identity attribute to the specified classes.

• Remove many-many associations: replaces a many-many association with a new class and
two many-one associations.

• Remove inheritance: replaces inheritance by an association.

• Aggregate subclasses: merges all subclasses of a given class into the class, in order to remove
inheritance.

• Remove association classes: replaces association classes by two many-one associations.

• Introduce foreign key: define a foreign key to represent a many-one association.

• Matching by backtracking: introduces a search algorithm for constructing a mapping.

48

8 Design patterns

Several design patterns are provided to assist developers:

• Singleton: constructs a singleton class, following the classic GoF pattern structure.

• Facade: identifies if a Facade class would improve the modularity of a given class diagram.

• Phased Construction: converts a transformation postcondition which has a nested forAll
clause within an exists or exists1 succedent into a pair of postconditions without the nested
clause, and using instead an internal trace association.

• Implicit Copy: looks for a total injective mapping from the source language entities and
features to the target language and defines a transformation which copies source data to
target data according to this mapping.

• Auxiliary Metamodel: constructs an auxiliary trace class and associations linking source
entity types to the trace class and linking the trace class to target entity types.

Other patterns are incorporated into the design generation process:

• Unique Instantiation: as described following Table 2, the update interpretation of E→exists(e |
e.id = val & P) where id is the principal unique/primary key of E checks if there is al-
ready an existing e : E with e.id = val before creating a new object. The design for
E→exists1(e | P) checks if there is an existing e : E satisfying P before creating a new
object.

• Object Indexing: indexing by unique/primary key is built-in: if entity type E has attribute
att : String as its principal primary key (identity attributes directly declared in E are
considered first, then those in direct superclasses, etc), then lookup by string values is
supported: E [s] denotes the unique e : E with e.att = s, if such an object exists. Lookup by
sets of string is also supported: E [st] is the set of E objects with att value in st . If there is
no identity attribute defined for E , but some string-valued attribute from E or a superclass
satisfies E→isUnique(att), then lookup by string value can also be used for the first most
local such att .

• Omit Negative Application Conditions (NACs): if type 2 or 3 (Section 6) constraints
Ante ⇒ Succ have that Ante and Succ are mutually inconsistent, then the design generator
will simplify the generated design by omitting a check for Succ if Ante is true. It will also
prompt the user to ask if this simplification should be applied. For example, any constraint
with the form

Ante ⇒ P & self→isDeleted()

can be optimised in this way, likewise for

x : E & Ante ⇒ P & x→isDeleted()

Note that the use of operation calls within constraints to define update functionality may
prevent correct implementation of type 2 or 3 constraints. The implementation of a con-
straint

G ⇒ Post & op(pars)

in such cases tests the NAC G & not(Post) before applying the constraint, meaning that
cases where G and Post both hold will not result in application of the constraint, even if
the effect of op(pars) has not been established. A partial solution to this problem is to use
Auxiliary Metamodel to keep an explicit record of those source elements which have been
already processed, and avoid re-application of the constraint to such elements.

49

• Replace fixed-point iteration by bounded iteration: Again, for type 2 or 3 constraints
Ante ⇒ Succ, which would normally be implemented by a fixed-point iteration, a sim-
pler and more efficient implementation by a bounded loop is possible if the effect of Succ
never produces new cases of objects satisfying Ante which did not exist at the start of the
constraint implementation. In some cases this can be automatically detected, e.g.:

Ante ⇒ self→isDeleted()

on entity E where there is no data-dependency of Ante upon E . The user is prompted to
confirm such optimisations.

Developers can enforce the use of bounded iteration by using expressions of the form E@pre,
e@pre instead of E , e in read expressions within the constraint. In particular, if there are two
mutually data-dependent postcondition constraints C1, C2 where C1 reads entity type E ,
and C2 creates instances of E , we can assert that the instances created by C2 are irrelevant to
C1 by using E@pre in C1, denoting the set of E objects created before C1 begins execution,
thus potentially removing the need for fixed-point iteration of the constraint group {C1,C2}.
However, use of @pre in this way can produce code which does not establish the constraint
(as written) as a postcondition, as discussed in Section 6 above.

• Factor out Duplicated Expressions: complex duplicated read-only expressions in constraints
can be factored out by defining a let variable in the constraint antecedent. Operations can
be used to factor out expressions and (by caching) avoid repeated evaluation of a single
expression.

9 State machines

State machines define the dynamic behaviour of objects and operations. They can be used to give
operation definitions (instead of pre and postconditions), and to express the life cycle of objects.

For example, a student could have a linear lifecycle of successive states Year1, Year2, Year3
and Graduated .

An editor for state machines is provided, Figure 13 shows the interface for this editor.

Figure 13: State machine editor

There are the following options:

File menu – options to save, load and print the state machine, and options to instantiate a class
state machine for a particular object, and to take the product of two state machines. State
machine data for model element m is saved and retrieved from the file output/m.dat .

Create menu – options to create states and transitions.

50

Edit menu – options to edit the state machine states and transitions and to resize the diagram.

View menu – options to view the lists of all states, transitions, events and attributes of the model.

Synthesis menu – options to analyse the state machine structure, to generate B and to carry out
slicing of the state machine.

On the class diagram editor, the Transformation menu option Express state machine in class
diagram adds variables and expressions to the class diagram to express the meaning of a state
machine for an entity.

When an operation state machine is specified, the option Check structure on the state machine
editor Synthesis menu should be applied before code is generated for the operation (on either the
class diagram or state machine editor tool). This option identifies terminal, loop and decision
states (displayed as green, red and blue, respectively), and warns the user if the state machine is
not in the form of structured code. This analysis is then used to map the state machine into Java,
C# or C++ code by the Generate code options on the class diagram Synthesis menu.

Currently, only the subset of UML state machine notation with basic states is supported by
UML-RSDS, although in principle larger subsets could be encoded [9].

10 Synthesis of EIS applications

An enterprise information system (EIS) typically consists of five tiers of components:

Client tier Web pages or other interfaces by which clients use the system. Consists of HTML
files.

Presentation tier Components which construct the GUI of the system and handle requests from
the client tier. Consists of Java servlets and JSPs.

Business tier Components which represent the business operations (services) offered by the sys-
tem, and the business entities of the system. Consists of Session Beans and Entity Beans,
and Value Objects.

Integration tier Components which serve as a mediating interface between the business and
resource tiers: abstracting the resource components. Consists of database interfaces and
web service interfaces.

Resource tier Contains databases and other resources used by the system.

Such systems can be defined using many different technologies and techniques. We use Java
technologies, and three alternative system styles:

• Servlet style: presentation tier is coded using only servlets and auxiliary classes to generate
web pages.

• JSP style: presentation tier is coded only using JSPs to handle web requests and to generate
web pages.

• J2EE style: Java Entity beans and Session beans are constructed to define the business tier
of an application, together with value objects and a database interface class.

In each case, the system specification is given as a class diagram and set of use cases defining
the user operations to be provided by the system. Use cases can be:

• create E: create an instance of entity E (setting its attribute values)

• delete E: delete an instance of E

• edit E: edit an instance of entity E (setting its attribute values)

51

• add E r: add an element to the role set r of an instance of E

• remove E r: remove an element from the role set r of an instance of E

• list E: list all instances of E

• searchBy E a: find instances of E with a given value for attribute a.

The use cases and class diagram elements map to EIS code components as follows (Table 18).

Element Servlet style JSP style J2EE style

Class Database table Session bean + Entity bean
E Value object as prev.
Attribute Table column as prev. as prev.

form field as prev. as prev.
Use case CommandPage.java (view) commands.html
op opPage.java (form generator) op.jsp (view + controller)

op.html (form) op.html (form)
opResultPage.java (view)
Dbi.java (data access object) Dbi.java as prev.

Table 18: Mapping of UML-RSDS to web code

More details and examples are given in [15].

11 Mapping to B

B is a formal language with powerful analysis capabilities for checking the correctness of specifi-
cations [8]. Several commercial and free tools exist for B:

• BToolkit

• Atelier B

• B4Free

The following restrictions on UML-RSDS specifications are necessary before they can be trans-
lated to B:

• Attributes of different classes (except for inherited attributes) must have different names.

• Update operations cannot have return values or be recursively defined.

• Feature, variable and class names should have more than one letter. Underscore cannot be
used in class, variable or feature names.

• Real values cannot be used, only integers, strings and booleans, and enumerated types. Some
B implementations only support natural numbers: non-negative integers.

The UML-RSDS type int corresponds to INT in B.
Two options for generating B are provided: (i) separate B machines for each root entity of the

class diagram; (ii) one B machine for the entire system.
The first can be used if there are not invocations in both directions between two entities

(in different inheritance hierarchies), and no bidirectional associations between such entities. In
addition, if no entity in one hierarchy contains code creating entity instances in another hierarchy.
Otherwise, in the case of such mutual dependencies, option (ii) must be used.

The following verification properties of a UML-RSDS transformation specification τ can be
checked using B:

52

1. Syntactic correctness: if a source model m of S satisfies all the assumptions Asm of τ , then
the transformation will produce valid target models n from m which satisfy the language
constraints ΓT of T .

2. Semantic preservation: if a predicate φ holds in m, then any target model n produced from
m satisfies an interpretation χ(φ) of the formula.

3. Semantic correctness: that a given implementation for τ satisfies its specification.

4. Confluence: that all result models n produced from a given source model m must be iso-
morphic.

5. Termination: that τ is guaranteed to terminate if applied to valid source models which
satisfy Asm.

Proof-based techniques for verifying transformation correctness properties have two main ad-
vantages: (i) they can prove the properties for all cases of a transformation, that is, for arbitrary
input models and for a range of different implementations; (ii) a record of the proof can be pro-
duced, and subjected to further checking, if certification is required. However, proof techniques
invariably involve substantial human expertise and resources, due to the interactive nature of the
most general forms of proof techniques, and the necessity to work both in the notation of the proof
tool and in the transformation notation.

We have selected B AMN as a suitable formalism for proof-based verification, B is a mature
formalism, with good tool support, which automates the majority of simple proof obligations. We
provide an automated mapping from transformation specifications into B, and this mapping is
designed to facilitate the comprehension of the B AMN proof obligations in terms of the transfor-
mation being verified.

The entity types and features of the languages involved in a transformation τ are mapped into
mathematical sets and functions in B. OCL expressions are systematically mapped into set-theory
expressions. Appendix G gives details of this mapping.

A B AMN specification consists of a linked collection of modules, termed machines. Each
machine encapsulates data and operations on that data. Each transformation is represented
in a single main B machine, together with an auxiliary SystemTypes machine containing type
definitions.

The mapping from UML-RSDS to B performs the following translations:

• Each source and target language (class diagram) L is represented by sets es for each entity
type E of the language, with es ⊆ objects, and maps f : es → Typ for each feature f
of E , together with B encodings of the constraints ΓL of L for unmodified L. In cases
where a language entity type or feature g is both read and written by the transformation, a
syntactically distinct copy g pre is used to represent the initial value of g at the start of the
transformation. A supertype F of entity type E has B invariant es ⊆ fs. Abstract entity
types E have a B invariant es = f 1s ∪ ... ∪ fls where the Fi are the direct subtypes of E .

For each concrete entity type E of a source language, there is an operation create E which
creates a new instance of E and adds this to es. For each data feature f of an entity type
E there is an operation setf (ex , fx) which sets f (ex) to fx .

• The assumptions Asm of the transformation can be included in the machine invariant (using
g pre in place of g for data which is written by the transformation). Asm is also included
in the preconditions of the source language operations create E and setf .

• Each use case postcondition rule is encoded as an operation with input parameters the names
of the non-modifiable objects which are read by rule, and with its effect derived from the
rule relation or from the behavior of an implementation of rule. The operation represents
transformation computation steps δi of the rule implementation.

53

• Orderings of the steps for particular implementations can be encoded by preconditions of the
operations, expressing that the effect of one or more other rule ′ has been already established
for all applicable elements.

• Invariant predicates Inv are added as B invariants, using g pre to express pre-state values
g@pre.

In contrast to the mapping to Z3 described in Section 12, the mapping to B explicitly represents the
computation steps of the transformation, and can therefore support verification that these maintain
Inv and decrease any variant, Q . For a separate-models transformation τ : S → T the machine
invariant expresses ΓS ∪Asm0∪ Inv . Asm0 are the conjuncts of Asm which are constraints on S
only. For an update-in-place transformation τ : S → S the invariant expresses ΓS∪Asm@pre∪Inv .
The machine represents the transformation at any state during its computation.

For transformations involving procedural code (ie., as the definition of activities of operations
invoked from use case postconditions), the translation to B needs to use imperative constructs such
as sequencing and loops in the B generalised substitution language. A REFINEMENT component
also needs to be used for the B representation of the transformation instead of a MACHINE, since
imperative constructs are not permitted in machines.

The procedural language used in UML-RSDS activities is very close to that used in B AMN
generalised substitutions, however, the interpretation of loop statements requires encoding of OCL-
style iteration over collections into the elementary WHILE loop construct of B. Table 19 shows
this encoding. unprocessed and i are new variables. e ′ represents e.

UML-RSDS statement Condition B AMN generalised substitution

for (v : e) do stat e set-valued VAR unprocessed
IN unprocessed := e’;
WHILE (unprocessed /= {}) DO
ANY v WHERE v : unprocessed THEN
unprocessed := unprocessed - { v };
stat’
END
INVARIANT unprocessed ⊆ e’
VARIANT card(unprocessed)
END END

for (v : e) do stat e sequence-valued VAR i
IN i := 1;
WHILE (i ≤ card(e’)) DO
VAR v IN v := e’(i); i := i + 1;
stat’ END
INVARIANT i ≤ card(e’) + 1
VARIANT card(e’) + 1 - i
END END

Table 19: Mapping from UML-RSDS loop statements to B AMN

The mapping to B is suitable to support the proof of syntactic correctness, semantic preserva-
tion and semantic correctness by using internal consistency proof in B, a more complex mapping
is used for the proof of confluence and termination, using refinement proof [11].

The general form of a B machine Mτ representing a separate-models transformation τ with
source language S and target language T is:

MACHINE Mt SEES SystemTypes

VARIABLES

/* variables for each entity type and feature of S */

/* variables for each entity type and feature of T */

INVARIANT

/* typing definitions for each entity type and feature of S and T */

GammaS &

54

Asm0 & Inv

INITIALISATION

/* var := {} for each variable */

OPERATIONS

/* creation operations for entity types of S, restricted by Asm */

/* update operations for features of S, restricted by Asm */

/* operations representing transformation steps */

END

SystemTypes defines the type Object OBJ of all objects, and any other type definitions required,
eg., of enumerated types.

The operations to create and update S elements are used to set up the source model data of the
transformation. Subsequently, the operations representing transformation steps are performed.

If Asm0 consists of universally quantified formulae ∀ s : Si · ψ, then the instantiated formulae
ψ[sx/s] are used as restrictions on operations creating sx : Si (or subclasses of Si). Likewise,
operation setf (sx , fx) modifying feature f of Si has a precondition ψ[sx/s, fx/s.f]. All these
operations will include the preconditions Asm1 from Asm which concern only the target model.

As an example, the transformation of Figure 12 can be defined by the following partial machine:

MACHINE Mt SEES SystemTypes

VARIABLES objects, as, x, bs, y

INVARIANT

objects <: Object_OBJ &

as <: objects & bs <: objects &

x : as --> INT & y : bs --> INT &

!b.(b : bs => #a.(a : as & x(a) > 0 & y(b) = x(a)*x(a)))

INITIALISATION

objects, as, x, bs, y := {}, {}, {}, {}, {}

The invariant expresses ΓS and the Inv properties of the transformation. #b.P is B syntax for
∃ b · P , !a.P is B syntax for ∀ a · P . & denotes conjunction, <: denotes ⊆ and −− > is → (the
total function type constructor). A universal set objects of existing objects is maintained, this is
a subset of the static type Object OBJ declared in SystemTypes.

Occurrences E@pre or f@pre in Inv or Post are interpreted by the additional variables es pre,
f pre which have the same typing as es and f . They are modified in parallel with es and f by
the source model creation and modification operations, and are unchanged by the operations for
transformation computation steps.

The operations representing computation steps are derived from the rule implementations δi
of the constraints Cn. This modelling approach facilitates verification using weakest precondition
calculation, compared to more abstract encodings. If Cn has the form

SCond ⇒ Succ

on context entity Si then the operation representing a computation step δi of Cn is:

delta_i(si) =

PRE si : sis & SCond & not(si.Succ) &

C1 & ... & Cn-1 & def(si.Succ)

THEN

stat’(si.Succ)

END

where stat ′(P) encodes the procedural interpretation stat(P) of P in B program-like statements,
AMN generalised substitutions. These have a similar syntax to the programming language de-
scribed in Appendix C, and use the same weakest-precondition semantics. B has an additional
statement form v := e1∥w := e2 of parallel assignment: the assignments are performed order-
independently, with the values of e1, e2 being simultaneously assigned to v , w . The ANY
WHERE THEN statement of B corresponds to a UML-RSDS creation statement.

55

If the implementation of τ defines a non-standard rule implementation of Cn, this implemen-
tation could be encoded in B in place of the above definition of delta i .

If τ ’s implementation requires that all constraints C1, ..., Cn−1 are established before Cn, this
ordering can be encoded by including C1, ..., Cn − 1 in the preconditions of delta n. not(Succ)
can be omitted if negative application conditions are not checked by the implementation of Cn.
For the mapping to B, def (Succ) includes checks that numeric expressions in Succ are within the
size bounds of the finite numeric types NAT and INT of B, and that objects ̸= Object OBJ prior
to any creation of a new object.

The computational model of a transformation τ expressed in Mτ therefore coincides with the
definition of transformation computation described in [12]: a computation of τ is a sequence
of transformation steps executed in an indeterminate order, constrained only by the need to
maintain Inv , and, if a specific implementation I is defined, to satisfy the ordering restrictions of
I ’s behaviour.

For the example of Figure 12, using a fixpoint implementation, the resulting completed B
machine has:

OPERATIONS

create_A(xx) =

PRE xx : INT & objects /= Object_OBJ & bs = {}

THEN

ANY ax WHERE ax : Object_OBJ - objects

THEN

as := as \/ { ax } || objects := objects \/ { ax } ||

x(ax) := xx

END

END;

setx(ax,xx) =

PRE ax : as & xx : INT & bs = {}

THEN

x(ax) := xx

END;

r1(ax) =

PRE ax : as & x(ax) > 0 & not(#b.(b : bs & y(b) = x(ax)*x(ax))) &

objects /= Object_OBJ & x(ax)*x(ax) : INT

THEN

ANY b WHERE b : Object_OBJ - objects

THEN

bs := bs \/ { b } || objects := objects \/ { b } ||

y(b) := x(ax)*x(ax)

END

END

END

r1 defines the transformation step of the postcondition constraint. The machine is generated
automatically by the UML-RSDS tools from the UML specification of the transformation1. UML-
RSDS encodes into B the semantics of all cases of updates to associations, including situations
with mutually inverse association ends.

Using these machines we can verify syntactic correctness and semantic preservation properties
of a model transformation, by means of internal consistency proof of the B machine representing
the transformation and its metamodels. Internal consistency of a B machine consists of the
following logical conditions:

• That the state space of the machine is non-empty: ∃ v .I where v is the tuple of variables of
the machine, and I its invariant.

1In practice, single-letter feature, variable and entity type names should be avoided, since these have a special
meaning in B AMN.

56

• That the initialisation establishes the invariant: [Init]I

• That each operation maintains the invariant:

Pre ∧ I ⇒ [Code]I

where Pre is the precondition of the operation, and Code its effect.

B machines implicitly satisfy the frame axiom for state changes: variables v which are not explicitly
updated by an operation are assumed not to be modified by the operation. This corresponds to
the assumption made in UML-RSDS that v is unmodifed by activity act if v ̸∈ wr(act).

Proof of verification properties can be carried out using B, as follows (for separate models
transformations):

1. Internal consistency proof of Mτ establishes that Inv is an invariant of the transformation.

2. By adding the axioms of ΓT to the INVARIANT clause, the validity of these during the
transformation and in the final state of the transformation can be proved by internal con-
sistency proof, establishing syntactic correctness.

3. By adding φ and χ(φ) to the INVARIANT of Mτ , semantic preservation of φ can be proved
by internal consistency proof. Creation and update operations to set up the source model
must be suitably restricted by φ.

4. At termination of the transformation, all the application conditions of the transformation
rules are false. The inference

(
∧
¬ (ACond)) ⇒ Post

can be encoded in the ASSERTIONS clause of Mτ and proved using the invariants ΓS ∪
Inv ∪Asm0.

Termination, confluence and semantic correctness proof needs to use suitable Q variants for
each constraint, considered below.

In order to prove that a postulated Q measure is actually a variant function for a constraint,
refinement proof in B can be carried out, with an abstraction of the transformation model machine
Mτ defined as M 0τ :

MACHINE M0t SEES SystemTypes

VARIABLES /* variables for source model data */, q

INVARIANT

/* typing of source model data */ &

q : NAT

INITIALISATION

es, q := {}, 0

OPERATIONS

/* creation and update operations for source

model: these set q arbitrarily in NAT */

delta() =

PRE q > 0

THEN

q :: 0..q-1

END

END

delta represents a transformation step of the constraint for which q is the postulated variant.
The operator q :: s assigns an unspecified element of s to q . Each constraint Ci may have a
corresponding variant qi , the operation delta i for abstracted transformation steps of Ci then has
the form:

57

delta_i() =

PRE qi > 0 & qk = 0 /* for k < i */

THEN

qi :: 0..qi-1 || qj :: NAT /* for j > i */

END

where the constraint implementations of C1, ..., Ci−1 are designed to terminate prior to any
execution of delta i and therefore their variants are assumed to be 0 in the precondition of delta i .

The original Mτ machine is then used to define a refinement of M 0τ , with the refinement
relation giving an explicit definition of the qi variants. Refinement proof then attempts to verify
that the explicit definition of each qi obeys the abstract specification, ie, that it is strictly decreased
by every execution of delta i .

Refinement obligations in B are [8]:

• The joint invariants InvA ∧ InvR of the abstract and refined machines are satisfiable together.

• The refined initialisation InitR establishes the invariants:

[InitR]¬ [InitA]¬ (InvA ∧ InvR)

• Each refined operation PRE PreR THEN CodeR END satisfies the pre-post relation of its
abstract version:

InvA ∧ InvR ∧ PreA ⇒
PreR ∧ [CodeR]¬ [CodeA]¬ (InvA ∧ InvR)

Refinement proof is usually manually intensive, with the majority of proof obligations requiring
interactive proof.

To verify confluence of a transformation, it is sufficient to show that there is a unique state
(up to structural isomorphism) where all the variants qi have qi = 0. This can be verified in the
refinement by adding an ASSERTIONS clause of the schematic form:

ASSERTIONS

q1 = 0 & ... & qn = 0 => tstate = f(sstate)

This clause expresses that the target model state tstate has specific values in terms of the source
model state sstate, when all the qi are zero.

The B tools will produce proof obligations for this assertion, and will act as a proof assistant in
structuring the proof and carrying out routine proof steps automatically. A further consequence of
the proof of the assertion is semantic correctness of the implementation: that the desired semantics
of target model elements relative to source model elements also holds at termination.

The above procedures can be used as a general process for proving Inv and Pres properties, and
for proving termination, semantic correctness and confluence, by means of suitable postulated Q
variant functions. The techniques can be generalised to any transformation implementation whose
transformation steps can be serialised, that is, each execution of the implementation is equivalent
to one in which the computation steps occur in a strict sequential order. This assumption is made
implicitly in the B model.

The size of the B formal model Mτ is linear in terms of the size of the model transformation
τ , however the complexity of the transformation rules has a considerable effect on the proof
effort required. Postcondition constraints using forAll quantifications nested within exists in their
succedents cannot be effectively verified, and the use of the conjunctive-implicative form pattern
[13] is necessary instead. Recursive update operations cannot be represented. B is not suitable for
establishing satisfiability properties asserting the existence of models of certain kinds, and tools
such as Z3, UMLtoCSP [2], Alloy [1] or USE [4] are more appropriate for these.

58

12 Mapping to Z3

An option to generate Z3 theories for a system is also available. This produces type definitions
and Z3 predicates for the class and use case constraints (but not for any operations). General
use cases should have disjoint write and read frames, ie., update-in-place transformations are not
supported.

Table 20 shows examples of the mapping of OCL expressions to Z3.

OCL expression/operator e Z3 expression/operator e ′

Integer Int
Boolean Bool
Real Real
Entity type E Sort E
Attribute att : Typ function att : E → Typ′

owned by E
Single-valued role function r : E → F
r to F owned
by E
Collection-valued role function r : E → List(F)
r to F owned
by E
forAll forall
exists Expressed by skolemisation
first head
prepend insert
includes memberE (for each entity type E)
Set{ } nil
Set{ x1, ..., xn } (insert x1’ (... (insert xn’ nil) ...))

Table 20: Mapping of UML and OCL to Z3

The most significant step in this translation is the expression of existential quantifiers by skolem
functions: in a formula

E→forAll(x | Cond ⇒ F→exists(y | Pred))

the existential quantifier is replaced by a new function fnew : E → F not occurring in any other
part of the OCL or Z3 theories, and the formula is then translated as:

(forall ((x E)) (⇒ Cond ′ Pred ′[fnew(x)/y]))

In general, an exists-quantifier in the scope of several forAll -quantifiers is replaced by a new
function depending on all the forAll -quantified types. This provides an explicit representation of
the transformation as a set of (possibly under-specified) functions from source entities to target
entities.

Sets and sequences are both modelled as Z3 lists. Operators for OCL select and collect are
not in-built in Z3 and need to be defined using auxiliary functions. In addition, operators to
check membership in a list and to obtain a list element by its index need to be added as auxiliary
functions. An alternative to using lists to model OCL collections would be to use bitsets [21],
however this involves a highly complex encoding and requires size bounds to be placed on entity
type extents and collection sizes.

For separate-models transformations, or update-in-place transformations where the read and
updated sets of entity types and features are disjoint, the mapping from UML-RSDS to Z3 performs
the following translations:

59

• Each source and target language L (or language part) is represented by sorts E for each
entity type E of the language, and maps of the form f : E → Typ for each owned feature f
of E , together with Z3 encodings of the constraints of ΓL for source languages L.

• The assumptions Asm0 on unmodified data are encoded and included.

• Each transformation postcondition rule of the form

E→forAll(x | SCond ⇒ F→exists(y | PCond))

is encoded as a function taurule : E → F and a predicate

∀ x : E · SCond ′ ⇒ PCond ′[taurule(x)/y]

• The invariant expressing the inverse of rule is encoded by a function sigmarule : F → E and
a predicate

∀ y : F · SCond ′[sigmarule(y)/x] and PCond ′[sigmarule(y)/x]

For separate-models transformations, the consistency of the resulting theory Γτ with individual
constraints φ ∈ ΓT can be checked by adding φ′ to the theory, counter-examples can be searched
for by instead adding ¬ φ′.

Syntactic correctness can be shown by adding the negation of
∧
ΓT for the target language T ,

and establishing that the resulting theory is unsatisfiable. Semantic preservation of φ can then be
shown by adding ΓT , φ and the negation of χ(φ) and showing unsatisfiability. Unlike FOL or B,
Z3 does not contain proof techniques for unbounded induction, and so may fail to establish true
inferences which could be proved within FOL or B. In addition it provides decision procedures for
only some of the decidable subsets of first order logic. There may therefore be situations where
Z3 may neither demonstrate counter-examples to a theory, nor establish its validity, and for these
cases analysis using proof in B or another theorem-prover will be necessary.

The mapping from UML and OCL to Z3 has been automated in the UML-RSDS tools.
As in first-order set theory, Z3 has no notion of undefined values, unlike in standard OCL.

Division in Z3 is a total function, but its value is unspecified for division by 0. A transformation
specifier should ensure that all expressions within a transformation invariant, assumption or rule
relation Cn have a defined value, ie., def (Cn) is true, whenever the predicate may be evaluated.
When reasoning about transformations using Z3, the results are only meaningful for transformation
implementations which satisfy this condition, ie., where no expression evaluation to OCL invalid
ever occurs. In Z3 it is also assumed that all sorts are non-empty, ie., that the transformation is
not applied to trivial models.

There is no inbuilt Z3 representation for strings: these can be modelled as an unspecified sort
or as lists of integers. There is no direct representation for subtyping.

An example of mapping OCL to Z3 is our transformation example from Figure 12. The
corresponding Z3 theory is:

(declare-sort A)

(declare-sort B)

(declare-fun x (A) Int)

(declare-fun y (B) Int)

This expresses the theory of the class diagram. For the transformation postcondition a new skolem
function is introduced, and an axiom for the skolemised postcondition:

(declare-fun tau1 (A) B)

(assert (forall ((a A))

(=> (> (x a) 0) (= (y (tau1 a)) (* (x a) (x a))))))

Note that this is not within a decidable subset of first-order logic, since it involves non-linear
arithmetic.

The invariant is expressed by:

60

(declare-fun sigma1 (B) A)

(assert (forall ((b B))

(and (> (x (sigma1 b)) 0) (= (y b) (* (x (sigma1 b)) (x (sigma1 b)))))))

This combined theory expresses the state at termination of the transformation, and also defines
precisely how the terminal state of the system should relate to the starting state, by relating the
modified entity types and features {B , y} to the unchanged values of {A, x}.

Consistency analysis shows that this combined theory is indeed consistent. If we add the
additional constraint

(not (forall ((b B)) (> (y b) 2)))

a counter-example to B→forAll(b | b.y > 2) is found, where b is derived from a1 : A with
a1.x = 1.

An alternative approach for representing UML and OCL in Z3 is given in Appendix H.

13 Mapping to SMV

We utilise the SMV/nuSMV language and model checker [17] to analyse temporal properties of
systems. We select SMV because it is an established industrial-strength tool which supports linear
temporal logic (LTL). SMV models systems in modules, which may contain variables ranging over
finite domains such as subranges a..b of natural numbers and enumerated sets. The initial values
of variables are set by initialisation statements init(v) := e. A next(v) := e statement identifies
how the value of variable v changes in execution steps of the module. In the UML to SMV encoding
objects are modelled by integer object identities, attributes and associations are represented as
variables, and classes are represented by modules parameterised by the object identity values (so
that separate copies of the variables exist for each object of the class). A specific numeric upper
bound must be given for the number of possible objects of each class. The bound is specified
in the class creation dialog (Figure 2). A UML-RSDS system is modelled in SMV by modelling
system execution steps as module execution steps.

The structure of an SMV specification of a class diagram is as follows:

MODULE main

VAR

C : Controller;

MEntity1 : Entity(C,1);

.... object instances

MODULE Controller

VAR

Entityid : 1..n;

event : { createEntity, killEntity, event1, ..., eventm };

MODULE Entity(C, id)

VAR

alive : boolean;

... attributes ...

DEFINE

TcreateEntity := C.event = createEntity & C.Entityid = id;

TkillEntity := C.event = killEntity & C.Entityid = id;

Tevent1 := C.event = event1 & C.Entityid = id & alive = TRUE;

...

ASSIGN

init(alive) := FALSE;

next(alive) :=

case

61

TcreateEntity : TRUE;

TkillEntity : FALSE;

TRUE : alive;

esac;

Each class Entity is represented in a separate module, and each instance is listed as a module
instance in the main module. System events are listed in the Controller, and the effect of these
events on specific objects are defined in the module specific to the class of that object. The value
of the Controller variable event in each execution step identifies which event occurs, and the value
of the appropriate Eid variable indicates which object of class E the event occurs on.

Associations r : A→ B of 1-multiplicity are represented as SMV module attributes

r : 1..bcard

where bcard is the maximum permitted number of objects of B . Events to set and unset this role
are included. 0 represents the null object and is used as the lower bound for 0..1-multiplicity roles.
For *-multiplicity unordered roles r : A→ Set(B), an array representation is used instead:

r : array 1..bcard of 0..1

with the presence/absence of a B element with identity value i being indicated by r [i] = 1 or
r [i] = 0. Operations to add and remove elements are provided. The Controller Aid and Bid
variables identify which links are being added/removed.

For transformations, this mapping needs to be extended as follows. Source entities are modelled
by SMV modules with frozen attributes: all source model data has values fixed at the initial time
point. If a transformation rule r iterates over s : Si and has the form

Ante ⇒ Tj→exists(t | TCond & P)

then the SMVmodule for Tj has a parameter of module type Si , and r is an event of the Controller ,
and Si id is a Controller variable.

The Tj module has a transition defined as

Tr := C.event = r & C.Siid = id

identifying that the event for r takes place on the Si object with id equal to the current Tj object.
The updates to features f of t defined in TCond and P are then specified by next(f) statements,
using Tr as a condition, and next(alive) is set to TRUE under condition Tr .

The restrictions of SMV/nuSMV imply that only attributes and expressions of the following
kinds can be represented in SMV:

• Booleans and boolean operations.

• Integers and operations on integers within a bounded range.

• Strings represented as elements of an enumerated type. String operations cannot be repre-
sented.

14 Interactions

Interactions can be created as UML sequence diagrams, these give examples of system behaviour
in terms of object communications.

The editor for interactions is shown in Figure 14.
The main options are:

File menu – options to save, load and print models.

Create menu – options to create lifelines, messages, states, execution instances, and annotations.

62

Figure 14: Interactions editor

Edit menu – options to edit an interaction.

View menu – options to view lifelines, messages, etc.

Synthesis menu – options to generate the formal real-time logic meaning of the diagram.

15 Interoperation with Eclipse

Eclipse is the leading MDD toolset and provides many tools for creating and manipulating models,
including the ATL transformation language.

Metamodels and models can be imported and exported from Eclipse in XML text format, and
these can also be imported and exported from UML-RSDS, providing a means to exchange data
between Eclipse and UML-RSDS.

15.1 Exchanging metamodels

Metamodels are exported from Eclipse in XML ECORE format, consisting of header lines:

<?xml version="1.0" encoding="UTF-8"?>

<ecore:EPackage xmi:version="2.0" ... name="MM" ... >

where most entries are standard, but others refer to the name MM of the metamodel (the file is
called MM.ecore).

Each XML element within the ecore:EPackage element then describes either a class, eg:

<eClassifiers xsi:type="ecore:EClass" name="A">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" eType=... />

<eStructuralFeatures xsi:type="ecore:EAttribute" name="x" eType=... />

</eClassifiers>

or an enumerated type.
The associations between classes are also listed in the class description, as eStructuralFeatures

of xsi:type ecore:EReference. Metamodels of the above format can be read in to UML-RSDS using
the Import from ECore option on the File menu.

In the opposite direction, such files can also be exported from UML-RSDS by the Save ECore
option on the Save menu. The file and metamodel are called mm by default. The eClassifier
descriptors correspond to the entity types and enumerated types in the UML-RSDS model, except
that an additional model eClassifier is introduced, with many-valued reference links es to each
concrete entity type E . This class represents the model as a single object.

63

15.2 Exchanging models

There are two main formats of XML Model Interchange (XMI) data files for models. The first
consists of a list of model element descriptors implicitly numbered (for each concrete class) from
0 upwards. These elements are then referred to elsewhere in the file by this number. Eg., the first
object of class A could be described by the line

<as name="a1" x="5"/>

This is then referred to elsewhere in the file as //@as.0, eg., if each B had a list ar of A objects,
a B element descriptor could be:

<bs name="b1" y="7" ar="//@as.0 //@as.1"/>

An alternative format is to allocate a unique xmi:id value to each element, and use this to
cross-reference elements. In this format, the above A and B objects could be, for example:

<as xmi:id="$11" name="a1" x="5"/>

<bs xmi:id="$6" name="b1" y="7" ar="$11 $9"/>

Either format can be used as input in a file xsi .txt for the Convert option on the UML-RSDS
File menu: the output will be produced in model data format in model .txt . The above XML would
produce the data:

as0 : A

...

bs0 : B

...

as0.name = "a1"

as0.x = 5

...

bs0 : B

...

bs0.name = "b1"

bs0.y = 7

as0 : bs0.ar

as1 : bs0.ar

The metamodel for the language concerned must be loaded before the conversion is applied.
There are two convert options: the first applies an XML parser to the entire xsi.txt file, it is

therefore suitable for smaller files (eg., up to 100Kb), where the source formatting is not strict.
The second only parses one line at a time and is appropriate for larger files where each element
descriptor strictly occupies one line only.

Models are exported from UML-RSDS data format to XMI format by the generated GUI
executable of a system: a model in file in.txt can be read into memory by the loadModel option,
the saveModel option then outputs the model to xsi.txt in XMI format (the first of the two formats
described in this section).

16 Extensions and importing libraries

The UML-RSDS language can be extended with new binary and unary→ operators, and external
libraries and classes may be declared for use by a UML-RSDS specification. For example, to use
Java regular expressions, the java.util.regex.* library package would be declared as a new
import, and the classes Pattern and Matcher of this package declared as external classes, along
with any methods that we wish to use from them, eg., the static matches(p : String, s :

String) : boolean operation of Pattern.

64

These extension/import mechanisms are usually language-specific, and there is no support for
formal analysis of system elements that depend upon extension/imported components. They are
a convenience to support rapid code generation of systems.

New plugins can be defined and used from the UML-RSDS tools, in order to support new code
generators and the use of DSLs.

16.1 External classes and operations

Each external class used by the system should be added to the class diagram, with the stereotype
external . Any operations required should also be added to their class. Note that currently, array
input and output parameters are not permitted, and only the types supported by UML-RSDS
(boolean, int, long, double, String, enumerations and class types) can be used for parameters of
such operations.

In expressions, declared operations of external entities may be invoked as with any other
operation, eg., result = Pattern.matches(".a.", "bar"). Their form in generated Java code
is the same as in the UML-RSDS expression.

Instances of external entity types may be created locally, for example, a statement

p : Pattern := Pattern.compile(".a.")

defines a local variable p holding a Pattern object.
For Java code generation, provided that the external entity type E has a zero-argument con-

structor, objects of the entity may be created in constraints by using an E→exists(e | ...) construct.
For example:

Date->exists(d | d.getTime()->display())

The generated code initialises d with the Date() constructor.
For Java code generation, existing methods of the Java String class may be called without

declaration, eg., str .replaceAll(p, s) can be used as an expression for a Java system.
External systems/applications M used by a UML-RSDS system are defined as classes with

the stereotype externalApp. This signifies that M has been developed as a UML-RSDS ap-
plication with system name M . For Java implementations, the code of M ’s classes should be
in a subdirectory with this name. Calls M .op(p) within the client system are interpreted as
M .Controller .inst().op(p) in the complete generated code. The operations of M that are used in
the client system should be declared in the M class in the client system class diagram.

16.2 Adding an import

The “Add import” option allows the user to enter an additional library package. The exact text
required should be entered, eg.:

import java.util.regex.*;

for a Java import.

16.3 Adding a new operator

New unary and binary → operators can be added. The dialog asks for the name of the operator,
including the arrow, and the result type. For an operator application 1→op(2) the default text
in Java and C# is 1′.op(2′), where i ′ is the translation of i . If an alternative is needed, this
should be specified in the following text areas. For example, an operator 1→time() to print out
the time after a string message could be given the Java template text

(_1 + (new Date()).getTime())

65

16.4 Libraries

The following libraries are defined as metamodel files in uml2web/libraries:

• mathlibmm.txt – mathematical functions such as gcd, factorial, etc

• statlibmm.txt – statistical functions

• seqmatlibmm.txt – sequence and matrix functions

• finlibmm.txt – financial functions

• stringlibmm.txt – string functions

• gamm.txt – the framework of a genetic algorithm.

ocl.h defines OCL operators in ANSI C, whilst ocl.py defines them in Python. These are used by
the implementations of UML-RSDS applications in these languages.

The excel.mm file in the /output directory defines Excel functions which can be used in spread-
sheet specifications mm.csv to be loaded by the Load CSV option.

In a mm.txt file the instruction

Import:

f.txt

loads in the metamodel file in f .txt before resuming the loading of mm.txt.

16.5 Plugins and DSLs

Developers may add plugins f.jar by placing them in a /f subdirectory of the UML-RSDS tool
directory. They then appear as an option on the Extensions menu.

To create a new plugin from a UML-RSDS specification, set the name of the application (File
menu), generate the design and code, which will be saved in the name directory. The Run option
will compile the code and build name.jar in the name directory, and then execute the jar file.

To define a code generator for a new programming language, use the structure of uml2Camm.txt
and uml2Cbmm.txt (for a case where a model of the target language needs to be built) or of
uml2pymm.txt (for model to code mappings). You will need to construct an OCL library in your
target language (as in ocl.h and ocl.py). The code generator uses design data file output by the
“save as design” option of UML-RSDS, which produces a file output/model.txt.

More generally, UML-RSDS can be used to define domain-specific languages (DSLs) and sup-
porting tools in a similar manner: the abstract syntax of a DSL is specified as a UML class
diagram (such as Figure 18 as an abstract syntax for pseudocode statements), the concrete
text syntax is given by text lines of the three forms object : Entity , object .feature = value and
object1 : object2.feature. This is also the serialisation syntax of the DSL. Plugins can then operate
on files of such text to perform analysis, to generate other representations of DSL models (such as
graphical syntax, or semantic representations) and to generate executable code or configuration
files, etc. Using UML-RSDS, such plugins can be themselves written as transformations using the
DSL metamodel as their source language.

17 The software development process using UML-RSDS

UML-RSDS supports model-driven development and the OMGModel-driven Architecture (MDA).
In terms of MDA, UML-RSDS permits the definition of PSMs for the Java/C#/C++ family of
languages. These PSMs can then be automatically mapped to code in any of these languages
(Figure 15).

The model structure corresponds closely with the code structure (each model class becomes a
programming language class, each model feature becomes a programming language feature, etc),

66

Figure 15: UML-RSDS process

but a high level of abstraction may be used to specify functionality, as logical postconditions of
operations and use cases. Automatically generated code carries out aspects such as the mainte-
nance of inverse associations and correct deletion of objects, in addition to evaluating a large part
of the OCL library expression language.

The structure of the generated system is shown in Figure 16. The Controller .java class contains
the operations corresponding to the use cases of the system, and invokes operations of classes
representing the entity types of the system. The elaborate structure of this class is necessary to
ensure that class invariants are globally enforced.

Figure 16: UML-RSDS code architecture

Maintenance of the system should be carried out by modifying the PSM and then regenerating
the code: ideally, developers should never need to even look at the generated source code, let alone
edit it.

Platform-independent models could also be defined, these would consist entirely of a list of high-
level operations (use cases) without any data model, but with text descriptions and parameters
for the use cases. These PIMs define the interface of the system when it is viewed as a component
within a larger system, ie., the PIM defines the services that the system provides as a black box.
If system name M is specified for the component system, then a PIM interface for M can be
defined as an externalApp class in the client system class diagram, with declarations and outline
definitions of its supplied services given as operations.

67

18 Current state of the tools

The tools are available for download as a jar file: umlrsds.jar, as part of the umlrsds.zip download.
The jar can be executed from the command line as

java -jar umlrsds.jar

A writable subdirectory output needs to exist in the directory where umlrsds.jar is executed. This
is already provided in the zip file, along with libraries and the C and Python code generators.

18.1 Planned extensions

Some new features which are being introduced, and are present in prototype versions in the latest
version of the tools, are:

• obj .oclAsType(T) and obj .oclIsKindOf (T) for entity types T .

• Import of ecore files defining metamodels, in XML format. This will permit transfer of
Eclipse metamodels to UML-RSDS.

• Export of metamodels in USE [4] tool format.

• Export/import and editing of metamodels in KM3 format.

• Generation of Z3 theories [22] for systems.

• Generation of ANSI C and Python code for systems.

• Import of external libraries (currently Date and XMLParser) for use within a system: new
libraries can also be defined by creating classes with the stereotype external . Libraries could
include database interfaces or user interface components.

• Definition of systems in packages, by using the ‘Set name’ option on the main File menu.
The name is used as the package name.

• Extension of select , collect and reject to work on collections of collections and collections of
primitive values.

• A binary version of any , ie.: s→any(P).

• Inheritance of constraints/postconditions in use cases.

• Conditional expressions if E then E1 else E2 endif .

• oclIsUndefined()

long integers have been available from version 1.5.

18.2 Release version history

From version 1.4 we support forAll , exists, exists1 quantification over Integer .subrange(st , en)
sequences, eg:

result = Integer .subrange(1, 10)→exists(x | x ∗ x > 50)

and Set(E) for entities E , for both query and update uses, eg:

(s→subcollections())→forAll(x | x→display())

exists quantification is supported for query uses.

68

From version 1.6, select , collect and reject can be used with collections of numbers or strings,
or collections of collections, in addition to collections of class instances. Some translations (eg., to
C or Z3) do not support such collections.

We also support ordered forAll quantification over entities, this may be specified when a
constraint is created, and indicates that the executable implementation of the quantification should
iterate over the collection elements in ascending order of the specified expression on these elements
(this feature is for type 1, 2 and 3 postcondition constraints for general use cases only).

Version 1.6 introduces a translation to Java 7, including the use of generic types and operations.
This means that an OCL type such as Sequence(int) is represented by ArrayList < Integer > in
the Java code.

A requirements editor using SysML notation is available from version 1.6, as shown in Figure
17.

Figure 17: Requirements editor

In version 1.6, a text editor for use cases has been added (option Edit use case on the Edit
menu), which allows all the postconditions of a use case to edited at once, to be checked before
saving, and to support copy/paste operations.

Version 1.7 introduces a translation to ANSI C, and input/output of model data from CSV
files. Multi-valued attributes are also supported.

Version 1.8 provides improved support for mapping ATL, ETL and QVT-R to UML-RSDS,
and various usability improvements.

Version 1.9 introduces a Python code generator and a tool for synthesising transformations
from metamodels (Appendix J). Support for QVT-R has been extended. Prototype support for a
Map collection type is included.

Projected for Version 2.0 are Android app synthesis, model-based testing facilities, an improved
KM3 editor, and metamodel synthesis from models.

18.3 Known bugs

Current deficiencies with the tools are:

69

• Initial values of attributes are not stored in mm.txt, nor are constraint names.

• Running ‘Generate Design’ multiple times on the same specification can produce erroneous
designs with duplicated variables.

• Inheritance of use cases has no effect – it should permit superposition of use cases, with
postconditions of the parent use case inherited by its sub-use cases unless these have a
same-named postcondition, which is used instead.

• select/reject/collect cannot be applied to collections of primitive types or strings, only to
collections of objects.

• Let variables and other variables introduced in the assumption of a use case postcondition
should have distinct names from those in other postconditions of the same use case, eg.:

a = Set{1,2,3} => a->sum()->display()

b = Set{1,2,3} => b->prd()->display()

a could not be used also in the second constraint.

• Let variables cannot be defined to be of nested collection types, eg:

mm = Sequence{Sequence{1, 2},Sequence{2, 6}}

• Active classes can only be implemented using Java, there is no C#, C++, C or Python
implementation.

Nested select/reject/collect operators should not use naked features of external classes in the
inner operators: in an expression of the form

col1->select(rs = col2->select(f = g))

where col1 has element type E1, rs is a feature of E1, col2 has element type E2, and f is a feature
of E2, then g should be a feature (or an expression using only features) of E1 or E2 and not of
some external class E3.

Translation to B of select, collect, reject, unionAll, intersectAll and related operators is only
supported when these operate over sets, not sequences. SelectMaximals, selectMinimals, sort and
sortedBy are not supported for B translation.

The C and Python translations have the following limitations:

1. select , reject , collect , forAll , exists, exists1 should always use an iterator variable. In query
mode, the predicate of forAll , exists, exists1 can only refer to data of that iterator variable.

2. The cached operation stereotype is not yet supported.

References

[1] K. Anastasakis, B. Bordbar, J. Kuster, Analysis of Model Transformations via Alloy, Modevva 2007.

[2] J. Cabot, R. Clariso, D. Riera, UMLtoCSP: a tool for the verification of UML/OCL models using
constraint programming, Automated Software Engineering ’07, pp. 547–548, ACM Press, 2007.

[3] M. Davis, V. Lo, Infectious Defaults, Quantitative Finance, vol. 1, no. 4, 2001, pp. 382–387.

[4] M. Gogolla, J. Bohling, M. Richters, Validating UML and OCL models in USE by automatic snapshot
generation, Software and Systems Modeling, vol. 4, no. 4, pp. 386–398, 2005.

[5] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, ATL: A model transformation tool, Sci. Comput.
Program. 72(1-2) (2008) 31–39.

70

[6] S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya, P. Van Gorp, Evaluation of model
transformation approaches for model refactoring, Science of Computer Programming, 2013,
http://dx.doi.org/10.1016/j.scico.2013.07.013.

[7] D. Kolovos, R. Paige, F. Polack, The Epsilon Transformation Language, in ICMT 2008, LNCS Vol.
5063, pp. 46–60, Springer-Verlag, 2008.

[8] K. Lano, The B Language and Method, Springer-Verlag, 1996.

[9] K. Lano, D. Clark, Direct semantics of extended state machines, Journal of Object Technology, vol.
6, no. 9, 2007.

[10] K. Lano, S. Kolahdouz-Rahimi, I. Poernomo, Comparative evaluation of model transformation speci-
fication approaches, International Journal of Software Informatics, Vol. 6, Issue 2, 2012.

[11] K. Lano, S. Kolahdouz-Rahimi, T. Clark, Comparing verification techniques for model transforma-
tions, Modevva workshop, MODELS 2012.

[12] K. Lano, S. Kolahdouz-Rahimi, Constraint-based specification of model transformations, Journal of
Systems and Software, February 2013.

[13] K. Lano, S. Kolahdouz-Rahimi, Optimising Model-transformations using Design Patterns, MODEL-
SWARD 2013.

[14] K. Lano, S. Kolahdouz-Rahimi, S. Yassipour-Tehrani, Analysis of hybrid model transformation lan-
guage specifications, FSEN 2015.

[15] K. Lano, Agile model-based development using UML-RSDS, CRC Press, 2016.

[16] K. Matsuda et al., Bidirectionalisation transformation based on automatic derivation of view comple-
ment functions, ICFP ’07, 2007.

[17] NuSMV, http://nusmv.fbk.eu, 2015.

[18] OMG, MOF 2.0 Query/View/Transformation Specification v1.1, 2011.

[19] OMG, Object Constraint Language 2.4 Specification, 2014.

[20] L. Rose, D. Kolovos, R. Paige, F. Polack, S. Poulding, Epsilon Flock: A model migration language,
SoSyM vol. 13, no. 2, 2014.

[21] M. Soeken, R. Wille, R. Drechsler, Encoding OCL data types for SAT-based verification of UML/OCL
models, University of Bremen, 2012.

[22] Z3 Theorem Prover, http://research.microsoft.com/en-us/um/redmond/projects/z3/, 2012.

A Reserved words

The UML-RSDS reserved words are the same as for OCL, in addition operator names introduced in

UML-RSDS, such as “selectMaximals” should not be used as identifiers. The “a”, “#”, “!”, “?” and “-”
characters cannot be used within identifiers, nor can other arithmetic, logical or punctuation symbols.

On the other hand, the “$” symbol can be used as a package name prefix for identifiers: “m1$Entity”
for example. “.” is used to separate objects and feature names.

Identifiers should avoid the use of “ ” if possible, since this is used by the tools for generated identifiers.
Currently the tools do not accept this as a valid symbol in user identifiers. Lowercase versions e of entity
names E are used as operation variables ex in place of self , and as sets es of all instances of E in Controller ,
so features with names ex and es should also be avoided.

If a system will be used for synthesis of Java, then Java keywords and library class names should
be avoided in identifiers and names of use cases: “Class”, “Package”, “class”, “final”, etc. Likewise for
synthesis of other programming languages.

For synthesis of B, keywords of B, such as “MACHINE”, should be avoided. In SMV, “next” and
“self” are keywords. All identifiers for B translation should contain two or more characters. $ is not valid
as a symbol within identifiers in B.

71

B Expression syntax of UML-RSDS

UML-RSDS uses both classical set theory expressions and OCL. It only uses sets and sequences, and not
bags or ordered sets, unlike OCL. It provides most of the OCL 2.4 standard library operators for sets
and sequences. Symmetric binary operators such as ∪ and ∩ can be written in the classical style, rather
than as operators on collections. Likewise for the binary logical operators. There is no null or undefined
element. Maps are supported in prototype form (Version 1.9).

< expression > ::= < bracketed expression > | < equality expression > |
< logical expression > | < factor expression >

< bracketed expression > ::= “(” < expression > “)”
< logical expression > ::= < expression > < logical op > < expression >
< equality expression > ::= < factor expression > < equality op > < factor expression >
< factor expression > ::= < basic expression > < factor op > < factor expression > |

< factor2 expression >
< factor2 expression > ::= < expression >“->”< unary operator >“()” |

< expression >“->exists(” < identifier > “|” < expression > “)” |
< expression >“->exists1(” < identifier > “|” < expression > “)” |
< expression >“->forAll(” < identifier > “|” < expression > “)” |
< expression >“->exists(” < expression > “)” |
< expression >“->exists1(” < expression > “)” |
< expression >“->forAll(” < expression > “)” |
< expression >“->select(” < expression > “)” |
< expression >“->select(” < identifier > “|” < expression > “)” |
< expression >“->reject(” < expression > “)” |
< expression >“->reject(” < identifier > “|” < expression > “)” |
< expression >“->collect(” < expression > “)” |
< expression >“->collect(” < identifier > “|” < expression > “)” |
< expression >“->unionAll(” < expression > “)” |
< expression >“->intersectAll(” < expression > “)” |
< expression >“->”< binary operator >“(” < expression > “)” |
< basic expression >

< basic expression > ::= < set expression > | < sequence expression > |
< call expression > | < array expression > |
< identifier > | < value >

< set expression > ::= “Set{” < fe sequence > “}”
< sequence expression > ::= “Sequence{” < fe sequence > “}”
< call expression > ::= < identifier > “(” < fe sequence > “)”
< array expression > ::= < identifier > “[” < factor expression > “]” |

< identifier > “[” < factor expression > “].” < identifier >

A < unary operator > is one of: any , size, isDeleted , display , min, max , sum, prd , flatten, sort ,
asSet , asSequence, sqrt , sqr , last , first , front , tail , closure, characters, subcollections, reverse, isEmpty ,
notEmpty , toUpperCase, toLowerCase, isInteger , isReal , toInteger , toReal . The mathematical functions
ceil , round , floor , exp, etc, can also be written as unary expressions, which is convenient if their argument
is a function call or a complex bracketed expression.

Other unary and binary operators may be used in a factor2 expression, as described in Tables 3,
4, 5, 6 and 7. Other binary operators are includes, including , excludes, excluding , union, intersection,
selectMaximals, selectMinimals, includesAll , excludesAll , append , prepend , count , hasPrefix , hasSuffix ,
indexOf , sortedBy , at . Ternary operators are expressed as operation calls, eg., s.subrange(i , j), s.insertAt(i , x).

A logical op is one of =>, &, or. An equality op is one of =, / =, >, <, <: (subset-or-equal), <=, >=, :,

/ : (not-in). A factor op is one of +, /, ∗, −, \/ (union), a (concatenation of sequences), /\ (intersection).
An fe sequence is a comma-separated sequence of factor expressions. Identifiers can contain “.” (to denote
reference to a feature of an object), but not as the first or last character, and occurrences must be separated
by at least one other character. Identifiers can also contain “$”.

Valid function symbols are the numeric functions such as sqrt , floor , abs, and OCL operators such as
oclIsKindOf , oclAsType, isReal , isInteger , toReal , toInteger .

72

C Activity syntax of UML-RSDS

The following concrete syntax is used for a subset of UML structured activities:

< statement > ::= < loop statement > | < creation statement > |
< conditional statement > | < sequence statement > |
< basic statement >

< loop statement > ::= “while” < expression > “do” < statement > |
“for” < expression > “do” < statement >

< conditional statement > ::= “if” < expression > “then” < statement >
“else” < basic statement >

< sequence statement > ::= < statement > “;” < statement >
< creation statement > ::= “var” < identifier > “:” < identifier >
< basic statement > ::= < basic expression > “:=” < expression > | “skip” |

< identifier > “:” < identifier > “:=” < expression > |
“execute” < expression > |
“return” < expression > | “(” < statement > “)” |
< call expression >

Spaces are necessary around all the keywords and operators such as ; and :. Brackets should be avoided
unless necessary. For statement tests have the form variable : collection to iterate over all elements in
collection (in the order of the collection, if it is ordered). The variable is introduced by this test. The
syntax corresponds to the metamodel of Figure 18.

Figure 18: UML-RSDS activity metamodel

Example statements are:

var x : int ;

x := 0 ;

for i : Integer.subrange(1,10)

do

(x := x + i ;

if x mod 2 = 0

then

displayint(x)

else skip

) ;

return x

73

D Mappings from UML-RSDS to Java, C#, C, C++ and
Python

The following tables show how UML and OCL elements are interpreted via the different implementation
mappings.

UML/OCL Java 4 Java 6 C# C++

String String String string string
Boolean boolean boolean bool bool
Entity type A A A A A*
Sequence(A) Vector ArrayList ArrayList vector< A∗ > ∗
Set(A) Vector HashSet ArrayList set< A∗ > ∗
col->size() col.size() col.size() col.Count col->size()
sq->at(i) sq.get(i-1) sq.get(i-1) sq[i-1] (*sq)[i-1]

st->includes(x) st.contains(x) st.contains(x) st.Contains(x) st->find(x) !=
Set st st->end()
sq->includes(x) sq.contains(x) sq.contains(x) sq.Contains(x) find(sq->begin(), sq->end(), x)
Sequence sq != sq->end()

st1 = st2 Set. st1.equals(st2) SystemTypes. *st1 == *st2
Sets st1, st2 equalsSet(st1,st2) equalsSet(st1,st2)
sq1 = sq2 sq1.equals(sq2) sq1.equals(sq2) sq1.Equals(sq2) *sq1 == *sq2
Sequences sq1, sq2

Table 21: Mappings from UML/OCL to Java, C#, C++

In Java 7, Sequence(A) is represented by ArrayList < A >, and Set(A) by HashSet < A >. In C, enti-
ties are mapped to structs, and String to char*. The details of the mapping are in
https://nms.kcl.ac.uk/kevin.lano/uml2C.pdf.

OCL and (UML-RSDS &) is interpreted by && in each language, and or by ∥. The int type of
UML-RSDS is interpreted by int in each language, likewise for long , double.

UML/OCL Java 7 Python C

String String str char*
Boolean boolean bool unsigned char
Entity type A A A A*
Sequence(A) ArrayList< A > list A**
Set(A) HashSet< A > set A**

col->size() col.size() len(col) length(col)
sq->at(i) sq.get(i-1) sq[i-1] (et) at((void**) sq, i)
sq element type et

st->includes(x) st.contains(x) x in st isIn((void*) x, (void**) st)
Set st
sq->includes(x) sq.contains(x) x in sq isIn((void*) x, (void**) sq)
Sequence sq

st1 = st2 st1.equals(st2) st1 == st2 equalsSet((void**) st1, (void**) st2)
Sets st1, st2
sq1 = sq2 sq1.equals(sq2) sq1 == sq2 equalsSequence((void**) sq1, (void**) sq2)
Sequences sq1, sq2

Table 22: Mappings from UML/OCL to Java 7, C and Python

With regard to code efficiency, it is more efficient to specify the addition of element x to a collection
col in a postcondition by

x : col

rather than by the semantically equivalent

col = col@pre→including(x)

74

because the second version makes a copy of col . Likewise with the operators / :, <: and / <:. Direct
assignment ax .br = brx of the value of a many-valued association end br can be inefficient, particularly
if the opposite end is named, due to the code needed to maintain the consistency of the two association
ends. Incremental changes, using :, <:, etc, to br are more efficient.

To speed up loading of models, automatic consistency checking and enforcement of model data can be
omitted by commenting out the Controller operation checkCompleteness from loadModel . If this is done,
the model should already be correct and consistent (inverse ends of bidirectional associations set correctly,
and identity attributes should be set to different values for different objects).

C++ seems ill-suited to the complex manipulation of associations that occurs in some refactoring
problems. The Java 6 implementation seems to be usually the fastest of the Java implementation choices,
but does not guarantee any ordering for set-valued association ends, which may make it difficult to validate
results. In addition, the Java 6 and Java 7 implementations use advanced features of Java which may
not be available on some systems. Table 23 illustrates the comparative efficiency of the implementation
versions on three large test cases: 1) composition of two associations br : A → Set(B) and cr : B → Set(C)
into a relation xr : A → Set(C), with 50 A objects, 2500 B and 125000 C ’s (a refinement transformation);
2) A Petri-Net to Statecharts transformation (migration and refactoring); 3) Class diagram restructuring,
with two test cases, one of size 5500, another of size 50,000 (refactoring).

Test Java 4 Java 6 C# C++

Composition 245s 671ms 122s 117s
(127,550 elements)
PN2SC 290ms 94ms 198ms 6s
(8000 elements)
(40,000 elements) 3.8s 1.6s 5s 161s
CD restructuring 87s 2.3s 142s 13s
(5500 elements)
CD restructuring 1063s 66s 1781s –
(50000 elements)

Table 23: Efficiency comparisons

Table 24 shows the results of implementing a complex numerical computation (CDO) [3] in the three
language versions. The generated code was considerably more efficient than hand-written C++.

Version Execution time for first Execution time for first
20 P(S = s) calls 50 P(S = s) calls

Java 4 32ms 93ms
C# 10ms 20ms
C++ 62ms 100ms

Table 24: Execution times for CDO versions

E Read and write frames, definedness and determinacy

Table 25 (an updated version of the corresponding table of [12]) gives some cases of the definitions of these
frames. var(P) is the set of all features and entity type names used in P , likewise for var∗(P).

e2.r→excludes(e1) for single-valued r is treated as e2→excludesAll(e2→select(r = e1)), and e2.r→excludesAll(e1)
for single-valued r is treated as e2→excludesAll(e2→select(r : e1)), likewise for : and / :. e1.f→first() =
e2 has the same read and write frames as e1.f→last() = e2.

In computing wr(P) we also take account of the features and entity types which depend upon the
explicitly updated features and entity types of Cn, such as inverse association ends.

If there is a constraint φ in the class diagram which implicitly defines a feature g in terms of feature f ,
ie: f ∈ rd(φ) and g ∈ wr(φ), then g depends on f . In particular, if an association end role2 has a named
opposite end role1, then role1 depends on role2 and vice-versa.

75

P rd(P) wr(P) rd∗(P) wr∗(P)

Basic expression e Set of features {} Set of pairs (obj , f) {}
without quantifiers, and entity type of objects and
logical operators or names used features, obj .f ,
=, :, E [], in P : var(P) in P , plus
→includes, entity type
→includesAll , names in P :
→excludesAll , var∗(P)
→excludes,
→isDeleted

e1 : e2.r var(e1) ∪ var(e2) {r} var∗(e1) ∪ var∗(e2) {(e2, r)}
e2.r→includes(e1)
r many-valued
e1, e2 single-valued

e2.r→excludes(e1) var(e1) ∪ var(e2) {r} var∗(e1) ∪ var∗(e2) {(e2, r)}
e1 / : e2.r
r many-valued
e1, e2 single-valued

e1.f = e2 var(e1) ∪ var(e2) {f } var∗(e1) ∪ var∗(e2) {(e1, f)}
e1 single-valued

e1.f [i] = e2 var(e1) ∪ var(e2) {f } var∗(e1) ∪ var∗(e2) {(e1, f)}
e1 single-valued, ∪ var(i) ∪ var∗(i)
f sequence-valued

e1.f→last() = e2 var(e1) ∪ var(e2) {f } var∗(e1) ∪ var∗(e2) {(e1, f)}
e1.f→first() = e2
e1 single-valued
f sequence-valued

e2.r→includesAll(e1) var(e1) ∪ var(e2) {r} var∗(e1) ∪ var∗(e2) {(e2, r)}
e1 <: e2.r
r , e1 many-valued
e2 single-valued

e2.r→excludesAll(e1) var(e1) ∪ var(e2) {r} var∗(e1) ∪ var∗(e2) {(e2, r)}
r , e1 many-valued
e2 single-valued

E [e1] var(e1) ∪ {E} {} var∗(e1) ∪ {E} {}
E→exists(x | Q) rd(Q) wr(Q) ∪ {E} ∪ rd∗(Q) wr∗(Q) ∪ {E} ∪
(E concrete entity type) all superclasses of E all superclasses of E

E→exists1(x | Q) rd(Q) wr(Q) ∪ {E} ∪ rd∗(Q) wr∗(Q) ∪ {E} ∪
(E concrete entity type) all superclasses of E all superclasses of E

E→forAll(x | Q) rd(Q) ∪ {E} wr(Q) rd∗(Q) ∪ {E} wr∗(Q)

x→isDeleted() var(x) {E} ∪ all var∗(x) {E} ∪ all
x of element type superclasses of E ∪ superclasses of E ∪
entity type E E -valued roles r E -valued roles r

C ⇒ Q var(C) ∪ rd(Q) wr(Q) var∗(C) ∪ rd∗(Q) wr∗(Q)

Q & R rd(Q) ∪ rd(R) wr(Q) ∪ wr(R) rd∗(Q) ∪ rd∗(R) wr∗(Q) ∪ wr∗(R)

Table 25: Definition of read and write frames

76

Creating an instance x of a concrete entity type E also adds x to each supertype F of E , and so these
supertypes are also included in the write frames of E→exists(x | Q) and E→exists1(x | Q) in the above
table.

Deleting an instance x of entity type E by x→isDeleted() may affect any supertype of E and any
association end owned by E or its supertypes, and any association end incident with E or with any
supertype of E . Additionally, if entity types E and F are related by an association which is a composition
at the E end, or by an association with a mandatory multiplicity at the E end, i.e., a multiplicity with
lower bound 1 or more, then deletion of E instances will affect F and its features and supertypes and
incident associations, recursively.

In a constraint succedent, a read of a variable written by a preceding conjunct is not included in the
read frame:

P => r = e & f = r

Here, r counts as written but not read.
The read frame of an operation invocation e.op(pars) is the read frame of e and of the pars corre-

sponding to the input parameters of op together with the read frame of the postcondition Postop of op,
excluding the formal parameters v of op. Its write frame is that of the actual parameters corresponding
to the outputs of op, and wr(Postop) − v . wr(G) of a set G of constraints is the union of the constraint
write frames, likewise for rd(G), wr∗(G), rd∗(G).

For each postcondition, precondition and invariant constraint Cn of a transformation, the definedness
condition def (Cn) is a necessary assumption which should hold before the constraint is applied or evalu-
ated, in order that its evaluation is well-defined. Postcondition constraints should normally also satisfy the
condition of determinacy. Examples of the clauses for the definedness function def : Exp(L) → Exp(L)
are given in Table 26. It is also required that numeric expressions have values within the range of their
computational numeric type.

Definedness of an operation call requires proof of termination of the call. Definedness of or , & requires
definedness of both arguments because different implementation/evaluation strategies could be used in
different formalisms or programming languages: it cannot be assumed that short-cut evaluation will be
used (in ATL, for example, strict evaluation of logical operators is used [5]). Only in the case of implication
is the left hand side used as a ‘guard’ to ensure the definedness of the succedent. We treat A ⇒ B
equivalently to OCL if A then B else true endif .

Examples of the clauses for the determinacy function det : Exp(L) → Exp(L) are given in Table 27.
Specifiers should also ensure that calls of update operations do not occur in mapping conditions or in

other contexts where pure values are expected.

F Confluence checks

The tools use syntactic checking to check the confluence of type 0 or type 1 constraints (other forms of
constraint need proof using variants, as described in Section 11). A constraint Cn on class E , of the form

Ante ⇒ Succ

is checked as follows:

1. self of type E is added to a set iterated , as is each implicitly universally quantified variable c : C
of class type occurring in Ante. Each distinct combination of bindings to these variables is iterated
over exactly once by a bounded-loop implementation of the constraint. (Type 2 constraints may
reapply the constraint to particular combinations more than once, and type 3 constraints may also
introduce new combinations to be iterated over). Type 0 constraints do not have a context class or
implicit self variable.

2. A list created of the existentially-quantified variables t in T→exists(t | pred) formulae in Succ is
maintained. These are the objects which are newly created in each iteration (not looked-up and
modified). t is only added to created if:

(a) T is a concrete entity type and not of pre-form,

(b) either T has no unique/primary key, or its key is assigned by a top-level equation t .key = c.ckey
to the primary key of the only element c of iterated .

These conditions ensure that t is genuinely new.

77

Constraint expression e Definedness condition def(e)

e.f def (e) & E .allInstances()→includes(e)
Data feature application where E is the declared classifier of e
Operation call e.op(p) def (e) & E .allInstances()→includes(e) &

def (p) & def (e.Postop(p)) where E is the declared
classifier of e, Postop the postcondition of op

a/b b ̸= 0 & def (a) & def (b)
s→at(ind) ind > 0 & ind ≤ s→size() &
sequence, string s def (s) & def (ind)
E [v] E .id→includes(v) & def (v)
entity type E with
identity attribute id ,
v single-valued
s→last() s→size() > 0 & def (s)
s→first()
s→max ()
s→min()
s→any(P) s→exists(P) & def (s) & def (P)
v .sqrt v ≥ 0 & def (v)
v .log , v .log10 v > 0 & def (v)
v .asin, v .acos (v .abs ≤ 1) & def (v)
v .pow(x) (v < 0 ⇒ x : int) & (v = 0 ⇒ x > 0) & def (v) & def (x)
A & B def (A) & def (B)
A or B def (A) & def (B)
A ⇒ B def (A) & (A ⇒ def (B))
E→exists(x | A) def (E) & E→forAll(x | def (A))
E→forAll(x | A)

Table 26: Definedness conditions for expressions

Constraint expression e Determinacy condition det(e)

s→any(P) s→select(P)→size() = 1 & det(s) & det(P)
s→asSequence() s→size() ≤ 1 & det(s)

for set-valued s
Case-conjunction Conjunction of
(E1 ⇒ P1) & ... & not(Ei & Ej)
(En ⇒ Pn) for i ̸= j , and each

(det(Ei) & (Ei ⇒ det(Pi)))
A & B det(A) & det(B)
A ⇒ B det(A) & (A ⇒ det(B))
E→exists(x | A) det(E) & E→forAll(x | det(A))
E→exists1(x | A)
E→forAll(x | A) det(E) & E→forAll(x | det(A))

Additionally, order-independence of
A for x : E .

Table 27: Determinacy conditions for expressions

78

3. Assignments t .f = e for a direct feature f of t ∈ created are confluent, if rd(e) is disjoint from
wr(Cn), as are assignments self .f = val or c.f = val for a value val (with no variables, including
self) and c ∈ iterated . Assignments c.f = c.g for direct features of c ∈ iterated are also confluent.

4. Assignments Tj [sId].g = e are confluent if sId is the primary key of the only iterated entity type
Sj , and if there is a preceding confluent constraint which maps Sj to Tj (so that there is a 1-to-0..1
relation between these entity types based on the primary key values).

5. A formula t : e.r is confluent if t ∈ created , and r is an unordered role. e : t .r and e <: t .r
are confluent if t ∈ created and r is unordered, or if e is an iterated variable which has an ordered
iteration range (not an entity type). rd(e) must also be disjoint from wr(Cn) in both cases.

6. e1→includes(e2) is treated as for e2 : e1, and e1→includesAll(e2) is treated as for e2 <: e1.

7. In the case of bidirectional associations, the explicit update to one end, and the corresponding
implicit update to the other end must both be confluent.

8. A conjunction e1 & e2 is confluent if e1 and e2 are.

9. e1 ⇒ e2 is confluent if e2 is.

10. T→exists(t | pred) is confluent if pred is confluent under the addition of t to created , if it is eligible
to be added.

11. T→forAll(t | pred) is confluent if pred is confluent under the addition of t to iterated .

12. e→display() is confluent if there is at most one variable in e, from iterated , and with an ordered
iteration range.

These rules ensure that data written on previous iterations of Cn cannot affect the execution of the current
application of Cn. Set-valued collections, such as the set E .allInstances of objects of a class E , should not
be used directly to produce a sequence-valued collection, because the order of the latter will be arbitrary.
The sorting operators can instead be used to make the order determinate.

As an example, the classic UML to RDB transformation is confluent if written as:

UMLClass::

Table->exists(t | t.name = name &

attributes->forAll(a |

Column->exists(c | c.name = a.name & c : t.columns & c.typename = a.type.name)))

If name is a primary key for UMLClass and Table, but not for Column, and attributes and columns are
unordered, then t and c are added to created , and all updates are confluent.

G OCL expression semantics

This section defines the mathematical interpretation of OCL in first-order logic and set theory, and serves
as the primary definition of the semantics of our restricted version of OCL (without null or invalid
elements). The data types and operators of B AMN will be used, with some adaptions for the types.

The interpretation of types is shown in Table 28.

OCL type e Semantics e ′ in B AMN
int INT (32-bit signed integers)
long LONG (64-bit signed integers)
double Appropriate representation, eg., IEEE 754 double-precision floating-point
String seq(INT)
class E domain F OBJ of references

Table 28: Semantic mapping for types

For primitive literal expressions e – numbers, strings, Booleans, and elements of enumerations, the
semantic denotation e ′ of e directly corresponds to e (Table 29). Although B only directly represents
integers, computational real numbers can be represented as rational numbers or by pairs of mantissas and
exponents.

79

OCL Term e Semantics e ′ in B AMN
number n n
true TRUE
false FALSE
String “t” Sequence denoted “t”

consisting of characters of t in
left to right order.

val from enumeration T Representation of T :: val

Table 29: Semantic mapping for primitive literals

If v and w are two distinct enumeration literals (of the same or different enumerations) then their
semantic denotations satisfy v ′ ̸= w ′. If v and w are syntactically the same, but belong to two distinct
enumerations, then v ′ ̸= w ′. Otherwise v ′ = w ′.

An entity type E is represented by its current extent, the set es of existing objects of type E . These
range over a set E OBJ of unspecified atomic object references, for root classes E . For subclasses F of
E , the axiom fs ⊆ es holds.

Attributes att : T owned by entity type E are represented as total functions att E : es → T ′.
We will consider two kinds of collections (sets and sequences), and restrict these to consist only of

elements of a single type, as in [19]. This type can either be a numeric type, the Boolean type, the string
type, a particular enumeration, or a particular class. Apart from elements of subclasses of a common
superclass, mixtures of elements of different types are not allowed. Ordered sets can be considered as a
subtype iseq(T) of the sequence type seq(T).

Collection literal expressions have a direct interpretation: a set literal Set{e1, ..., en} is interpreted
by the mathematical set {e ′

1, ..., e
′
n}. This has type F(T) where T is the semantic representation of the

common type of the elements of the set. A sequence literal Sequence{e1, ..., en} is interpreted by the
mathematical sequence s of length n, which has s(1) = e ′

1, ..., s(n) = e ′
n . This is also written in B as

[e ′
1, ..., e

′
n]. The typing of s is a sequence type seq(T), ie., 1..n → T where T is the semantic representation

of the common type of the elements.
One-multiplicity (single-valued) association ends r owned by entity E , and of type F are represented

as total functions r E : es → fs.
Many-valued association ends r owned by entity E and of element type F are represented as r E :

es → F(fs) if unordered, and as r E : es → seq(fs) if ordered. Multiplicity bounds on r can be expressed
in terms of card(r E(ex)) for ex ∈ es. Axioms expressing the mutual inverse properties of opposite
association ends can also be expressed.

Navigation expressions are formalised following the rules of Table 30.

OCL Term e1 OCL Term e2 Condition Semantics of e1.e2

obj f Feature f of object obj f ′(obj ′)
objs f 1-valued feature f of set objs f ′[objs ′]
objsq f 1-valued feature f of sequence objsq objsq ′; f ′

objs r set objs, set-valued r union(r ′[objs ′])
objs r set objs, sequence-valued r ran(union(r ′[objs ′]))
objsq r sequence objsq , set-valued r union(r ′[ran(objsq ′)])
objsq r sequence objsq , sequence-valued r conc(objsq ′; r ′)

Table 30: Semantic mapping for navigation expressions

Numeric operators such as *, +, /, - are represented as corresponding function symbols of arity 2 on
INT. The definitions of [19] are used, likewise for abs, floor , >, <, <=, >=, div and mod . The logical
operators are interpreted by the corresponding semantic operators: & by ∧, or by ∨, not by ¬ and ⇒ by
⇒.

size, = and + (concat) are defined on strings as in [19]. Equality of strings means that they have the
same characters in the same order (as in sequence equality). The Boolean operators are defined according
to the usual 2-valued truth tables on BOOL.

On collections the operators includes, excludes, includesAll , excludesAll and size are given the usual
definitions of membership, non-membership, subset, disjointness and cardinality. Table 31 shows some

80

examples of interpretations of collection operators.

OCL Term e Condition Semantics e ′

s→size() set or sequence s cardinality card(s ′)
s→includes(x) set s x ′ ∈ s ′

s→excludes(x) set s x ′ ̸∈ s ′

s→includes(x) sequence s x ′ ∈ ran(s ′)
s→excludes(x) sequence s x ′ ̸∈ ran(s ′)
s→asSet() s set s ′

s→asSet() s sequence ran(s ′)
s→includesAll(t) sets s and t t ′ ⊆ s ′

s→includesAll(t) sequences s and t ran(t ′) ⊆ ran(s ′)
s→excludesAll(t) sets s and t s ′ ∩ t ′ = {}
s→excludesAll(t) sequences s and t ran(s ′) ∩ ran(t ′) = {}
s→sum() set s sum of elements of s ′

s→sum() sequence s, card(s ′) = n s ′(1) + ...+ s ′(n)

Table 31: Semantic mapping for collection operations

Properties such as

s→includes(x) ≡ s→asSet()→includes(x)

follow directly from this semantics. Notice that →includes and →excludes can be applied on both sets
and sequences – sequences are mapped to sets before the operators are evaluated.

The operators union and intersection are defined in terms of their mathematical counterparts (Table
32). union on sequences is defined to be the same as concatenation, as in [19]. Again, we can give a

OCL Term e Condition Semantics e ′

s→union(t) s and t sets s ′ ∪ t ′

s→union(t) s and t sequences s ′ a t ′

s→intersection(t) s and t sets s ′ ∩ t ′

s→intersection(t) s and t sequences contract({i 7→ x | (i 7→ x) ∈ s ′ ∧ x ∈ ran(t ′)})
s→excluding(t) s a set s ′ − {t ′}
s→including(t) s a set s ′ ∪ {t ′}

Table 32: Semantic mapping for collection construction operations

semantics for operators applied to mixes of sets and sequences by converting where necessary.
Sequence-specific operations are defined in Table 33. including for a sequence is defined as append .

OCL Term e Condition Semantics e ′

s = t s and t sequences s ′ = t ′ as maps
s→first() non-empty sequence s s ′(1)
s→last() non-empty sequence s s ′(card(s ′))
s→front() non-empty sequence or string s subsequence [s ′(1), ..., s ′(card(s ′)− 1)] of s ′

s→tail() non-empty sequence or string s subsequence [s ′(2), ..., s ′(card(s ′))] of s ′

s→sort() sequence s reordering of s ′ such that elements
are in non-descending < order

s→reverse() sequence s, n = card(s ′) {i 7→ s ′(n − i + 1) | i ∈ dom(s ′)}
s→append(x) sequence s s ′ a [x ′]

s→prepend(x) sequence s [x ′]a s ′

s→subSequence(i , j) sequence s subsequence [s ′(i), ..., s ′(j)] of s ′

Table 33: Semantic mapping for sequence operations

s→excluding(x) for sequence s is defined as s→select(self ̸= x).
Select expressions evaluate to sets or sequences depending on the collection they operate over (Table

34). Their first argument must denote a finite set or sequence. In the clauses for select , x is a new variable,
not occurring in P ′.

81

OCL Term e Condition Semantics e ′

objs→select(P) set objs {x | x ∈ objs ′ ∧ x .P ′}
objs→select(P) sequence objs contract({i 7→ x | (i 7→ x) ∈ objs ′ ∧ x .P ′})
objs→collect(e) set objs bag {x .e ′ | x ∈ objs ′} as a sequence
objs→collect(e) sequence objs {i 7→ objs ′(i).e ′ | i ∈ dom(objs ′)}
s→unionAll(e) s, e set-valued

∪
{x .e ′ | x ∈ s ′}

s→unionAll(e) s, e sequence-valued conc({i 7→ x .e ′ | (i 7→ x) ∈ s ′})
s→intersectAll(e) s, e set-valued

∩
{x .e ′ | x ∈ s ′}

s→intersectAll(e) s, e sequence-valued
∩
{ran(x .e ′) | (i 7→ x) ∈ s ′}

s→flatten() s set-valued
∪
{x | x ∈ s ′}

s→flatten() s sequence-valued conc(s ′)

Table 34: Semantic mapping for select expressions

contract(m) turns a map m : 1..n 7→ T into a sequence sq by removing gaps in the index set,
maintaining the same order of elements. For example contract({2 7→ a, 3 7→ b, 7 7→ c}) is [a, b, c].

The notation a.P denotes P with a prefixing each feature of the class of a which has no prefix in P ,
or has self prefix. For example a.(att > 10) is att(a) > 10. a.self is a.

UML-RSDS activities are semantically interpreted as B AMN generalised substitutions.

H Alternative Z3 mapping

The mapping from UML and OCL to Z3 described in Section 12 becomes complex for representing sets
and set operators. An alternative is to represent sets as arrays, as in the mapping to SMV. A *-valued
association end br : Set(B) can be modelled in Z3 as a B-indexed array of Bool elements:

(define-sort Set (T) (Array T Bool))

(declare-fun br (A) (Set B))

Using this interpretation, the mapping of UML-RSDS OCL expressions into Z3 is given by Table 35. The

OCL e Z3 interpretation e’
bx : ax.br (select (br ax’) bx’) = true
bs1 ∩ bs2 ((map and) bs1’ bs2’)
bs1 ∪ bs2 ((map or) bs1’ bs2’)
bs1 − bs2 ((map and) bs1’ ((map not) bs2’))
Set{} ((as const (Set B)) false)
bs->including(bx) (store bs’ bx’ true)
bs->excluding(bx) (store bs’ bx’ false)

Table 35: Mapping to Z3 using Arrays

advantage of this mapping is that operators such as →select and →reject can be directly defined. For
example, bs→select(bx | P) can be expressed by defining a Bool-valued function

(define-fun pf ((bx B)) Bool P’)

where P ′ is the interpretation of P , and the select expression is then ((map and) bs’ (as-array pf)).
A collect expression bs→collect(bx | e) where e has values in type T can be expressed by defining a

Bool-valued function

(define-fun collect_i ((tx T)) Bool

(exists ((bx B))

(and (= (select bs bx) true) (= e tx))))

and the array of this is then (as-array collect i). However, the mapping does not model sequences.

82

I Format of mm.txt file

This file holds the data of a UML-RSDS system. For classes, the format is:

Entity:

name x y

superclass * stereotype1 ...

att1 type1 3 isfinal isidentity isstatic att2 type2 3 isfinal isidentity isstatic ...

where the name and type of each attribute are listed, together with booleans true/false indicating if it
is final, an identity or static. The number ‘3’ indicates an internal (ordinary) attribute, as opposed to a
sensor (1) or actuator (5). Superclass is the name of the superclass if this exists, or null if the class is a
root class.

For associations it is:

Association:

entity1 entity2 mult1 startx starty endx endy mult2 role2 role1

waypoints

The code for * multiplicity is 0, the code for 0..1 multiplicity is -1, the code for 1 multiplicity is 1.
Waypoints (if any) are printed as pairs xcoord ycoord.

For generalisations there is the representation:

Generalisation:

superclass subclass startx starty endx endy

waypoints

For operations, the format is:

Operation:

name

entityname

resulttype

parameter1 type1 parameter2 type2 ...

stereotypes

precondition

postcondition

The stereotypes can include query, abstract, cached, static, etc.
For general use cases the format is:

GeneralUseCase:

name p1 t1 ... pn tn

ext1 ... extm

inc1 ... incq

att1 at1 ... attr atr

where p1 : t1, ..., pn : tn are the parameters and parameter types of the use case, ext1 to extm the names
of extension use cases, and inc1 to incq the names of included use cases. Attribute names and types are
listed in the last line.

For constraints the format is:

Constraint:

cond0

cond1

succedent

ownerEntity ownerUsecase

ordered

In this representation, cond0 is a first conjunct of the antecedent, and cond1 is the remainder of the
antecedent. The boolean ordered indicates if the constraint should be iterated over the ownerEntity in a
particular order. Cond0 is null if not present, cond1 has default value true. The ownerEntity is null if the
constraint is of type 0, without a particular entity context.

83

J Transformation synthesis from metamodels

On the Synthesis menu, a set of options are provided to synthesise transformations from pairs MM1 and
MM2 of source and target metamodels. The metamodels should be defined using UML-RSDS syntax in
text files (eg., mm1.txt and mm2.txt) in the output directory. Source entities should have the stereotype
source, target entities should have stereotype target . An overall metamodel file mm.txt can import both
of these:

Import:

mm1.txt

Import:

mm2.txt

Source classes and target classes must have different names. Classes which are neither source or target
are considered shared between the metamodels.

Load this model using Recent as usual, and select one of the transformation synthesis menu items.
These are:

Measure Definition

Name syntactic Classes have names
similarity (NSS) with low string edit distances

Name semantic Class names are synonymous terms
similarity (NMS) or in the same/linked term

families according to a thesaurus

Data structure Classes possess similar data in their owned,
similarity (DSS) inherited or composed features

Graph structural Class neighbourhoods in the 2 metamodels
similarity (GSS) have similar graph structure metrics

Graph edit Class reachability graphs in the 2 metamodels
similarity (GES) have low graph edit distance

Semantic context Classes play similar semantic roles
similarity (SCS) in the 2 metamodels.

In each case, the system tries to infer a correspondence m of source classes to target classes. For
medium/large metamodels, start with NSS or NMS to infer plausible matchings based on names, then
add the matchings you wish to enforce to mm.txt via the lines

EntityMapping:

Src |-> Trg

More computationally intensive matching approaches, such as DSS and SCS can then be used to infer
other matchings based on these.

Following automated matching of classes, source and target features are also matched. The process is
interactive, with the developer asked to confirm proposed matchings if there are choices.

The end result is a set of high-level transformation rules, and transformation code in QVT-R, QVT-O,
UML-RSDS and ATL. Two files are produced in output : forward .txt , which holds the code for the source
to target direction, and reverse.txt , holding the target to source code.

84

