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Motivation: basic features of quantum physics

physical states described by vector space V'

observables described by linear operators on V'

time evolution of ¥ € V described by linear map Uy,

in quantum mechanics (= ‘1-dimensional quantum field theory'):

i%—‘f —HU (t) = U; ¥(0) Uy = e !

Ui = U o Uy

— ldea: axiomatise key properties of path integral

(U:0) (2) = / dy Ky (=, ) U (y) = / dy / Ay Ky, (2. 0) Ko (1, 9) T (y)

= /dy/da;l cooday, Ky, (2, 20) Kty —ty, oy (@, 1) - Ky (21, 9) Y(y)

z(t)==2
z /dy/ Dz e 5 w(y)
z(0)=y






In the 1940s Feynman wrote about his wonderful path integral, a
new means of quantifying things, and worked on it in a startlin-
gly mathematical way — imagine something like the Eiffel Tower,
hanging in the air with no foundation, from a mathematical point
of view. So it exists and works just right, but standing on nothing
we know of. This situation continues to this very day.

Yuri Manin
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Motivation: group representations

Let G be a group. A G-representation is a functor
BG -2 Vecty,
x — p(x) =V
End(x) =G > g +— p(g) € End(V)

(Functoriality means p(e) = idy and p(gh) = p(g) o p(h) for all g,h € G.)
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Topological quantum field theory
A 2-dimensional TQFT is a symmetric monoidal functor
Bordsy i> Vecty
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Topological quantum field theory
A 2-dimensional TQFT is a symmetric monoidal functor

Bords 2, Vecty
st — C

& — (,LL: CrC— C) (associative)

@ — (<—, —> CC — ﬂ{) (nondegenerate, compatible with 1)

Theorem. {2d TQFTs} = {commutative Frobenius algebras}

Examples.
- C =kG and ( h> = 0,451 for finite abelian group G
- C - (D[x]_, . 3x1W 8on ) from residue theory)

LW/
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Defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor
Z: Bord$eH (D) — Vecty,

depending on defect data D consisting of:
— sets D;, whose elements decorate j-strata of bordisms
— rules how strata are allowed to meet:

B8 o

a € Ds
X e Dy

X

. a i
objects: v morphisms:
B
Z

Davydov/Kong/Runkel 2011
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Examples of 2d defect TQFTs

Trivial defect TQFT Ztiv:
Dy = {k}
Dy = {finite—dimensional k-vector spaces}

Dy = {Iinear maps}

. Vi o
‘Ztmv(CDE ) d:fvl®®vm
)%

of J0N def
Zt“v( ﬂ&;‘\ ) = (evaluate 0- und 1-strata as string diagrams in vecty)

B-twisted sigma models:
complex manifolds and holomorphic vector bundles

Landau-Ginzburg models:
isolated singularities and homological algebra (more soon....)
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State sum models

Input: A-separable symmetric Frobenius k-algebra (A, u, A)

(1) Choose oriented triangulation t for every bordism X in Bord,
(2) Decorate Poincaré-dual graph with (k, A, u, A):

A Al x Ja
k k k k k 2 k
A u
Al « Na A

(3) Obtain X244 in Bord{(D') and define Z(X) = Z%v(24)

Theorem. Construction yields TQFT Z%: Bordy — Vecty.

Proof sketch: Defining properties of (A, ui, A) encode invariance under
Pachner moves — independent of choice of triangulation:

2-2
— (—)

A= A
Ao Y

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006




Input: A-separable symmetric Frobenius k-algebra (A, u, A)

(1) Choose oriented triangulation t for every bordism ¥ in Bord,
(2) Decorate Poincaré-dual graph with (k, A, i, A):

A Al k JA
k * k k k k = k
A H
Al k A A
(3) Obtain X244 in Bord{®(D'") and define Z$(X) = Z"v(24)

Theorem. Construction yields TQFT Z%: Bords — Vecty.



Input: A-separable symmetric Frobenius k-algebra (A, i, A)

(1) Choose oriented triangulation ¢ for every bordism X in Bords
(2) Decorate Poincaré-dual graph with (k, A, i, A):

L

(3) Obtain X244 in Bord{®(D'") and define Z$(X) = Z"v(24)

Theorem. Construction yields TQFT Z%: Bords — Vecty.

No need to consider only algebras over k!
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Orbifolds

Definition. Let Z: Bord$®!(ID) — Vecty be defect TQFT.
An orbifold datum for Z is A= (o, A, u, A

e AT Y

a € Do A€ Dy € Do A € Dy

such that Pachner moves become identities under Z:

AN =) Y)Y

Definition & Theorem.
Triangulation + A-decoration + evaluation with Z = A-orbifold TQFT

Z 4. Bordy — Vecty

Carqueville/Runkel 2012
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Algebraic characterisation

Theorem.
2d defect TQFT Z = pivotal 2-category Bz

Examples.

vector spaces: Bvecty

*, finite-dimensional k-vector spaces, linear maps

algebras over k

A-separable symmetric Frobenius k-algebras, bimodules, intertwiners
B-twisted sigma models

Calabi-Yau varieties, Fourier-Mukai kernels, RHom

A-twisted sigma models

symplectic manifolds, Lagrangian correspondences, Floer homology
Landau-Ginzburg models

isolated singularities, matrix factorisations

differential graded categories

smooth and proper dg categories, dg bimodules, intertwiners
categorified quantum groups

weights, functors &;, F; ..., string diagrams. ..

Davydov/Kong/Runkel 2011, Carqueville 2016
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Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT Z = pivotal 2-category Bz

Lemma.

{orbifold data for Z} = { A-separable symmetric Frobenius algebras in Bz}

Examples.

— A-separable symmetric Frobenius algebras in Bvecty

= A-separable symmetric Frobenius k-algebras ©
= Z¥ = (Ztriv)A (“State sum models are orbifolds of the trivial TQFT.")

— A G-action in Bz is 2-functor p: BG — Bz.

Lemma. A := @ p(9) is A-separable Frobenius algebra in Bz.
— G-orbifolds are orbifolds: 26 = Z4, C% = modc(Ag)

Orbifolds unify G-equivariantisations and state sum models.

Davydov/Kong/Runkel 2011, Fréhlich/Fuchs/Runkel/Schweigert 2009, Brunner/Carqueville/Plencner 2014
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Orbifold equivalence
The orbifold completion of a pivotal 2-category B is a pivotal 2-category
Borp with:

— objects = A-separable symmetric Frobenius algebras A € B(a, )
— I-morphisms («, A) — (B3, B) are B-A-bimodules in B(«, 3)
— 2-morphisms are bimodule maps

Lemma. B — Borb = (Borb)orb

Theorem & Definition. (Orbifold equivalence o ~ 3)
If X € B(w,B) has invertible dim(X') € End(13), then:

- A:= XT ® X is separable symmetric Frobenius algebra in B(a, )
- X: (a,A) == (B,15) : X1 is adjoint equivalence in By,

Corollary.
a~fB = B(v,8) = Bown((1,1), (o, A)) 2 mod(A) forall v € B.
= Theory  determined by theory o and defect A.

Carqueville/Runkel 2012
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— objects = isolated singularities W € Clxy, ..., )] (dim C[z] /(8 W) < o)
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Orbifolds of Landau-Ginzburg models

Theorem. There is a pivotal 2-category LG with:

— objects = isolated singularities W € Clxy, ..., )] (dim C[z] /(8 W) < o)
— LG(W, V) = homotopy category of matrix factorisations D of V. — W

str (Hl amiD) ( Hj aZjD) dz

- dim(D) = Res T T for D € LG(W (z),V (2))
Theorem. (Orbifolds in £G)
2yt~ w40 (Drg1 ~ Agg—1)
B4yt~ w2402 (E¢ ~ A1)
B +ryd ~ w4 0? (E7 ~ Ayr)
Pyt o~ 00 ? (Es ~ As)
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Theorem. There is a pivotal 2-category LG with:

— objects = isolated singularities W € Clxy, ..., )] (dim C[z] /(8 W) < o)
— LG(W, V) = homotopy category of matrix factorisations D of V. — W
str (T1; 0=, D) ( I1; 9.,D) dx

- dim(D) = Res T T for D € LG(W (z),V (2))
Theorem. (Orbifolds in £G)
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Orbifolds of Landau-Ginzburg models

Theorem. There is a pivotal 2-category LG with:
— objects = isolated singularities W € Clxy, ..., )] (dim C[z] /(8 W) < o)
— LG(W, V) = homotopy category of matrix factorisations D of V. — W

— dim(D) = Res str ([1; 0, D) (I1;9.,D) dz

for D € LG(W (z),V (2))

O W ... 0, W
Theorem. (Orbifolds in £G)

2yt~ w40 (Drg1 ~ Agg—1)
B4yt~ w2402 (E¢ ~ A1)

3+ :Uy3 ~ ot 42 (E7 ~ A17)
24y~ w304 0? (Eg ~ Ag)

Py+yP ~ v+ (E13 ~ le)

S+t 422~ v 0P+l (Z13 ~ Qq)

Corollary. hunf (W) 2 mod (hmmf(W A1) ZZ0 (W (A1) ) etc

Carqueville/Murfet 2012, Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013, Recknagel/Weinreb 2017
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2d orbifolds
— encode triangulation invariance in algebraic structure
— representation theory of algebras in 2-categories
— unify G-equivariantisation and state sum models

— give new relations in algebra and geometry



The orbifold construction can be generalised to
n-dimensional defect TQFTs

Z: Bord® (D) — Vecty,

in any dimension n > 1.

Carqueville/Meusburger/Schaumann 2016, Carqueville/Runkel/Schaumann 2017-2018



The orbifold construction can be generalised to
n-dimensional defect TQFTs

Z: Bord® (D) — Vecty,

in any dimension n > 1.

n-dimensional orbifolds
— triangulation invariance = algebraic structures

Carqueville/Meusburger/Schaumann 2016, Carqueville/Runkel/Schaumann 2017-2018



The orbifold construction can be generalised to
n-dimensional defect TQFTs

Z: Bord® (D) — Vecty,

in any dimension n > 1.

n-dimensional orbifolds
— triangulation invariance = algebraic structures

» n = 2: Frobenius algebras in 2-categories
» n = 3: spherical fusion categories in 3-categories

— rich representation theory

— unify G-equivariantisation and state sum models

Carqueville/Meusburger/Schaumann 2016, Carqueville/Runkel/Schaumann 2017-2018
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Examples of 3d defect TQFTs.
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n-dimensional defect TQFTs

An n-dimensional defect TQFT is a symmetric monoidal functor
Z: Bord®*H (D) — Vecty,

that depends on defect data DD, consisting of:

— sets D;, whose elements decorate j-strata of bordisms
— rules how strata are allowed to meet

(defined recursively via cones and cylinders)
Examples of 3d defect TQFTs.

— quantum Chern-Simons theory (= Reshetikhin-Turaev theory Z¢)
> D3y = {gauge group} (more generally: modular tensor category C)
> Dy = {A—separable symmetric Frobenius algebras in C}
» Dy = {cyclic modules} > {Wilson line labels}
— Rozansky-Witten theory (conjecturally)
» Dj3 = {holomorphic symplectic manifolds}
» Dy = { “generalised Landau-Ginzburg models” }
» Dy = { “fibred matrix factorisations” }

Carqueville/Meusburger/Schaumann 2016, Carqueville/Runkel/Schaumann 2017-18, Kapustin/Rozansky/Saulina 2009 + wip



Triangulations

n+1 n+1
standard n-simplex A" := {Ztiei t; >0, Zti = 1} c R**!
i=1 i=1

simplicial complex C'is collection of simplices such that

» all faces of all 0 € C are also in C
» 0,00 eC = oNo' =0 or oNo =face

triangulation of manifold M is simplicial complex C' with
homeomorphism ¢: |C| — M

(details for smooth, oriented, ...)



Pachner moves

Let p: |C] =, M be triangulated n-manifold.
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Pachner moves

Let ¢: |C| —» M be triangulated n-manifold.
Let £ Cc OA™! C C be n-dimensional subcomplex.

A Pachner move “glues the other side of 9A™ ! into M":

M (08" F| Uy, (M @(IF))

2-2 ij 1-3 ;|;
n=2: = —
n=3: — PiainiN

Theorem. If triangulated PL manifolds are PL isomorphic, then there

exists a finite sequence of Pachner moves between them.
Pachner 1991




Orbifolds in any dimension n
An orbifold datum A for Z: Bord®{(DD) — Vecty

Carqueville/Runkel /Schaumann 2017
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Orbifolds in any dimension n

An orbifold datum A for Z: Bord!(ID) — Vecty, consists of
- AjeDjforall je{l,...,n},
- Af, Ay € Dy,
— such that “Pachner moves become identities”:
» compatibility:
Aj; is allowed decoration of (n — j)-simplices dual to j-strata
> triangulation invariance:
Let B, B’ be A-decorated n-balls dual to two sides of a Pachner move.
Then: Z(B)=Z(B’).

n = 2 is special case:

(A=) (Y)Y

Definition & Theorem.
Triangulation + A-decoration + evaluation with Z = A-orbifold TQFT

Z4: Bord,, — Vecty

Carqueville/Runkel /Schaumann 2017
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3d orbifolds

Theorem.
3d defect TQFT Z = 3-category Tz
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3d orbifolds

Theorem.
3d defect TQFT Z = 3-category Tz

Theorem.
Spherical fusion categories in Tz are orbifold data for Z.

Theorem. (“State sum models are orbifolds of the trivial TQFT.")
Turaev-Viro models are orbifolds of ZVects:
From spherical fusion category A get orbifold datum

— A3 — %

-Ay=A (equivalently: k# simples of A)
- A= AxA— A (equivalently: fusion rules of A)
— AZ = associator®! (equivalently: F-matrices of A)
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3d orbifolds

Theorem.
3d defect TQFT Z = 3-category Tz

Theorem.
Spherical fusion categories in Tz are orbifold data for Z.

Theorem. (“State sum models are orbifolds of the trivial TQFT.")
Turaev-Viro models are orbifolds of ZVects:
From spherical fusion category A get orbifold datum

— A3 — %

-Ay=A (equivalently: k# simples of A)
- A= AxA— A (equivalently: fusion rules of A)
— AZ = associator®! (equivalently: F-matrices of A)

Upshot: theory well-developed and ready for applications

Carqueville/Meusburger/Schaumann 2016, Carqueville/Runkel/Schaumann 2017-2018



Application 1: 3d TQFT 2 semisimplicity
Rozansky-Witten theory as 3-category C®W with duals:

objects: T*U for complex manifolds U

I-morphisms T*U — T*U’ are
curved differential graded algebras
Ay = (QO»°(U < U"), 8, W)
T U

2- and 3-morphisms: D (A ® Ag;)

U = pt
Theorem. BLG C CEW  (“LG models are surface defects”)

Rozansky-Witten 1996, Kapranov 1999, Kapustin-Rozansky 2009, Carqueville/Montiel Montoya 2018



Application 1: 3d TQFT 2 semisimplicity
Rozansky-Witten theory as 3-category CEW with duals:

objects: T*U for complex manifolds U U’
I-morphisms T*U — T*U’ are i
curved differential graded algebras
Ay = (QO"(U x U"), 8, W)

2- and 3-morphisms: D (A ® Ag;) U

U = pt
Theorem. BLG C CEW  (“LG models are surface defects”)

Future:
— 3d TQFTs from tensor categories D (A} ® Ay )
— representation theory of non-semisimple tensor categories
— new invariants of knots and surface embeddings

Rozansky-Witten 1996, Kapranov 1999, Kapustin-Rozansky 2009, Carqueville/Montiel Montoya 2018



Application 2: topological quantum computation

Interpretation of Reshetikhin-Turaev theory ZRT:C:

objects u; in C: anyonic quasiparticles in 2+1 dimensions

— ZRTC(S,, u.): qubit storage on surface . with m anyons

braiding matrices Bui,uj: quantum gates

- <,6’ui7uj> dense in U(N) for N > 1: universal quantum computations

Kitaev 1997, Freedman/Kitaev/Larsen/Wang 2001
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Application 2: topological quantum computation

Interpretation of Reshetikhin-Turaev theory ZRT:C:

objects u; in C: anyonic quasiparticles in 2+1 dimensions
— ZRTC(S,, u.): qubit storage on surface . with m anyons

braiding matrices (3, ,;: quantum gates
- <,6’ui7uj> dense in U(N) for N > 1: universal quantum computations

Fact. C = Ising category not universal.
“Gauging” of Sa-symmetry of C X C is universal!

Conjecture. Orbifolds of Z€ construct universal quantum computers
with larger qubit storages Z¢(Zu, )
in particular

— p: BSy — Bimody with p(x) = C¥V
— C-C’-bimodules with “invertible quantum bubble”

Kitaev 1997, Freedman/Kitaev/Larsen/Wang 2001, Barkeshli/Jian/Qi 2012, Fuchs/Schweigert 2013



The orbifold construction can be generalised to
n-dimensional defect TQFTs

Z: Bord™ (D) — Vecty,

in any dimensionn > 1. )v ~ a

triangulation invariance —> algebraic structures

» n = 2: Frobenius algebras in 2-categories
» n = 3: spherical fusion categories in 3-categories

— rich representation theory
— unify G-equivariantisation and state sum models

Applications:
» 3-manifold invariants from non-semisimple tensor categories
» embedding invariants from modular tensor categories
» models for topological quantum computation

Carqueville/Meusburger/Schaumann 2016, Carqueville/Runkel/Schaumann 2017-2018, Carqueville/Montiel Montoya 2018






