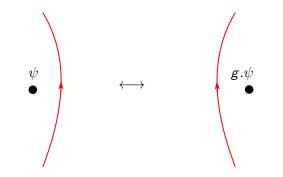
Defects and Orbifolds of 2-dimensional Yang-Mills theory

Lukas Müller Department of Mathematics Heriot-Watt University, Edinburgh

Defects in topological and conformal field theory June 28, 2019

based on joint work with Richard J. Szabo and Lóránt Szegedy

Symmetries and Defects



Symmetries and Defects

Symmetries and Defects

Goal for today

Study a simple class of symmetries and their corresponding defects in 2-dimensional Yang-Mills theory.

Lukas Müller

Defects and Orbifolds of 2D YM

June 28, 2019 2 / 20

Yang-Mills theory

- Let G be a semi-simple compact Lie group with Lie algebra g and P → Σ a principal G-bundle over a Riemannian manifold Σ with connection A.
- Yang-Mills theory is defined by the action functional:

$$S_{\mathsf{YM}}(A) = rac{1}{4e^2} \int_{\Sigma} \mathsf{Tr}(\mathcal{F} \wedge *\mathcal{F})$$

• Partition function

$$Z_{YM}(\Sigma) = \int \mathcal{D}A \exp(-S_{YM}(A))$$

In 2-dimensions the partition function only depends on the area of Σ
 → area dependent quantum field theory.

- We construct a symmetry from an outer automorphism φ: G → G, e.g. complex conjugation SU(n) → SU(n).
- φ induces $\varphi_* \colon \mathfrak{g} \longrightarrow \mathfrak{g}$.
- The symmetry acts on a field configuration (P, A ∈ Ω¹(P; g)) by sending it to

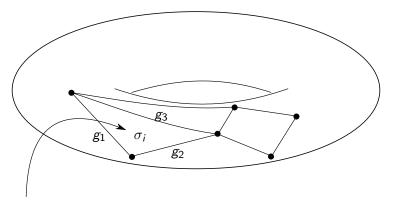
$$\varphi P : P \times G \xrightarrow{\operatorname{id} \times \varphi^{-1}} P \times G \longrightarrow P$$

with connection φ_*A .

• The action transforms as

$$\frac{1}{4e^2}\int_{\Sigma}\mathsf{Tr}(\mathcal{F}\wedge *\mathcal{F})\longmapsto \frac{1}{4e^2}\int_{\Sigma}\mathsf{Tr}(\varphi_*(\mathcal{F})\wedge *\varphi_*(\mathcal{F}))$$

Lattice regularization and invariance of the quantum theory

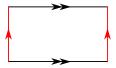


 $\Gamma(\mathcal{U}_i \coloneqq g_3 g_2 g_1, \sigma_i) \coloneqq \sum_{\alpha} \dim(\alpha) \chi_{\alpha}(\mathcal{U}_i) \cdot \exp(-\sigma_i c_2(\alpha)/2)$

$$Z(\Sigma, \sigma) \coloneqq \int_{\mathcal{G}^{|\Sigma_1|}} \prod_{\gamma_j \in \Sigma_1} dg_{\gamma_j} \prod_{w_i \in \Sigma_2} \Gamma(\mathcal{U}_i, \sigma_i)$$

Defects and Orbifolds of 2D YM

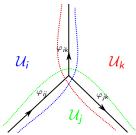
Defects and their partition function



$$Z(T^{2},\sigma,\varphi) = \int_{G\times G} \sum_{\alpha} \dim(\alpha) \chi_{\alpha}(\varphi(g_{2})^{-1}g_{1}^{-1}g_{2}g_{1}) \exp(-\sigma c_{2}(\alpha)/2) dg_{1} dg_{2}$$
$$= \sum_{\varphi^{*}\alpha \cong \alpha} \exp(-\sigma c_{2}(\alpha)/2),$$

Defects and twisted bundles

• A defect network defines an Out(G)-bundle D as follows:



There is a canonical map r: Bun_{G×Out(G)}(Σ) → Bun_{Out(G)}(Σ)

Definition

A *D*-twisted *G* bundle is a $G \rtimes Out(G)$ -bundle *P* together with a gauge transformation $r(P) \longrightarrow D$.

Defects and twisted bundles

- We can describe a *D*-twisted bundle with respect to the cover {*U_i*} used to define *D*.
- The transition functions are of the from (g_{ij}, φ_{ij}) where the φ_{ij} are fixed by D.
- The 2-cocycle condition implies

$$g_{ki} = g_{kj}\varphi_{kj}(g_{ji})$$

A connection can be described locally by 1-forms A_i ∈ Ω¹(U_i, g)
For g_{ii} trivial:

$$A_i = \mathsf{ad}_{(1,\varphi_{ij})}A_j = \varphi_{ij}_*A_j.$$

$$Z(\Sigma, D) = \int_{(P,A)\in\mathsf{Bun}_{G\downarrow D}^{\nabla}(\Sigma)} \mathcal{D}(P,A) \exp(-S_{YM}(P,A))$$

A conjecture for the symplectic volume of flat twisted bundles

• Let \mathcal{M}_{G}^{D} be the moduli space of flat *D*-twisted *G*-bundles.

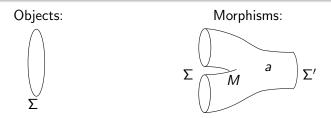
Conjecture (LM, R.J. Szabo, L. Szegedy)

$$Vol(\mathcal{M}^{D}_{SU(3)}) = \exp((2g-2)\Delta v)\zeta(6g-6)$$

Area dependent quantum field theory

Definition

An area dependent 2-dimensional QFT is a symmetric monoidal functor a-Cob₂ \longrightarrow Hilb which is continuous on hom-spaces.



Theorem (I. Runkel, L. Szegedy)

2-dimensional aQFTs are classified by regularized commutative Frobenius algebras.

Field theories with defects are defined using a version of a-Cob $_2$ containing labelled stratifications.

Lukas Müller

Defects and Orbifolds of 2D YM

Definition

A regularized Frobenius algebra (RFA) is a Hilbert space A equipped with

$$\mu_{a} = \bigwedge_{A}^{A} \qquad A \qquad A \qquad A \qquad A$$
$$\mu_{a} = \bigwedge_{a}^{A} \qquad \eta_{a} = \bigwedge_{a}^{A} \qquad \Delta_{a} = \bigvee_{a}^{A} \qquad \varepsilon_{a} = \bigwedge_{a}^{A} \qquad A$$

continuous in the parameter $a \in \mathbb{R}_{>0}$ with respect to the strong operator topology satisfying parametrized versions of the usual Frobenius relations.

Example

 $L^{2}(G)$ is a RFA with structure maps:

$$\begin{split} \eta_{a}(1) &= \sum_{\alpha} \dim(\alpha) \exp\left(-a\frac{c_{2}(\alpha)}{2}\right) \chi_{\alpha}(\cdot) \\ \mu(f\otimes g)(x) &= \int_{G} f(xy^{-1})g(y)dy \ , \\ \mu_{a}(f,g) &= \mu(\eta_{a}(1),\mu(f,g)) \end{split}$$

 Δ_a and ϵ_a are the adjoint operators. $Z(L^2(G)) = CI(G)$ is the commutative RFA describing 2-dimensional Yang-Mills theory.

Bimodules

Definition

A bimodule over RFAs A and B is a Hilbert space X together with a family of maps $\rho_{a,b}: A \otimes X \otimes B \to X$ (the two-sided action) denoted by

which satisfies a parametrised version of the usual bimodule conditions.

Remark

One can define the relative $X \otimes_A X'$ and cyclic $\bigcirc_A X$ tensor product of bimodules and dualizable bimodules using parametrized versions of the usual definitions.

Defects and Orbifolds of 2D YM

Example

Let V ∈ Rep(G). Wilson lines can be described by the bimodule L²(G) ⊗ V with action

$$\varphi(f \otimes \mathbf{v}) = (\varphi * f) \otimes \mathbf{v} ,$$

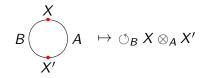
(f \otimes \mathbf{v}).\psi = $\left[x \mapsto \int_{\mathcal{G}} y^{-1} . \mathbf{v} f(xy^{-1}) \psi(y) \right]$

• The twisted bimodules L_{φ} for $\varphi \in \operatorname{Out}(G)$ with action

$$\rho_{a,b} \colon L^2(G) \otimes L^2(G) \otimes L^2(G) \longrightarrow L^2(G)$$
$$f \otimes h \otimes g \longmapsto \mu_a(f, \mu_b(h, \varphi^*g)) .$$

realizes the defects introduced at the beginning of the talk.

State sum construction of aQFTs with defects



• There is a way to define the value of the state sum construction on 2-dimensional bordisms with area.

Orbifolds via defects (See also Nils Carqueville's talk)

- Let Γ be a finite symmetry group of an aQFT Z with corresponding defects L_{γ}
- Set $M = \bigoplus_{\Gamma} L_{\gamma}$ and choose trivalent junction fields making M into a strongly separable symmetric Frobenius algebra in \mathcal{B}
- Add twisted sectors H = ⊕_{γ∈Γ} Z(S¹, γ). (In our case these are twisted class functions satisfying f(gxφ(g⁻¹)) = f(x))
- There is an action of Γ on *H*. The state space of the orbifold theory is the space of Γ invariants.
- We denote by *P* the projector onto this subspace.

The bicategory of topological defects

Definition

The topological defect bicategory of 2-dimensional Yang-Mills theories $\ensuremath{\mathcal{B}}$ has

- **Objects:** RFAs of the type $L^2(G)$
- **1-Morphisms:** Are the labels for topological defects, i.e. dualizable transmissive bimodules
- **2-Morphisms:** (Via operator state correspondence) A 2-morphism $X \to Y$ for $X, Y : A \to B$ is given by a family of maps $\{\phi_a : \mathbb{C} \to \bigcirc_A Y \otimes_B \overline{X}\}_{a \in \mathbb{R}_{>0}}$ which are invariant under the action of cylinders:

$$\mathcal{C}_b \circ \varphi_{\mathsf{a}} = \varphi_{\mathsf{a}+\mathsf{b}}$$

Remark

It is possible to rewrite the 2-morphisms as families of bimodule maps.

Lukas Müller

Defects and Orbifolds of 2D YM

Theorem (LM, R.J. Szabo, L. Szegedy)

The L-L-bimodule $M := \bigoplus_{\alpha \in Out(G)} L_{\alpha}$ is a is a separable symmetric Frobenius algebra in $\mathcal{B}(L, L)$.

Proposition (LM, R.J. Szabo, L. Szegedy)

The projector P is

$$P = |\mathsf{Out}(\mathcal{G})|^{-1} \sum_{eta \in \mathsf{Out}(\mathcal{G})} (eta^{-1})^* : \mathcal{H} o \mathcal{H} \; .$$

The image of P is the subspace H^{Out(G)} of Out(G) invariants under this action and we have

$$\mathcal{H}^{\mathsf{Out}(G)} \simeq Cl^2(G \rtimes \mathsf{Out}(G)) \;.$$

Theorem (LM, R.J. Szabo, L. Szegedy)

The orbifold theory of 2dYM with gauge group G and orbifolding defect $\bigoplus_{\alpha \in Out(G)} L_{\alpha}$ is 2dYM with gauge group $G \rtimes Out(G)$.

- Study of the homology of the moduli space of flat twisted bundles via 2-dimensional Yang-Mills theory.
- Quantization of the moduli space of flat twisted bundles via equivariant factorization homology.
- Generalization to q-deformed Yang-Mills and Chern-Simons theory.
- 2D-4D correspondence.

- Study of the homology of the moduli space of flat twisted bundles via 2-dimensional Yang-Mills theory.
- Quantization of the moduli space of flat twisted bundles via equivariant factorization homology.
- Generalization to q-deformed Yang-Mills and Chern-Simons theory.
- 2D-4D correspondence.

Thank you for your attention!