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Topological field theory, homotopy theory and operads

Reasons to consider extended field theory:
I physical: implement a higher degree of locality for physical quantities
I mathematical: obtain algebraically richer objects by evaluation on

certain manifolds

To some degree, extended field theories and the (homotopy) theory of
higher categories have been developed alongside each other:

I Extended field theory and most notably the Baez-Dolan cobordism
hypothesis stimulated the definition and study of higher (symmetric
monoidal) categories (Lurie)

I Homotopy theory has led to important constructions in topological field
theory such as factorization homology, a kind of ‘integration’ of little
disk algebras over manifolds (Lurie, Ayala-Francis,
Calaque-Scheimbauer, . . . ) and factorization algebras
(Costello-Gwilliam)

Principle

In a lot of the homotopy theoretic approaches to field theory, operads are
used to encode the local structure of physical quantities.

Lukas Woike Bdy. Cond. and the Swiss-Cheese Operad 28th June 2019 2 / 15



Topological field theory, homotopy theory and operads
Reasons to consider extended field theory:

I physical: implement a higher degree of locality for physical quantities
I mathematical: obtain algebraically richer objects by evaluation on

certain manifolds

To some degree, extended field theories and the (homotopy) theory of
higher categories have been developed alongside each other:

I Extended field theory and most notably the Baez-Dolan cobordism
hypothesis stimulated the definition and study of higher (symmetric
monoidal) categories (Lurie)

I Homotopy theory has led to important constructions in topological field
theory such as factorization homology, a kind of ‘integration’ of little
disk algebras over manifolds (Lurie, Ayala-Francis,
Calaque-Scheimbauer, . . . ) and factorization algebras
(Costello-Gwilliam)

Principle

In a lot of the homotopy theoretic approaches to field theory, operads are
used to encode the local structure of physical quantities.

Lukas Woike Bdy. Cond. and the Swiss-Cheese Operad 28th June 2019 2 / 15



Topological field theory, homotopy theory and operads
Reasons to consider extended field theory:

I physical: implement a higher degree of locality for physical quantities

I mathematical: obtain algebraically richer objects by evaluation on
certain manifolds

To some degree, extended field theories and the (homotopy) theory of
higher categories have been developed alongside each other:

I Extended field theory and most notably the Baez-Dolan cobordism
hypothesis stimulated the definition and study of higher (symmetric
monoidal) categories (Lurie)

I Homotopy theory has led to important constructions in topological field
theory such as factorization homology, a kind of ‘integration’ of little
disk algebras over manifolds (Lurie, Ayala-Francis,
Calaque-Scheimbauer, . . . ) and factorization algebras
(Costello-Gwilliam)

Principle

In a lot of the homotopy theoretic approaches to field theory, operads are
used to encode the local structure of physical quantities.

Lukas Woike Bdy. Cond. and the Swiss-Cheese Operad 28th June 2019 2 / 15



Topological field theory, homotopy theory and operads
Reasons to consider extended field theory:

I physical: implement a higher degree of locality for physical quantities
I mathematical: obtain algebraically richer objects by evaluation on

certain manifolds

To some degree, extended field theories and the (homotopy) theory of
higher categories have been developed alongside each other:

I Extended field theory and most notably the Baez-Dolan cobordism
hypothesis stimulated the definition and study of higher (symmetric
monoidal) categories (Lurie)

I Homotopy theory has led to important constructions in topological field
theory such as factorization homology, a kind of ‘integration’ of little
disk algebras over manifolds (Lurie, Ayala-Francis,
Calaque-Scheimbauer, . . . ) and factorization algebras
(Costello-Gwilliam)

Principle

In a lot of the homotopy theoretic approaches to field theory, operads are
used to encode the local structure of physical quantities.

Lukas Woike Bdy. Cond. and the Swiss-Cheese Operad 28th June 2019 2 / 15



Topological field theory, homotopy theory and operads
Reasons to consider extended field theory:

I physical: implement a higher degree of locality for physical quantities
I mathematical: obtain algebraically richer objects by evaluation on

certain manifolds

To some degree, extended field theories and the (homotopy) theory of
higher categories have been developed alongside each other:

I Extended field theory and most notably the Baez-Dolan cobordism
hypothesis stimulated the definition and study of higher (symmetric
monoidal) categories (Lurie)

I Homotopy theory has led to important constructions in topological field
theory such as factorization homology, a kind of ‘integration’ of little
disk algebras over manifolds (Lurie, Ayala-Francis,
Calaque-Scheimbauer, . . . ) and factorization algebras
(Costello-Gwilliam)

Principle

In a lot of the homotopy theoretic approaches to field theory, operads are
used to encode the local structure of physical quantities.

Lukas Woike Bdy. Cond. and the Swiss-Cheese Operad 28th June 2019 2 / 15



Topological field theory, homotopy theory and operads
Reasons to consider extended field theory:

I physical: implement a higher degree of locality for physical quantities
I mathematical: obtain algebraically richer objects by evaluation on

certain manifolds

To some degree, extended field theories and the (homotopy) theory of
higher categories have been developed alongside each other:

I Extended field theory and most notably the Baez-Dolan cobordism
hypothesis stimulated the definition and study of higher (symmetric
monoidal) categories (Lurie)

I Homotopy theory has led to important constructions in topological field
theory such as factorization homology, a kind of ‘integration’ of little
disk algebras over manifolds (Lurie, Ayala-Francis,
Calaque-Scheimbauer, . . . ) and factorization algebras
(Costello-Gwilliam)

Principle

In a lot of the homotopy theoretic approaches to field theory, operads are
used to encode the local structure of physical quantities.

Lukas Woike Bdy. Cond. and the Swiss-Cheese Operad 28th June 2019 2 / 15



Topological field theory, homotopy theory and operads
Reasons to consider extended field theory:

I physical: implement a higher degree of locality for physical quantities
I mathematical: obtain algebraically richer objects by evaluation on

certain manifolds

To some degree, extended field theories and the (homotopy) theory of
higher categories have been developed alongside each other:

I Extended field theory and most notably the Baez-Dolan cobordism
hypothesis stimulated the definition and study of higher (symmetric
monoidal) categories (Lurie)

I Homotopy theory has led to important constructions in topological field
theory such as factorization homology, a kind of ‘integration’ of little
disk algebras over manifolds (Lurie, Ayala-Francis,
Calaque-Scheimbauer, . . . ) and factorization algebras
(Costello-Gwilliam)

Principle

In a lot of the homotopy theoretic approaches to field theory, operads are
used to encode the local structure of physical quantities.

Lukas Woike Bdy. Cond. and the Swiss-Cheese Operad 28th June 2019 2 / 15



Topological field theory, homotopy theory and operads
Reasons to consider extended field theory:

I physical: implement a higher degree of locality for physical quantities
I mathematical: obtain algebraically richer objects by evaluation on

certain manifolds

To some degree, extended field theories and the (homotopy) theory of
higher categories have been developed alongside each other:

I Extended field theory and most notably the Baez-Dolan cobordism
hypothesis stimulated the definition and study of higher (symmetric
monoidal) categories (Lurie)

I Homotopy theory has led to important constructions in topological field
theory such as factorization homology, a kind of ‘integration’ of little
disk algebras over manifolds (Lurie, Ayala-Francis,
Calaque-Scheimbauer, . . . ) and factorization algebras
(Costello-Gwilliam)

Principle

In a lot of the homotopy theoretic approaches to field theory, operads are
used to encode the local structure of physical quantities.

Lukas Woike Bdy. Cond. and the Swiss-Cheese Operad 28th June 2019 2 / 15



Physical boundary conditions in 3D TFT after
Fuchs-Schweigert-Valentino

The bulk theory is described by a braided k-linear category (at least;
FSV take a lot more properties into account).

The category Wa of Wilson lines at the boundary ‘a’ should be
k-linear monoidal.

Moving bulk Wilson lines to the boundary is modeled by a functor

F→a : C −→ Wa .
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Physical boundary conditions in 3D TFT after
Fuchs-Schweigert-Valentino

Fusing Wilson line in the bulk corresponds to fusing them in the
boundary:

F→a(U ⊗ V ) ∼= F→a(U)⊗ F→b(V ) ;

i.e. F→a is monoidal.

(Figure from Fuchs-Schweigert-Valentino)
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Physical boundary conditions in 3D TFT after
Fuchs-Schweigert-Valentino

Boundary Wilson lines coming from the bulk commute with all
boundary Wilson lines:

F→a(U)⊗M ∼= M ⊗ F→a(U)

such that the boundary Yang-Baxter equations are satisfied.

(Figure from Fuchs-Schweigert-Valentino)

One concludes that F→a : C −→ Wa lifts to a functor

F̃→a : C −→ Z (Wa)

to the Drinfeld center of Wa; ‘minimal FSV conditions’.
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Algebraic structures from open-closed field theories

The following type of algebraic structure is used to describe open-closed
string field theory in a graded framework; [Kajiura-Stasheff 2006] based on
ideas by Zwiebach, see [Hoefel 2009] for the precise relation:

The data are

graded vector spaces X and A which associative products • and ? (of
degree zero),

• is graded symmetric,

x • y = (−1)|x ||y |y • x .

to be continued on the next slide
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Algebraic structures from open-closed field theories

a graded bracket [−,−] on X of degree 1 which is graded
anti-symmetric,

[x , y ] = −(−1)(|x |−1)(|y |−1)[y , x ] ,

and satisfies the Jacobi identity,

[x , [y , z ]] = [[x , y ], z ] + (−1)(|x |−1)(|y |−1)[y , [x , z ]] ,

and the Leibniz rule

[x , y • z ] = [x , y ] • z + (−1)(|x |−1)|y |y • [x , z ] .

a linear map φ : X −→ A respecting the grading satisfying

φ(x • y) = φ(x) ? φ(y) ,

φ(x) ? a = (−1)|x ||a|a ? φ(x) .

We will refer to this algebraic structure as a HSC -algebra.
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Operads and their algebras

A (colored) operad encodes algebraic structures by giving objects (vector
spaces, topological spaces, chain complexes) of operations with several
inputs and one output.

c

c1 cn· · ·

∈ O
( c

(c1,...,cn)

)

There is a composition of operations subject to associativity and unitality
conditions.

Example: The associative operad

The n-ary operations of the associative operad As are As(n) = Σn, the
permutation group on n letters.
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Operads and their algebras

An algebra A over a colored operad O is a concrete realization of the
abstract operations in O. It consists of colored objects Ac and morphisms

α : O
( c

(c1,...,cn)

)
⊗ Ac1 ⊗ · · · ⊗ Acn −→ Ac ,

that specify the action of operations on objects.

Example: Associative algebras

The algebras over the associative operad are unital associative algebras.
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Little disks and braided monoidal categories

The little disk operad E2 is a topological one-colored operad whose space
of arity n operations E2(n) is given by the space of affine embeddings of n
disks into one disk.

◦2 =

2

1

1

2

3

1

2

3

4

Figure: Example for the composition of little disks.
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Little disks and braided monoidal categories

An E2-algebra in categories has an underlying category C. The embedding
of two disks into one yields a ‘multiplication’ ⊗ : C × C −→ C which is
homotopy commutative.

1 122

Theorem [Joyal-Street, Lurie, Wahl-Salvatore, . . . , see also Fresse]

Up to equivalence, little disk algebras in categories are braided monoidal
categories.
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Swiss-Cheese operad and its algebras

The Swiss-Cheese operad SC due to Voronov has two colors c (closed) and
o (open).

1

1
2

2

3

Figure: Element in SC (2, 3).

Theorem [Idrissi 2017]

Up to equivalence, Swiss-Cheese algebras in categories are triples
(M,N ,F ) of a braided monoidal category M, a monoidal category N
and a braided monoidal functor F :M−→ Z (N ).
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Boundary conditions via Swiss-Cheese algebras

We can now conclude: The minimal FSV boundary condition give a full
description of the topological situation present at a boundary.

More precisely:

All the structure and relations found by Fuchs-Schweigert-Valentino
correspond to Swiss Cheese operations and paths in the operation
spaces of the Swiss Cheese operad (not too hard to see).

. . . and there is nothing more (non-trivial).
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Application: Boundary conditions and HSC -algebras

For a k-linear category C we can consider the derived coend∫ X∈Proj C
L C(X ,X ) which is the differential graded vector space which in

degree n ≥ 0 is given by⊕
X0,...,Xn∈ProjC

C(X0,X1)⊗ · · · ⊗ C(Xn,X0) ,

i.e. by loops of morphisms in projective objects in C (this is a form a
Hochschild chains).

Theorem [Schweigert-W.]

Let O be an operad in groupoids. If a k-linear category C is a
k[O]-algebra, then

∫ X∈Proj C
L C(X ,X ) is a differential graded

N∗BO-algebra.
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Application: Boundary conditions and HSC -algebras

Corollary

If a braided category C and a monoidal category Wa satisfy the minimal
FSV boundary conditions, then we have on the Hochschild homologies
H∗
∫ X∈Proj C
L C(X ,X ) and H∗

∫ Y∈ProjWa

L C(Y ,Y ) of C and Wa the
structure of a HSC -algebra.

Proof. As noted above the pair (C,Wa) forms a categorical ΠSC -algebra.
By the Theorem on the last slide, this implies that the Hochschild chains
carry an action of N∗BΠSC . The latter operad is equivalent to N∗SC
because SC is aspherical. As a consequence, the Hochschild homologies of
C and Wa form a the homology of the Swiss-Cheese operad. By [Hoefel
2009] the resulting algebraic structure actually coincides with what has
been (suggestively) called HSC -algebra above.
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The Gerstenhaber bracket reflects the ‘quantum part’ of the braiding.

[f , g ] = (−1)p
∑

(p,q)-shuffles (µ,ν)
of p + q

p+q∑
j=0

(−1)j sign(µ, ν)
(
sν(f ) •j sµ(g)

+(−1)pqsµ(g) •j sν(f )
)
,

where

f and g are loops of morphisms chaising through projective objects,

sν and sν are degeneracy operators associated to shuffles,

•j are insertion operators for the braiding.
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Summary and outlook

Operads may provide a comprehensive topological description of field
theories at a boundary without invoking heuristics.

Operads allow us to discover interesting operations in Hochschild
homology (without re-inventing the wheel).

Relation of the Gerstenhaber bracket and non-degeneracy?

Generalization to the equivariant case (joint with Lukas Müller).
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