Interface Flows in D1/D5 Holography

Christian Northe June 28 2019, King's College London

Julius-Maximilians-Universität Würzburg

Work in progress with J. Erdmenger and C. Melby-Thompson

Kondo and Boundary RG Flows

Interface RG Flows in Holography

Backreacted Supergravity Solutions of Interface Fixed Points

Interfaces in the $\mathsf{D}1/\mathsf{D}5~\mathsf{CFT}$

Summary and Outlook

Kondo and Boundary RG Flows

Heavy magnetic impurity interacts with conduction electrons

Ultraviolet. Free electrons with mild antiferromagnetic coupling to spin

Infrared. Impurity is screened through binding with conduction electrons

S-wave approximation

System described by action

$$\mathcal{I} = \mathcal{I}_{\text{WZW}}(\mathfrak{su}(2)_{\mathsf{k}}) + \lambda \int_{\partial \Sigma} dt \, \vec{S} \cdot \vec{J}(t),$$

where \vec{S} is in spin-S irreducible representation of $\mathfrak{su}(2)$.

Conformally Invariant Boundary Conditions of $\hat{\mathfrak{su}}(2)_k$

• Labeled by set of primaries $j = 0, \frac{1}{2}, \dots, \frac{k}{2}$

• Correspond to discrete set of conjugacy classes

k+1

Conformally Invariant Boundary Conditions of $\hat{\mathfrak{su}}(2)_k$

• Labeled by set of primaries $j = 0, \frac{1}{2}, \dots, \frac{k}{2}$

 $\dot{k+1}$

Both types of branes preserve SO(3)!

'Absorption of boundary spin' Principle Affleck & Ludwig 1991

Non-abelian polarization (2S + 1) pointlike Branes (spin-0) $\rightarrow 1$ brane of spin S

 $\label{eq:Geometric} \begin{array}{l} \mbox{Geometric implementation in AdS/CFT:} \\ \mbox{Kondo-like defect flows in D1/D5 system via non-abelian polarization.} \end{array}$

Interface RG Flows in Holography

Gravitational dual of D1/D5 system

Type IIB on $M_{10} = \mathbb{R}^{1,1} \times \mathbb{R}^4 \times M_4$ (with $M_4 = K3$ or T^4):

	0	1	2	3	4	5	6	7	8	9
D5 (N_5)	•	٠					•	٠	•	٠
D1 (N_1)	•	•								

Near-Horizon Limit. IIB string theory on $AdS_3 \times S^3 \times M_4$ supported by $F^{(3)}$ flux on $AdS_3 \& S^3$

Symmetries

- $\mathcal{N} = (4, 4)$ small superconformal algebra.
- Bosonic part: $\mathfrak{so}(2,2) \times \mathfrak{so}(4)$.

	AdS ₃			S^3			M4			
	t	х	z	θ	ϕ	χ	6	7	8	9
D5 (N_5)	•	٠					٠	٠	٠	٠
D1 (N_1)	•	•								
(p,q)	•	—	٠							

- p = fundamental string charge, q = D1-brane charge
 - Interface preserves $\mathfrak{so}(2,1) \times \mathfrak{su}(2)$ & 8 superconformal charges
 - Interface with $q \neq 0$ shifts central charge of CFT

Deform branes by non-abelian polarization: Myers '99 Coordinates on S^3 become non-commutative \implies fuzzy S^2 inside S^3 .

- (p,q) strings puff up into D3 branes
- BPS flow solutions for general (p, q) obtained from κ symmetry projector (along lines of Gomis &al. '99).

	AdS ₃				M4					
	t	Х	Ζ	$\theta(z)$	ϕ	χ	6	7	8	9
D3 (p,q)	•	(-)	٠		٠	•				

Flows from brane polarization

• In D3-brane description, $\theta = \theta(z)$

$$I = T_{\text{D3}} \int d^4 \xi e^{-\Phi} \sqrt{-\det(\hat{g}+F)} + T_{\text{D3}} \int (C^{(2)} \wedge F + \frac{1}{2}F \wedge F)$$

 Simplest case: when D3 branes carry no D1 charge, solution is given by

$$z = z_0 \frac{\sin \theta}{\theta_p - \theta} \qquad \theta_p = \pi \frac{p}{N_5}$$

where z is the radial coordinate in Poincaré patch.

Backreacted Supergravity Solutions of Interface Fixed Points

Asymptotically $AdS_3 \times S^3 \times M_4$ $\frac{1}{2}$ -BPS solutions

$$ds_{10}^2 = f_1^2 ds_{AdS_2}^2 + f_2^2 ds_{S^2}^2 + f_3^2 ds_{M_4}^2 + \rho^2 \, dz \, d\bar{z}$$

where $f_i = f_i(z, \bar{z}), \ \rho = \rho(z, \bar{z})$

Preserves the desired Symmetries

•
$$\mathfrak{so}(2,1) \times \mathfrak{so}(3)$$

• 8 super(conformal) symmetries

$$ds_{10}^2 = \cosh^2 \psi \, ds_{AdS_2}^2 + \sin^2 \theta \, ds_{S^2}^2 + ds_{M_4}^2 + d\psi^2 + d\theta^2$$

(p,q) Interface Solutions

(p,q) Interface Solutions

14 / 23

Interface Solutions and RG Flow

Interface Solutions and RG Flow

Interface Entropy from Holography Chiodaroli, Gutperle, Hung '10

• Boundary entropy $s = \log g \stackrel{\text{fold}}{\longleftrightarrow}$ interface entropy.

BCFT: $g = \langle 0 | \mathcal{B} \rangle \rangle$

- Compute *s* as interface contribution to entanglement entropy Calabrese, Cardy '04
- \bullet Gravity dual is semi-classical \implies use Ryu-Takayanagi formula Ryu, Takayanagi '06

(p,q) *g*-Theorem

Simplest case: pure F1 interfaces (p, 0)

$$\log g = \frac{c}{6} \left(\log \kappa + 1 - \frac{1}{\kappa} \right)$$

$$(p,0): \qquad \kappa = \frac{T(4N_1, p) + T(0, p)}{T(4N_1, p) - T(0, p)}$$
$$D3_{(p,0)}: \qquad \kappa = \frac{T(4N_1, p\frac{\sin\theta}{\theta}) + T(0, p\frac{\sin\theta}{\theta})}{T(4N_1, p\frac{\sin\theta}{\theta}) - T(0, p\frac{\sin\theta}{\theta})}$$

- g-theorem satisfied for all (p, q) interfaces
- g-factor contains contribution not visible in the probe brane limit

Interfaces in the D1/D5 CFT

Type IIB on $M_{10} = \mathbb{R}^{1,1} \times \mathbb{R}^4 \times M_4$ (with $M_4 = K3$ or T^4):

	0	1	2	3	4	5	6	7	8	9
D5 (N_5)	•	•					•	٠	٠	٠
D1 (<i>N</i> ₁)	•	٠								

Gauge theory description. $U(N_1) \times U(N_5)$ gauge theory with bifundamental hypermultiplet. Consider Higgs branch. Gives:

Instanton description. D5 brane has a coupling $\int C^{(2)} \wedge \text{Tr}(F \wedge F)$.

 \implies D1 branes can be dissolved as U(N₅) gauge instantons on M₄.

Low energy dynamics. 2d $\mathcal{N} = (4,4)$ SCFT: Non-linear sigma model on the moduli space of instantons on M_4 . Strominger & Vafa '96

Interfaces in D1/D5 CFT

Type IIB on $M_{10} = \mathbb{R}^{1,1} \times \mathbb{R}^4 \times M_4$:

	0	1	2	3	4	5	6	7	8	9
D5 (N_5)	•	٠					•	٠	•	٠
D1 (N_1)	•	•								
F1 (p)	•		•							

- preserves $\mathcal{N} = 4$, d = 1 supersymmetry
- realized in gauge theory as Wilson line. Sources jump in background electric field, changing the CFT on one side while preserving the central charge. This case is an interface, not a defect.

- Wilson line \leftrightarrow long string connecting distant D3 brane to D1/D5 system.
- After mixing, lowest-lying fermions have Lagrangian Tong & Wong '14

$$L_{\eta} = \eta^{\dagger} (i\partial_0 + \Omega_A \partial_t Z^A) \eta$$

where η is in the fundamental of U(N₅), Z^A is the coordinate on \mathcal{M} , and Ω_A is a U(N₅) connection on $M_4 \times \mathcal{M}$.

• This can be rewritten as the insertion of

$$W = \operatorname{Tr}_{F} \mathcal{P} \exp\left(i \int dt \, \partial_{t} Z^{A} \Omega_{A}(y_{0}, Z)\right)$$

with y_0 the location of the Wilson line in M_4 .

Summary and Outlook

 $\bullet\,$ Studied holographic duals of interface RG flows in the D1/D5 theory

• Probe brane limit: BPS RG flows for general (p, q) string defects

• Classical IIB Supergravity description representing backreaction for fixed points

• g-factor, including CFT contributions, in semi-classical limit of gravity

• More detailed study from CFT point of view \rightsquigarrow deformation

• Interfaces carrying D5/NS5 charges

• Generalizations to other top-down theories, especially

$$\mathsf{AdS}_3 imes S^3 imes S^3 imes S^1$$

Thank you for your attention!

Probe brane solutions

- (p,q) string interface dual to (p,q) strings in near-horizon geometry
- When D1 fields are abelian, behavior determined by DBI-CS action

$$I = qT_{\text{D1}} \int d^2 \xi e^{-\Phi} \sqrt{-\det(\hat{g} + F)} + qT_{\text{D1}} \int (C^{(2)} + F)$$

F1 charge p encoded in electric field F_{tx} .

• Solutions are the near-horizon limit of:

(p,q) Interface Flows

- Boundary RG flow \Rightarrow CFTs remain unchanged
- Invariance of charges
 - \Rightarrow location of D3 in terms of location of D1 and #(D1-branes)

Solutions depend on harmonic functions *a*, *b*, *u*, *v* and their duals \tilde{a} , \tilde{b} , \tilde{u} , \tilde{v}

Solutions depend on harmonic functions *a*, *b*, *u*, *v* and their duals \tilde{a} , \tilde{b} , \tilde{u} , \tilde{v}

$$Q_{D1} = 4\pi \left(\int_{\mathcal{C}} \frac{4u}{a} \frac{au - b^2}{au + \tilde{b}^2} i(\partial_w c^{(1)} - \chi \partial_w b^{(1)}) dw + \int_{\mathcal{C}} 4C_{T^4} dw \right) + c.c.$$

F1/D1 Interface Solution

F1/D1 Interface Solution

F1/D1 Interface Solution

D3 Defect (dissolved D1/F1-branes)

D3 Defect (dissolved D1/F1-branes)

