
Physics 403, Spring 2011
Problem Set 9

due Thursday, April 28

1. Campbell-Baker-Hausdorff [10 pts]: Let X, Y ∈ g be elements of a Lie algebra. In
class, we claimed that

eXeY = eX+Y+...

where the ellipsis in the above equation denotes terms that only involve commutators of
X and Y and hence are also elements of g. Verify this claim to third order in X and Y ,
i.e. up to commutators of the form [X, [X, Y ]] and [Y, [Y,X]].

2. Fun with SU(2) [15 pts]:

(a) Let (z0, z1) ∈ C2. Show that the operators
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satisfy the right commutation relations to generate the Lie algebra for so3.

(b) Show that monomials of the form zα0 z
β
1 can be used to form finite dimensional irreps

of this Lie algebra. What are the bounds on α and β for a given irrep? What is the
relation between α and β and eigenvalues of Jz and J2 = J2
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y + J2

z ?

3. Coherent States of SU(2) [20 pts]: Consider the so-called “coherent state”

|~z, j〉 =
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where |j;m〉 is the usual basis of orthonormal angular momentum states from quantum
mechanics and ~z = (z1, z2) ∈ C2 is a vector that satisfies the constraint |z1|2 + |z2|2 = 1.

(a) Verify that |~z, j〉 is properly normalized and compute the expectation values 〈Jx〉,
〈Jy〉, and 〈Jz〉 in the state |~z, j〉.

(b) Compute the dispersion ∆Jz =
√
〈Jz〉2 − 〈J2

z 〉.

(c) Use angles on S2 to parametrize the ratio z2/z1 = tan(θ/2)eiφ. What is 〈 ~J〉 in terms
of θ and φ. Use rotational symmetry to argue what ∆Jx and ∆Jy must be. Calculate
(∆Jx)

2 + (∆Jy)
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2. Physically, how do you interpret these results?
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