Physics 403, Spring 2011

Problem Set 9
due Thursday, April 28

1. Campbell-Baker-Hausdorff [10 pts]: Let $X, Y \in \mathfrak{g}$ be elements of a Lie algebra. In class, we claimed that

$$
e^{X} e^{Y}=e^{X+Y+\ldots}
$$

where the ellipsis in the above equation denotes terms that only involve commutators of X and Y and hence are also elements of \mathfrak{g}. Verify this claim to third order in X and Y, i.e. up to commutators of the form $[X,[X, Y]]$ and $[Y,[Y, X]]$.
2. Fun with $S U(2)$ [15 pts]:
(a) Let $\left(z_{0}, z_{1}\right) \in \mathbb{C}^{2}$. Show that the operators

$$
\begin{aligned}
J_{x} & =\frac{1}{2}\left(z_{0} \frac{\partial}{\partial z_{1}}+z_{1} \frac{\partial}{\partial z_{0}}\right) \\
J_{y} & =\frac{1}{2 i}\left(z_{0} \frac{\partial}{\partial z_{1}}-z_{1} \frac{\partial}{\partial z_{0}}\right) \\
J_{z} & =\frac{1}{2}\left(z_{0} \frac{\partial}{\partial z_{0}}-z_{1} \frac{\partial}{\partial z_{1}}\right)
\end{aligned}
$$

satisfy the right commutation relations to generate the Lie algebra for $\mathfrak{s o}_{3}$.
(b) Show that monomials of the form $z_{0}^{\alpha} z_{1}^{\beta}$ can be used to form finite dimensional irreps of this Lie algebra. What are the bounds on α and β for a given irrep? What is the relation between α and β and eigenvalues of J_{z} and $J^{2}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}$?
3. Coherent States of $S U(2)$ [20 pts]: Consider the so-called "coherent state"

$$
|\vec{z}, j\rangle=\sum_{m=-j}^{j} \frac{\sqrt{2 j!}}{\sqrt{(j+m)!(j-m)!}} z_{1}^{j+m} z_{2}^{j-m}|j ; m\rangle
$$

where $|j ; m\rangle$ is the usual basis of orthonormal angular momentum states from quantum mechanics and $\vec{z}=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}$ is a vector that satisfies the constraint $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1$.
(a) Verify that $|\vec{z}, j\rangle$ is properly normalized and compute the expectation values $\left\langle J_{x}\right\rangle$, $\left\langle J_{y}\right\rangle$, and $\left\langle J_{z}\right\rangle$ in the state $|\vec{z}, j\rangle$.
(b) Compute the dispersion $\Delta J_{z}=\sqrt{\left\langle J_{z}\right\rangle^{2}-\left\langle J_{z}^{2}\right\rangle}$.
(c) Use angles on S^{2} to parametrize the ratio $z_{2} / z_{1}=\tan (\theta / 2) e^{i \phi}$. What is $\langle\vec{J}\rangle$ in terms of θ and ϕ. Use rotational symmetry to argue what ΔJ_{x} and ΔJ_{y} must be. Calculate $\left(\Delta J_{x}\right)^{2}+\left(\Delta J_{y}\right)^{2}+\left(\Delta J_{z}\right)^{2}$. Physically, how do you interpret these results?

