Physics 403, Spring 2011
 Problem Set 8
 due Thursday, April 21

1. Subrepresentations [10 pts]: In class, we showed that for an inner product space V and a unitary representation $\rho: G \rightarrow G L(V)$, if a subspace $W \subset V$ was stable under ρ, then the orthogonal complement W^{\perp} was also stable under ρ. Thus ρ decomposed into two subrepresentations given by the restrictions of ρ to W and W^{\perp} respectively. Here, we would like to remove the assumption that V be an inner product space and that ρ be unitary.
(a) Let $p: V \rightarrow W$ be a linear operator such that $p(x)=x$ if $x \in W$. This operator is called a projection operator. We can define a p dependent orthogonal complement via $W_{p}^{\perp}=\operatorname{ker}(p)$. Construct

$$
\tilde{p}=\frac{1}{|G|} \sum_{g \in G} \rho(g) \cdot p \cdot \rho(g)^{-1}
$$

Show that $\tilde{p}: V \rightarrow W$ is also a projection operator.
(b) Show that $\rho(g) \cdot \tilde{p}=\tilde{p} \cdot \rho(g) \forall g \in G$.
(c) Let $W^{\perp}=\operatorname{ker}(\tilde{p})$. Show that W^{\perp} is stable with respect to the action of G.
2. Tensor Products of Character [10 pts]: Let $\rho: G \rightarrow G L(V)$ be a representation of the group G on the vector space V, and let χ be the corresponding character. Let $g \in G$ be an arbitrary group element.
(a) Show that the characters χ_{α} of $\operatorname{Alt}^{2}(V)$ and χ_{σ} of $\operatorname{Sym}^{2}(V)$ can be written in terms of χ in the following way

$$
\begin{aligned}
\chi_{\alpha}(g) & =\frac{1}{2}\left[\chi(g)^{2}-\chi\left(g^{2}\right)\right] \\
\chi_{\sigma}(g) & =\frac{1}{2}\left[\chi(g)^{2}+\chi\left(g^{2}\right)\right] .
\end{aligned}
$$

(b) Let $\rho^{\prime}: G \rightarrow G L\left(V^{\prime}\right)$ be another representation and χ^{\prime} the corresponding character. Find the characters of $\operatorname{Alt}^{2}\left(V \oplus V^{\prime}\right)$ and $\operatorname{Sym}^{2}\left(V \oplus V^{\prime}\right)$ in terms of χ and χ^{\prime}.
3. Tensor Product and $S_{3}[10 \mathrm{pts}]$: Let V be the irreducible representation of the permutation group of three elements, S_{3}, of dimension two. Use the character table of S_{3} to decompose $V^{\otimes n}$ into irreducible representations.
4. Character Tables [20 pts]: Work out the character table for S_{5}.
5. Ammonia [20 pts]: The molecule ammonia NH_{3} is symmetric with respect to the action of a finite group G that acts by rotations and reflections.
(a) What is this group G ? Write down the character table for the group.
(b) Consider the 12 dimensional (reducible) representation ρ obtained by letting G act on the coordinates of the hydrogen and nitrogen atoms. What is the character ϕ of this representation?
(c) Decompose ϕ into characters of the irreps in your character table.
(d) Remove the characters corresponding to translations and rotations to see which irreps correspond to vibrational modes.

