Physics 403, Spring 2011 Problem Set 8 due Thursday, April 21

- 1. Subrepresentations [10 pts]: In class, we showed that for an inner product space V and a unitary representation $\rho : G \to GL(V)$, if a subspace $W \subset V$ was stable under ρ , then the orthogonal complement W^{\perp} was also stable under ρ . Thus ρ decomposed into two subrepresentations given by the restrictions of ρ to W and W^{\perp} respectively. Here, we would like to remove the assumption that V be an inner product space and that ρ be unitary.
 - (a) Let $p: V \to W$ be a linear operator such that p(x) = x if $x \in W$. This operator is called a projection operator. We can define a p dependent orthogonal complement via $W_p^{\perp} = \ker(p)$. Construct

$$\tilde{p} = \frac{1}{|G|} \sum_{g \in G} \rho(g) \cdot p \cdot \rho(g)^{-1} .$$

Show that $\tilde{p}: V \to W$ is also a projection operator.

- (b) Show that $\rho(g) \cdot \tilde{p} = \tilde{p} \cdot \rho(g) \ \forall g \in G$.
- (c) Let $W^{\perp} = \ker(\tilde{p})$. Show that W^{\perp} is stable with respect to the action of G.
- 2. Tensor Products of Character [10 pts]: Let $\rho : G \to GL(V)$ be a representation of the group G on the vector space V, and let χ be the corresponding character. Let $g \in G$ be an arbitrary group element.
 - (a) Show that the characters χ_{α} of $\operatorname{Alt}^2(V)$ and χ_{σ} of $\operatorname{Sym}^2(V)$ can be written in terms of χ in the following way

$$\chi_{\alpha}(g) = \frac{1}{2} [\chi(g)^2 - \chi(g^2)] ,$$

$$\chi_{\sigma}(g) = \frac{1}{2} [\chi(g)^2 + \chi(g^2)] .$$

- (b) Let $\rho': G \to GL(V')$ be another representation and χ' the corresponding character. Find the characters of $\operatorname{Alt}^2(V \oplus V')$ and $\operatorname{Sym}^2(V \oplus V')$ in terms of χ and χ' .
- 3. Tensor Product and S_3 [10 pts]: Let V be the irreducible representation of the permutation group of three elements, S_3 , of dimension two. Use the character table of S_3 to decompose $V^{\otimes n}$ into irreducible representations.
- 4. Character Tables [20 pts]: Work out the character table for S_5 .
- 5. Ammonia [20 pts]: The molecule ammonia NH_3 is symmetric with respect to the action of a finite group G that acts by rotations and reflections.
 - (a) What is this group G? Write down the character table for the group.

- (b) Consider the 12 dimensional (reducible) representation ρ obtained by letting G act on the coordinates of the hydrogen and nitrogen atoms. What is the character ϕ of this representation?
- (c) Decompose ϕ into characters of the irreps in your character table.
- (d) Remove the characters corresponding to translations and rotations to see which irreps correspond to vibrational modes.