
Physics 403, Spring 2011
Problem Set 6

due Thursday, March 31

1. Green’s Function for the Diffusion Equation [15 pts]:

(a) The diffusion equation appears in many places in physics, perhaps because it follows
from two very modest assumptions. Assume the existence of a conserved current

∂tρ(t, x)− ∂xj(t, x) = 0

and that the current is proportional to the gradient of the density

j(t, x) = D∂xρ(t, x) ,

where D is the diffusion constant. Derive the diffusion equation for ρ(t, x).

(b) Compute the Fourier transform

G̃(ω, k) =

∫
dω dk

(2π)2
eiωt−ikxG(t, x) ,

of the Green’s function for the diffusion equation.

(c) Use the inverse Fourier transform to compute G(t, x) from G̃(ω, k).

2. Pantograph Drag [20 pts]: This beautiful problem I borrowed from Stone and Goldbart.
A high-speed train picks up its electrical power via a pantograph from an overhead line.
The locomotive travels at a speed U and the pantograph exerts a constant vertical force
F on the power line. We make the usual small amplitude approximation and assume (not
unrealistically) that the line is supported in such a way that its vertical displacement
obeys an inhomogeneous Klein-Gordon equation

ρÿ − Ty′′ + ρΩ2y = Fδ(x− Ut) ,

with c2 = T/ρ the velocity squared of propagation of short-wavelength transverse waves
on the overhead cable.

(a) Assume that U < c and solve for the steady state displacement of the cable about
the pickup point.

(b) Now assume that U > c. Again find an expression for the displacement of the cable.

I gather from reading the internet that c is usually the upper bound on the speed of
these trains. [ Hint: It helps to assume that y(t, x) = y(x − Ut). What is the physical
significance of this assumption? ]
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3. Sphere Volumes [10 pts]: Volumes of d-dimensional spheres showed up in prefactors
of a number of Green’s functions that we computed in class. In this problem, we will
compute the volume of a d-dimensional sphere of unit radius. You doubtless know that
Vol(S1) = 2π and Vol(S2) = 4π. You may have seen the following trick for computing
the integral I =

∫∞
−∞ e

−x2dx =
√
π:

I2 =

∫ ∞
−∞

∫ ∞
−∞

e−x
2−y2dx dy =

∫ ∞
0

∫ 2π

0

e−r
2

rdθ dr = 2π

∫ ∞
0

re−r
2

dr = π .

Knowing I, use Id+1 to compute Vol(Sd).

4. Right and Left Inverses [10 pts]: In class we considered the operator L on L2
w(a, b)

where
w(x)L[f(x)] = (p(x)f ′(x))

′
+ w(x)p0(x)f(x) ,

and its putative inverse G where

G[g(x)] =
f2(x)

Wp

∫ x

a

w(y)f1(y)g(y)dy +
f1(x)

Wp

∫ b

x

w(y)f2(y)g(y)dy .

To be a little more specific, we took the domain of L to be

DL = {f, Lf ∈ L2
w(a, b) : α1f(a) + β1f

′(a) = 0 &α2f(b) + β2f
′(b) = 0} ,

such that L was self-adjoint and we assumed that L had no zero eigenvalues. We chose
f1(x) and f2(x) to satisfy the homogeneous differential equations Lf1 = 0 and Lf2 = 0
where f1 satisfied the boundary condition described in DL at x = a and f2 satisfied the
boundary conditions at x = b. The Wronskian was then W (x) = f1(x)f ′2(x)− f2(x)f ′1(x).

In class we demonstrated that L[G[g(x)]] = g(x). In this problem, we ask you to demon-
strate that G[L[f(x)]] = f(x) for f ∈ DL.
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