Physics 403, Spring 2011
 Problem Set 4 due Thursday, March 3

1. Everything is hypergeometric (20 pts): Express the functions

$$
(1+x)^{c}, \quad \frac{1}{x} \sin ^{-1} x, \quad \frac{1}{x} \ln (1+x),
$$

in terms of hypergeometric functions.
2. Or confluent hypergeometric (20 pts): The confluent hypergeometric function $\Phi(\alpha, \gamma ; z)$ satisfies the differential equation

$$
y^{\prime \prime}(z)+\left(\frac{\gamma}{z}-1\right) y^{\prime}(z)-\frac{\alpha}{z} y(z)=0 .
$$

Many familiar functions can be written in terms of confluent hypergeometric functions. For example, Hassani describes how to write the Bessel functions in terms of $\Phi(\alpha, \gamma ; z)$ on pp 423-4.
(a) The associated Laguerre polynomials $L_{n}^{\nu}(x)$ satisfy the differential equation

$$
x y^{\prime \prime}(x)+(\nu+1-x) y^{\prime}(x)+n y(x)=0 .
$$

Put this equation in confluent hypergeometric form and relate $\Phi(\alpha, \gamma ; z)$ to $L_{n}^{\nu}(x)$.
(b) The Hermite polynomials $H_{n}(x)$ satisfy the differential equation

$$
y^{\prime \prime}(x)-2 x y^{\prime}(x)+2 n y(x)=0 .
$$

Put this equation in confluent hypergeometric form and relate the solutions of the confluent hypergeometric equation to $H_{n}(x)$.
(c) Express the error function,

$$
\operatorname{erf}(x)=\int_{0}^{x} e^{-t^{2}}
$$

in terms of a confluent hypergeometric function. In particular, verify that the error function can be expressed as $\operatorname{erf}(x)=x \Phi\left(\alpha, \gamma ;-x^{2}\right)$ and find α and γ.
3. The Sum of the critical exponents (10 pts): Let

$$
y^{\prime \prime}(z)+p(z) y^{\prime}(z)+q(z) y(z)=0
$$

be a Fuchsian second order differential equation with n regular singular points. Let $\lambda_{ \pm, j}$ be the critical exponents of the j 'th regular singular point. Evaluate $\sum_{j=1}^{n}\left(\lambda_{+, j}+\lambda_{-, j}\right)$. [Hint: If you have no idea where to begin, see if you can figure out the answer for $n=1$, 2,3 , and 4 . Do you see a pattern?]

