Physics 403, Spring 2011 Problem Set 4 due Thursday, March 3

1. Everything is hypergeometric (20 pts): Express the functions

$$(1+x)^c$$
, $\frac{1}{x}\sin^{-1}x$, $\frac{1}{x}\ln(1+x)$,

in terms of hypergeometric functions.

2. Or confluent hypergeometric (20 pts): The confluent hypergeometric function $\Phi(\alpha, \gamma; z)$ satisfies the differential equation

$$y''(z) + \left(\frac{\gamma}{z} - 1\right)y'(z) - \frac{\alpha}{z}y(z) = 0.$$

Many familiar functions can be written in terms of confluent hypergeometric functions. For example, Hassani describes how to write the Bessel functions in terms of $\Phi(\alpha, \gamma; z)$ on pp 423-4.

(a) The associated Laguerre polynomials $L_n^{\nu}(x)$ satisfy the differential equation

$$xy''(x) + (\nu + 1 - x)y'(x) + ny(x) = 0.$$

Put this equation in confluent hypergeometric form and relate $\Phi(\alpha, \gamma; z)$ to $L_n^{\nu}(x)$.

(b) The Hermite polynomials $H_n(x)$ satisfy the differential equation

$$y''(x) - 2xy'(x) + 2ny(x) = 0$$

Put this equation in confluent hypergeometric form and relate the solutions of the confluent hypergeometric equation to $H_n(x)$.

(c) Express the error function,

$$\operatorname{erf}(x) = \int_0^x e^{-t^2} \; ,$$

in terms of a confluent hypergeometric function. In particular, verify that the error function can be expressed as $\operatorname{erf}(x) = x\Phi(\alpha, \gamma; -x^2)$ and find α and γ .

3. The Sum of the critical exponents (10 pts): Let

$$y''(z) + p(z)y'(z) + q(z)y(z) = 0$$

be a Fuchsian second order differential equation with n regular singular points. Let $\lambda_{\pm,j}$ be the critical exponents of the *j*'th regular singular point. Evaluate $\sum_{j=1}^{n} (\lambda_{+,j} + \lambda_{-,j})$. [Hint: If you have no idea where to begin, see if you can figure out the answer for n = 1, 2, 3, and 4. Do you see a pattern?]