Physics 403, Spring 2011
 Problem Set 3
 due Thursday, February 24

1. A Recursion Relation for the Heun Equation (20 pts): In class we discussed the Heun equation, a second order linear ordinary differential equation with four regular singular points

$$
y^{\prime \prime}(z)+\left[\frac{\gamma}{z}+\frac{\delta}{z-1}+\frac{\epsilon}{z-z_{0}}\right] y^{\prime}(z)+\frac{\alpha \beta z-Q}{z(z-1)\left(z-z_{0}\right)} y(z)=0 .
$$

The parameters satisfy the constraint $\alpha+\beta+1=\gamma+\delta+\epsilon$.
(a) Where are the regular singular points? What critical exponents are associated with each singular point?
(b) A solution near $z=0$ has the power series representation

$$
y(z)=\sum_{n=0}^{\infty} c_{n} z^{n} .
$$

Give a three term recursion relation for c_{n+2}, c_{n+1}, and c_{n}.
2. A Black Hole Wave Equation at Small Momentum (10 pts): In class we considered the wave equation

$$
u^{3} \partial_{u}\left[u^{-3} f(u) \partial_{u} \psi(u)\right]+\frac{\omega^{2}}{f(u)} \psi(u)-q^{2} \psi(u)=0
$$

where $f(u)=1-u^{4}$ with "in-going" boundary conditions at $u=1$: $\psi \sim(1-u)^{-i \omega / 4}$. Find a solution to this equation for $\omega=0$ and small q of the form

$$
\psi(u)=\psi_{0}(u)+q^{2} \psi_{1}(u)+O\left(q^{4}\right)
$$

3. Exactly Solvable Variant of a Black Hole Wave Equation (30 pts): Consider the following variant of the wave equation we studied in class

$$
u \partial_{u}\left[u^{-1} f(u) \partial_{u} \psi(u)\right]+\frac{\omega^{2}}{f(u)} \psi(u)-q^{2} \psi(u)=0
$$

where again $f(u)=1-u^{4}$. While the equation we considered in class is obeyed by a massless spin zero particle, the above equation is satisfied by a massless spin one particle in a black hole space time. Set the momentum $q=0$ in what follows.
(a) What are the singular points of this differential equation? What are their corresponding critical exponents?
(b) Define a new coordinate $z=\frac{1}{2}\left(1-1 / u^{2}\right)$. Write the differential equation in terms of z. Where are the singular points now? Introduce a rescaled wave function $y(z)$, where $\psi(z)=g(z) y(z)$ and $g(z)$ is a simple function that depends on the critical points and their scaling exponents, such that the differential equation for $y(z)$ takes a canonical form.
(c) If we impose "in-going" boundary conditions at $u=1$, for what values of ω does the solution $\psi(u)$ satisfy Dirichlet boundary conditions at $u=0$, i.e. $\psi(0)=0$. These values of ω are often called quasinormal modes. How come they are complex?

