Physics 403, Spring 2011
 Problem Set 2
 due Thursday, February 17

1. A Differential Equation for the Legendre Polynomials (15 pts): In this problem, we will derive a second order linear differential equation satisfied by the Legendre polynomials

$$
P_{n}(x)=\frac{(-1)^{n}}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[\left(1-x^{2}\right)^{n}\right] .
$$

(a) Show that

$$
\begin{equation*}
\int_{-1}^{1} P_{m}(x)\left[\left(1-x^{2}\right) P_{n}^{\prime}(x)\right]^{\prime} d x=0 \quad \text { for } m \neq n \tag{1}
\end{equation*}
$$

Conclude that

$$
\left[\left(1-x^{2}\right) P_{n}^{\prime}(x)\right]^{\prime}=\lambda_{n} P_{n}(x)
$$

for λ_{n} a constant. [Prime ' here and in the following questions denotes $d / d x$.]
(b) Perform the integral (1) for $m=n$ to find a relation for λ_{n} in terms of the leading coefficient of the Legendre polynomial $P_{n}(x)=k_{n} x^{n}+\ldots$. What is k_{n} ?
2. A Generating Function for the Legendre Polynomials (20 pts): In this problem, we will derive a generating function for the Legendre polynomials.
(a) Verify that the Legendre polynomials satisfy the recurrence relation

$$
P_{n}^{\prime}-2 x P_{n-1}^{\prime}+P_{n-2}^{\prime}-P_{n-1}=0
$$

(b) Consider the generating function

$$
g(x, t)=\sum_{n=0}^{\infty} t^{n} P_{n}(x) .
$$

Use the recurrence relation above to show that the generating function satisfies the first order differential equation

$$
\left(1-2 x t+t^{2}\right) \frac{d}{d x} g(x, t)=\operatorname{tg}(x, t) .
$$

Determine the constant of integration by using the fact that $P_{n}(1)=1$.
(c) Use the generating function to express the potential for a point particle

$$
\frac{q}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

in terms of Legendre polynomials.
3. The Dirac delta function ($\mathbf{1 5} \mathrm{pts}$): Dirac delta functions are useful mathematical tools in quantum mechanics. (Technically, they are not functions but distributions.) The Dirac delta function $\delta(x)$ has the property that

$$
\int_{-\infty}^{\infty} f(x) \delta\left(x-x_{0}\right) d x=f\left(x_{0}\right)
$$

(a) Show that $\delta(a x)=\delta(x) /|a|$. [You may assume $a \neq 0$.]
(b) Let $x_{i}, i=1, \ldots, n$, be the zeroes of a function $f(x)$, i.e. $f\left(x_{i}\right)=0$. Let $f^{\prime}(x)=d f / d x$ be the derivative of $f(x)$. Show that

$$
\delta(f(x))=\sum_{i=1}^{n} \frac{\delta\left(x-x_{i}\right)}{\left|f^{\prime}\left(x_{i}\right)\right|} .
$$

[You may assume $f^{\prime}\left(x_{i}\right) \neq 0$.]
4. A Convolution ($\mathbf{1 0} \mathbf{p t s}$): Consider two functions $f(x)$ and $g(x)$ defined on the interval $0 \leq x<2 \pi$. These functions have the Fourier series representations

$$
f(x)=\sum_{n=-\infty}^{\infty} f_{n} e^{i n x} ; \quad g(x)=\sum_{n=-\infty}^{\infty} g_{n} e^{i n x}
$$

Consider the convolution

$$
h(x)=\int_{0}^{2 \pi} g(x-y) f(y) d y
$$

Express the Fourier series for $h(x)$ in terms of f_{n} and g_{n}.
5. Two infinite sums (10 pts): Find the Fourier series expansion of $f(\theta)=\theta^{2}$ for $|\theta|<\pi$. Use the expansion to sum the infinite series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

