Physics 403, Spring 2011 Problem Set 10 due Thursday, May 5

1. Irreps of $\mathbf{S U}(3)$ [15 pts$]$: The quarks, anti-quarks, and gluons of QCD transform respectively under the fundamental, anti-fundamental and adjoint representations of $\operatorname{SU}(3)$.
(a) In order for a quark to be able to absorb a gluon, there needs to be a fundamental representation in the tensor product of a fundamental and adjoint representation. Use the graphical method we discussed in class to express $\mathbf{3} \otimes \mathbf{8}$ as a direct sum of irreps of $\mathfrak{s u}(3)$.
(b) One way that QCD is very different from QED is that unlike photons, gluons can interact with each other. In order for a gluon to decay into two gluons, there needs to be an adjoint representation in the tensor product of two adjoint representations. Express $\mathbf{8} \otimes \mathbf{8}$ as a direct sum of irreps of $\mathfrak{s u} u(3)$.
2. The Little Group of a Massless Particle [15 pts]:
(a) Consider a massless particle with momentum $k=(1,1,0,0)$ and the 4×4 matrix where

$$
g=\left(\begin{array}{cccc}
1+\zeta & -\zeta & \alpha & \beta \\
\zeta & 1-\zeta & \alpha & \beta \\
\alpha & -\alpha & 1 & 0 \\
\beta & -\beta & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \theta & \sin \theta \\
0 & 0 & -\sin \theta & \cos \theta
\end{array}\right)
$$

For what value of ζ is g an element of $S O^{+}(3,1)$? Show that $g k=k$. Argue that elements of the type g constitute the little group of a massless particle.
(b) Argue that an arbitrary element of the Lie algebra of the little group can be written as

$$
\alpha A+\beta B+i \theta J_{3}=\left(\begin{array}{cccc}
0 & 0 & \alpha & \beta \\
0 & 0 & \alpha & \beta \\
\alpha & -\alpha & 0 & \theta \\
\beta & -\beta & -\theta & 0
\end{array}\right)
$$

Construct the commutators of A, B, and J_{3}.

