Physics 305, Fall 2008
 Problem Set 1

due Thursday, September 24

1. Linear Algebra warm up (20 points): Let $V=\mathbb{C}^{n}$ be a finite dimensional vector space over the complex numbers \mathbb{C} of dimension n with the usual inner product. Let H be a Hermitian operator and U be a unitary operator defined over V.
a. Demonstrate that the eigenvalues of H are real and that eigenvectors of H with distinct eigenvalues are orthogonal.
b. Demonstrate that eigenvalues λ of U must have absolute value $|\lambda|=1$ and that eigenvectors with distinct eigenvalues are orthogonal.
c. Extra Credit (5 points): Demonstrate that the (properly normalized) eigenvectors of H provide an orthonormal basis of V. (Hint: First argue that H must have at least one eigenvector v. Consider the subspace v_{\perp} orthogonal to v. Argue that H restricted to v_{\perp} is Hermitian.)
2. The Dirac delta function (10 points): Dirac delta functions are useful mathematical tools in quantum mechanics. (Technically, they are not functions but distributions.) The Dirac delta function $\delta(x)$ has the property that

$$
\int_{-\infty}^{\infty} f(x) \delta\left(x-x_{0}\right) d x=f\left(x_{0}\right) .
$$

a. Show that $\delta(a x)=\delta(x) /|a|$. [You may assume $a \neq 0$.]
b. Extra Credit (5 points): Let $x_{i}, i=1, \ldots, n$, be the zeroes of a function $f(x)$, i.e. $f\left(x_{i}\right)=0$. Let $f^{\prime}(x)=d f / d x$ be the derivative of $f(x)$. Show that

$$
\delta(f(x))=\sum_{i=1}^{n} \frac{\delta\left(x-x_{i}\right)}{\left|f^{\prime}\left(x_{i}\right)\right|}
$$

[You may assume $f^{\prime}\left(x_{i}\right) \neq 0$.]
3. "Supersymmetric" quantum mechanics (50 points): Let the operators A and A^{\dagger} be Hermitian conjugates of each other. Define the Hermitian operators

$$
H_{+}=\hbar A A^{\dagger} \quad \text { and } \quad H_{-}=\hbar A^{\dagger} A
$$

Assume that the eigenvalues of $H_{ \pm}$are all distinct.
a. Show that the eigenvalues of $H_{ \pm}$are non-negative.
b. Given an eigenvector $\left|\psi_{+}\right\rangle$of H_{+}with eigenvalue $E \neq 0$, construct an eigenvector $\left|\psi_{-}\right\rangle$of H_{-}with the same eigenvalue E.

Consider a Hamiltonian H for a one dimensional system corresponding to a particle of mass m placed in an attractive potential $V(x)$ with minimum at $x=0(V(x) \leq 0$ and $V(x)$ tends to zero as $|x| \rightarrow \infty)$:

$$
H=\frac{p^{2}}{2 m}+V(x)
$$

We would like to express this Hamiltonian in the form

$$
H=\hbar A A^{\dagger}+\alpha
$$

for a real constant α where A and A^{\dagger} are defined by

$$
\begin{aligned}
A & =\frac{i}{\sqrt{2 m \hbar}} p+\sqrt{\frac{m}{2 \hbar}} W(x)=\sqrt{\frac{\hbar}{2 m}} \frac{d}{d x}+\sqrt{\frac{m}{2 \hbar}} W(x) \\
A^{\dagger} & =\frac{-i}{\sqrt{2 m \hbar}} p+\sqrt{\frac{m}{2 \hbar}} W(x)=-\sqrt{\frac{\hbar}{2 m}} \frac{d}{d x}+\sqrt{\frac{m}{2 \hbar}} W(x) .
\end{aligned}
$$

$W(x)$ is called the superpotential.
c. Calculate $H_{+}=\hbar A A^{\dagger}$ and $H_{-}=\hbar A^{\dagger} A$ as a function of $\frac{d^{2}}{d x^{2}}, W(x)$, and its derivative $W^{\prime}(x)$.
d. Determine the relation between $W(x), W^{\prime}(x), V(x)$ and α such that H can be written in the factorized form $H=\hbar A A^{\dagger}+\alpha$. The Hamiltonian $H_{S}=\hbar A^{\dagger} A+\alpha$ is called the supersymmetric partner of H.
e. Consider the states $|\psi\rangle$ and $|\tilde{\psi}\rangle$ with the corresponding properties $A^{\dagger}|\psi\rangle=0$ and $A|\tilde{\psi}\rangle=0$. Express $\psi(x)$ and $\tilde{\psi}(x)$ in terms of $W(x)$. Show that only one of these states can be normalizable.
f. Assume $\tilde{\psi}(x)$ is normalizable. Show that $\tilde{\psi}(x)$ is the ground state wave function of H_{S} with energy α.

The machinery can be used to diagonalize a Hamiltonian with the potential

$$
V_{\mu}(x)=-\frac{\hbar^{2} \kappa^{2}}{2 m} \frac{\mu(\mu+1)}{\cosh ^{2} \kappa x}
$$

This problem is already quite long, and in the following, we will content ourselves with studying only the $\mu=0$ and 1 cases.
g. Consider the free Hamiltonian $H_{0}=p^{2} / 2 m$. Show that the choice $A_{0}=i p / \sqrt{2 m \hbar}$ factorizes H_{0}.
h. Determine the superpotential $W_{1}(x)$ that leads to the following factorization

$$
H_{0}=\hbar A_{1} A_{1}^{\dagger}-\frac{\hbar^{2} \kappa^{2}}{2 m}
$$

i. Show that the Hamiltonian H_{1} with potential

$$
V_{1}(x)=-\frac{\hbar^{2} \kappa^{2}}{m} \frac{1}{\cosh ^{2} \kappa x} .
$$

can be obtained as the supersymmetric partner of H_{0} :

$$
H_{1}=\hbar A_{1}^{\dagger} A_{1}-\frac{\hbar^{2} \kappa^{2}}{2 m}
$$

j. Find the ground state wave function of H_{1} and its corresponding energy.
k. Use your knowledge of the eigenstates of H_{0} and part (b) to calculate the scattering states of H_{1}. What are the transmission and reflection coefficients of a plane wave scattering off of $V_{1}(x)$? What is the phase shift of the transmitted wave?

