Physics 305, Fall 2008 Problem Set 1

due Thursday, September 18

- 1. Linear Algebra warm up (20 points): Let $V = \mathbb{C}^n$ be a finite dimensional vector space over the complex numbers \mathbb{C} of dimension n with the usual inner product. Let H be a Hermitian operator and U be a unitary operator defined over V.
 - a. Demonstrate that the eigenvalues of H are real and that eigenvectors of H with distinct eigenvalues are orthogonal.
 - b. Demonstrate that eigenvalues λ of U must have absolute value $|\lambda| = 1$ and that eigenvectors with distinct eigenvalues are orthogonal.
 - c. (Optional) Demonstrate that the (properly normalized) eigenvectors of H provide an orthonormal basis of V. (Hint: First argue that H must have at least one eigenvector v. Consider the subspace v_{\perp} orthogonal to v. Argue that H restricted to v_{\perp} is Hermitian.)
- 2. A short angular momentum problem (15 points): The following results are useful in determining allowed transitions between different atomic states.
 - a. Compute $[L_z, \vec{r}]$ where $\vec{r} = (x, y, z)$.
 - b. Let $|lm\rangle$ be an eigenstate L^2 and L_z where in our usual notation

$$L_z|lm\rangle = \hbar m|lm\rangle$$
 and $L^2|lm\rangle = \hbar^2 l(l+1)|lm\rangle$.

Use part (a) to show that $\langle l'm'|z|lm\rangle=0$ unless m'=m and that $\langle l'm'|x|lm\rangle=\langle l'm'|y|lm\rangle=0$ unless $m'=m\pm 1$.

3. "Supersymmetric" quantum mechanics (50 points): Let the operators A and A^{\dagger} be Hermitian conjugates of each other. Define the Hermitian operators

$$H_{+} = \hbar A A^{\dagger}$$
 and $H_{-} = \hbar A^{\dagger} A$.

Assume that the eigenvalues of H_{\pm} are all distinct.

- a. Show that the eigenvalues of H_{\pm} are non-negative.
- b. Given an eigenvector $|\psi_{+}\rangle$ of H_{+} with eigenvalue $E \neq 0$, construct an eigenvector $|\psi_{-}\rangle$ of H_{-} with the same eigenvalue E.

Consider a Hamiltonian H for a one dimensional system corresponding to a particle of mass m placed in an attractive potential V(x) with minimum at x = 0 ($V(x) \le 0$ and V(x) tends to zero as $|x| \to \infty$):

$$H = \frac{p^2}{2m} + V(x) \ .$$

We would like to express this Hamiltonian in the form

$$H = \hbar A A^{\dagger} + \alpha$$

for a real constant α where A and A^{\dagger} are defined by

$$A = \frac{i}{\sqrt{2m\hbar}}p + \sqrt{\frac{m}{2\hbar}}W(x) = \sqrt{\frac{\hbar}{2m}}\frac{d}{dx} + \sqrt{\frac{m}{2\hbar}}W(x)$$

$$A^{\dagger} = \frac{-i}{\sqrt{2m\hbar}}p + \sqrt{\frac{m}{2\hbar}}W(x) = -\sqrt{\frac{\hbar}{2m}}\frac{d}{dx} + \sqrt{\frac{m}{2\hbar}}W(x) .$$

W(x) is called the superpotential.

- c. Calculate $H_+ = \hbar A A^{\dagger}$ and $H_- = \hbar A^{\dagger} A$ as a function of $\frac{d^2}{dx^2}$, W(x), and its derivative W'(x).
- d. Determine the relation between W(x), W'(x), V(x) and α such that H can be written in the factorized form $H = \hbar A A^{\dagger} + \alpha$. The Hamiltonian $H_S = \hbar A^{\dagger} A + \alpha$ is called the supersymmetric partner of H.
- e. Consider the states $|\psi\rangle$ and $|\tilde{\psi}\rangle$ with the corresponding properties $A^{\dagger}|\psi\rangle = 0$ and $A|\tilde{\psi}\rangle = 0$. Express $\psi(x)$ and $\tilde{\psi}(x)$ in terms of W(x). Show that only one of these states can be normalizable.
- f. Assume $\tilde{\psi}(x)$ is normalizable. Show that $\tilde{\psi}(x)$ is the ground state wave function of H_S with energy α .

The machinery can be used to diagonalize a Hamiltonian with the potential

$$V_{\mu}(x) = -\frac{\hbar^2 \kappa^2}{2m} \frac{\mu(\mu+1)}{\cosh^2 \kappa x} .$$

This problem is already quite long, and in the following, we will content ourselves with studying only the $\mu = 0$ and 1 cases.

- g. Consider the free Hamiltonian $H_0 = p^2/2m$. Show that the choice $A_0 = ip/\sqrt{2m\hbar}$ factorizes H_0 .
- h. Determine the superpotential $W_1(x)$ that leads to the following factorization

$$H_0 = \hbar A_1 A_1^{\dagger} - \frac{\hbar^2 \kappa^2}{2m} \ .$$

i. Show that the Hamiltonian H_1 with potential

$$V_1(x) = -\frac{\hbar^2 \kappa^2}{m} \frac{1}{\cosh^2 \kappa x} .$$

can be obtained as the supersymmetric partner of H_0 :

$$H_1 = \hbar A_1^{\dagger} A_1 - \frac{\hbar^2 \kappa^2}{2m} \ .$$

- j. Find the ground state wave function of H_1 and its corresponding energy.
- k. Use your knowledge of the eigenstates of H_0 and part (b) to calculate the scattering states of H_1 . What are the transmission and reflection coefficients of a plane wave scattering off of $V_1(x)$? What is the phase shift of the transmitted wave?