Physics 105 Problem Set 8 Solutions

Problem 8.1 (10 Points)

a) Dig a narrow tunnel straight through the center of the Earth. What is the force F(x) as a
function of distance x from the center of the Earth? With gravity, a spherical shell produces
no force on a mass inside of it. Hence only the mass of the Earth with a radius less than x
contributes to the force. For a gravitational force we have:

Flo) = -&Mm (1)
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However now M does not equal M, the mass of the Earth. We can find M by multiplying the
density of Earth p by the volume V' of a sphere with radius z.

M. i3

P = %ﬂ'RZ’ V = gﬂ'x (2>
M., a2?
M =pV = 7 (3)
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Inserting this into our equation for force we get:

- GM.mzx
F(r) = s ° (4)
b) What is the component F,(z) of the force along the 1000 km tunnel as a function of
position x from the center of the tunnel? Here we follow the same prescription as above, except
now we take the component of force along the direction of the tunnel. Let F(r) be the force
from part a) and let 6 be the angle between the tunnel and a radial vector to position z. Here
r is the distance between the center of earth and position x. See Figure 1.
x GM.mzx
F.(x)=F(r)cos = F(r)= = - ———— 5
() = F(r) " =-" )
c) What is the period of the oscillation in each tunnel? Notice that the force has the form
F = —kx, the same as a spring force. The frequency of oscillation for a spring is

w:\/gz\/ff‘ge (6)

Thus for the period of oscillation T" we find,

2
T =" —5058s = 1.4h (7)
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Figure 1: Tunnel Coordinates

Problem 8.2, (K&K 6.17, 10 Points)

Here we have an inverted pendulum of mass m, and length [, with springs of spring constant
k attached to its midpoint and top end. And there’s gravity. Define 6 to be the angle from
vertical in the clockwise direction and let Ax;, Ax,, be the linear displacements of the top
and middle of the rod respectively. We will make the further assumption that the equlibrium
length of the spring is much greater than [ the length of the rod and thus sthe springs remain
essentially horizontal for small displacements. Taking vertical to be the equilibrium position
and looking at the torque 7 = 7" X F pointing into the page for small displacements have:

l l
T=5mg sinf — lkAx; cos 6 — ik;Axm cos 6 (8)
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16’:émgsin@—ﬁksin@cos@—%k‘sin@cos@ 9)

For a rod pivoting about an end point the moment of inertia I = %mlz. For small angles
sinf =~ # and cosf ~ 1. Substituting this in and simplifying we find,

0+ (=50 = (10)

In this form we recognize the coefficient of § as w?, thus:
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Problem 8.3, (10 Points)

A particle of mass m moves in one dimension with a potential energy U(r) = —az? + ba?,
where a and b are positive constants. What is the angular frequency of small oscillations about
the equilibrium points of this system? First we find the equilibrium points z, by setting the
derivative of the potential equal to zero.

ou

= =0 (12)

T=To

0 = —2ax, + 4bz? (13)

a
O:07:|: 1 14
x \V 3 (14)

We can take seconds derivatives or graph U(x) to find that z, = 0 is an unstable equilibrium

and z, = /5 are stable equilibria. To find the frequency we solve for the force I’ = —%—g.

mi = 2ax — 4ba® (15)

Now we expand around the stable equilibrium points by letting = z, + Az and neglecting
terms of order Ax? or higher.

m(z, + A%) = 2a(z, + Az) — 4b(z, + Az)? (16)
mAZ = 2a(z, + Az) — 4b(z2 + 322 Ax) (17)
mAZ = (2a — 12b2?) Az (18)
Ad 4+ XAz — (19)
m
4a
— .= 2
=y (20)

Problem 8.4, (10 Points)
This system has a natural frequency of 4 rad/s and is subject to a damping force such that
b/m =10 s~! or in other words w, =4s! and v =b/m = 10s~".
a) Show that the system is over-damped and find the general solution for the displacement.
Our differential equations is,

i+yr +wir =0 (21)



Heavy damping occurs when

2

72 > w2 (22)
With our values of w, = 457! and v = 10s™! we get,

25 > 16 (23)

so heavy damping occurs in this case. The general solution to this differential equation is
derived in K&K Note 10.1 (Page 435). The solution has form,

x = Ae™+' + Be* " (24)
where A and B are constants and
Y, 4w?
==+ —4/1— = -2 -8 25
a4 2 9 72 ) ( )
Thus our solution is
= Ae ? 4 Be™® (26)

b) If the mass is initially at = 0.5m, sketch the displacement as a function of time for initial
velocities of -2m/s and -6m/s. We are given initial conditions that allow us to solve for the
constants A and B. The first conditions z(t = 0) = 3 and (¢t = 0) = —2, lead to the equations,

1
-2 = —-2A-8B (28)
This solving these we find A = 1 and B = ;. The second conditions z(t = 0) = 5 and
#(t = 0) = —6, lead to the equations,
1
-2 = —-2A-8B (30)
This solving these we find A = —% and B = %. Now we have completely determined the motion
of the particle in both cases. Plotting x as a function of ¢ in Figure 2 we get,
x(0) =3 a1y
#(0) = -2 :>x—36 +6e
x(O) = % _ |
#(0) = —6 —x = 36 —|—6e
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Figure 2: Heavily Damped Motion

Problem 8.5, (10 Points)
A seismograph is designed with a natural oscillation period of 2s, whose amplitude decays with
an exponential time constant of 20 s, thus,

5
-2t

e 3 = ¢ m? (31)

Ory=ss'andw, =2 =ms .

a) An earthquake provides a sinusoidal driving acceleration with a period of 0.1s (T = .15s)
and an amplitude of 1cm/s?, what is the amplitude of the steady-state response? We have
w=2 =62.83s7" and £2 = 1cm/s?.

Here were are going to solve for the motion of a forced harmonic oscillator with damping.
However before we dive in, a few words on differential equations. There are many ways to
solve differential equations and for this class you are expected to be able to solve simple linear
differential equations. There are several methods we can use to solve these types of equations.
The usual method for solving differential equations involves guessing a solution of the right form
and then showing that it satisfies the differential equation in question. Then by the uniqueness
theorem we know that this is the only solution. Instead of having you memorize which type of
solution to guess for each specific case, we will demonstrate that a complex exponential solution

that will lead to the correct form of the solution without all the guesswork. This way you only



need to remember one type of solution. I stress that these types of equations are very common
in a wide range of scientific and technical subjects so it will be well worth your time to learn
how to solve them. One method is presented in K&K Note 10.2 (Page 437) where they convert
the equation into complex form, solve it by guessing a complex exponential solution, and then
take the real part at the end. I will demonstrate another method that is a bit more direct. Our
differential equation is,

. : 9 F,
T4y + wir = — coswt (32)
m

We could have also said that the driving acceleration was % sinwt and we would arrive at the
same result. Depending on our choice, we next use one of the following identities to rewrite the
coswt or sinwt terms.

16 —160

cosf = % (33)
0 —if

sin 0 = % (34)

Our equation can then be written

. ) Fo 6iwt + e—iwt
r+yrtwr=—- - ——.
m 2

(35)

In class and in precept we have instead generalized x to a complex variable z and then taken
the real part in the end. Here we show a different approach. The above suggests a solution of
the form

z(t) = Ae™' + Be ™! (36)
Where A and B are complex constants. Taking derivatives we find,
i = Aiwe™" — Biwe ™" (37)

i = —Aw?e™" — Bw?e ™! (38)

Plugging this into the differential equation we get,

F, . .
_(6zwt+€—zwt> (39)

—Aw?e™ — Bw?e ™! 4 y(Aiwe™" — Biwe ™) + w?(Ae™' + Be ™) = 5
m

To proceed we need to realize something that may not be initially obvious. On each side of this
equation we have two different functions of time, namely e*? and e~**!. For this equation to
hold for all time ¢ we need the constants multiplying the respective time functions to be equal

—iwt



on both sides of the equation. We can see this more clearly by factoring the equation in the
following manner,

F F

(—Aw?® + Avyiw + Aw?)e™! + (-~ Bw? — Byiw 4+ Bw?)e ™! = ~Zewt 4 —2 g7t (40)
2m 2m
Setting the coefficients of €™ equal and solving for A we get,
2 ; 2 _ 1o
—Aw® + yAiw + Aw] = (41)
2m
F, 1
A= . : (42)
2m w?—w?+iyw
Setting the coefficients of e™™! equal and solving for B we get,
2 : 2 _ 1o
—Bw*® — Byiw + Bw? = (43)
2m
F, 1
B = (44)

T 2m w2 —w? —iyw
Now notice that B = A* where A* is the complex conjugate of A. The solution of z(¢) then

has the form,
z(t) = Ae™' + Are ™! (45)

Here the two terms Ae™! and A*e ™! are just complex conjugates of each other. When you
add a complex number to its complex conjugate you just get twice the real part. We can see
this by taking an arbitrary complex number of the form z = x + iy where this x and y are real
numbers. Then z* = x — iy and we have for their sum,

z2+2" = (v +1y)+ (v —iy) =2z (46)

Thus we have that (different x here),

x(t) = 2Re(Ae™") (47)
Where Re(z) is the real part of complex number z. Further simplifying A we get,
A= jgl.wg—wi—l—iyw (48)
2_ 2
A = 2F77O’L 'wg—wi—l—z"yw (5§:z2:gg) (49)
4 - F, w2 —w? —iyw (50)

om (w2 — w?)? + (yw)?

S —
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We can converting a complex number z from a cartesian form (x + iy) to a polar form (Re®)
where R = |z] = Vzz* = 2® + y* and ¢ = tan™' £ are both real numbers. Doing this for A we
have,

R :(«uz f2viz<vw>2l)2+(<wzw%fﬂw)T o
o= 2Fm 2 —w212+ } 52)

¢ = tan <w27_ww2) (53)

From above we had,

x(t) = 2Re(Ae™) (54)
z(t) = 2Re(Ree™) (55)
z(t) = 2Re(Re'“H?) (56)
z(t) 2Re(R[cos(wt + ¢) + isin(wt + ¢)]) (57)
z(t) = 2Rcos(wt+ ¢) (58)
F, 1 2
x(t) = - {(wg Ty (w’y)2} cos(wt + ¢) (59)
The amplitude we want is simply the coefficient of cos(wt + ¢).

| F, 1 : .

Amplitude = po {(wﬁ — T (w'y)Q} =2.539% 10 *cm (60)

b) How far off (in percentage) is result for the amplitude in the approximation w > w,? In this
limit,

F, 1 3 ¥
Ry=-2|—— | =2533x10"*cm (61)
m | (w)* + (wy)?
R,—R
‘ 5 ' = 0.25% (62)
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