
Physics 105 Problem Set 6 Solutions

Problem 6.41 (10 Points)
There are two keys to solving this problem. The first is to note that the ladder may start at
any sufficiently high angle. It is easiest to start with the ladder leaning against the wall. The
second key is to realize that it takes only one variable to describe the motion of the plank
(which can be considered a rod for this problem). This variable is most conveniently chosen to
be the angle θ given in the figure. Since the top of the plank is sliding down the wall (until the
moment it loses contact with the wall), the x and y coordinates of the center of mass can be
expressed in terms of θ as

xCM = L cos θ (1)

yCM = L sin θ (2)

The angle θ also describes rotational motion about the center of mass and thus we see that it is
the only variable required to describe the motion of the system. Let us consider torques about
the center of mass. There is a torque due to the normal reaction Nw from the wall and one due
to the normal reaction Nf from the floor. The torque equation is

NfL cos θ − NwL sin θ = −
1

3
mL2θ̈ (3)

since the moment of inertia of a rod of length 2L about its center is 1

3
mL2. The force Nw is

also the one on the rod acting in the x direction, so

Nw = mẍCM = −mL(cos θθ̇2 + sin θθ̈) (FromEqn. 1) (4)

Similarly
Nf − mg = mÿCM = mL(cos θθ̈ − sin θθ̇2) (FromEqn. 2) (5)

or
Nf = mL(cos θθ̈ − sin θθ̇2 + mg) (6)

At the point that the plank loses contact with the wall, Nw = 0 and Eqn. 4 gives

θ̈ = − cot θθ̇2 (7)

Putting this value into Eqn. 3 and using Eqn. 6 for Nf gives

θ̇2 =
3g

4L
sin θ (8)
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at the point the plank loses contact with the wall. From energy conservation,

1

2
m(ẋ2

CM + ẏ2

CM) +
1

2
ICM θ̇2 + mgyCM = mgL (9)

since mgL is the initial energy when the rod is leaning vertically against the wall. Wecan use
Eqns. 1 and 2 to substitute for yCM , ẋCM and ẏCM . The result is

1

2
mL2θ̇2 +

1

6
mL2θ̇2 + mgL sin θ = mgL (10)

Using the value of θ̇ obtained in Eqn. 8, we get

3

2
mgL sin θ = mgL (11)

or

sin θ =
2

3
(12)

at the point where the plank loses contact with the wall. The height is given by

sin θ =
h

2L
=

2

3
(13)

so h is 2/3 the initial height 2L.

Problem 7.3 (10 Points)
Let us set up polar coordinates with the origin at the point of suspension as shown in the figure.
The total angular momentum of the system L can be split upinto the angular momentum of
the center of mass (LCM) and the angular momentum about the center of mass (L′).

L = LCM + L′ (14)

The center of mass goes around the z axis with constant angular velocity Ω at a distance
L sin β + l from the axis of rotation. Thus

vCM = (L sin β + l)Ωθ̂ (15)

The radius vector to the center of mass rCM is

rCM = (L sin β + l)r̂ − L cos βẑ (16)

Thus,
LCM = MrCM × vCM = MΩ(L sin β + l)[(L sin β + l)ẑ + L cos βr̂] (17)
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There are two contributions to L′, one from the spinning of the wheel about its symmetry axis
and the other from a spinning about the z axis. This second component is due to the fact that
the wheel is precessing in the horizontal plane. We thus obtain

L′ = I0ωsr̂ + I1Ωẑ (18)

where I1 is the moment of inertia about an axis perpendicular to the symmetry axis. We know
that

dL

dt
= τ (19)

where τ is the torque. About the point of suspension, only the weight contributes to the torque.

τ = (L sin β + l)Mgθ̂ (20)

From Eqns. 17, 18 and 20

dL

dt
= Ω[ML cos β(L sin β + l)Ω + I0ωs] = (L sin β + l)Mg (21)

where we have also used the fact that dẑ
dt

= 0, dΩ

dt
= 0 and dr̂

dt
= Ωθ̂. There is no component of

the torque corresponding to the spin of the wheel about the z axis because the corresponding
angular momentum is constant.
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We next consider the forces. From the force equations along the r and z directions we have

T sin β = MΩ2(L sin β + l) (22)

and
T cos β = Mg (23)

From Eqns. 22 and 23,

tanβ = Ω2
L sin β + l

g
(24)

Using tan β ≈ sin β ≈ β

β =
l

g

Ω2 − L
(25)

From Eqns. 21 and 24

Ω =
Mgl

I0ωs

(26)

From Eqns. 25 and 26,

β =
l

I2

0
ω2

s

M2gl2
− L

(27)

We could have instead chosen the origin to be at a point L cos β below where the rope is
attached. The torque around that point now has two components, one from the wheel and the
other from the tension in the line.

τ = (L sin β + l)Mgθ̂ − L sin βT cos βθ̂ (28)

The total angular momentum is now

L = MΩ(L sin β + l)2ẑ + I1Ωẑ + Iωsr̂ (29)

and since dL/dt = τ and T cos β = Mg we get:

IωsΩθ̂ = (L sin β + l)Mgθ̂ − MgL sin βθ̂ (30)

Equation 24 gives us another relation between Ω and β based on the dynamics. We end up
with the same result as before.

Lastly, we give a third approach to the problem that quantifies the approximations that are
being made. These notes come from Prof. Groth.

Start with F = ma. In the vertical direction:

T cos β = Mg (31)
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where T is the tension in the string, and in the horizontal direction:

T sin β = Mv2/(` + L sin β) ; v = (` + L sin β)Ω , (32)

where v is the linear speed with which the disk precesses and Ω is the angular speed of precession,
so

T sin β = MΩ2(` + L sin β) . (33)

Compute torques and angular momentum about the fixed point which is the center of
precession of the center of mass of the disk. We are only interested in the horizontal component
of angular momentum due to the spin of the disk about the shaft. The vertical components of
angular momentum, due to the rotation of the disk about a vertical axis throught its center
of mass and the precession of the center of mass are constant for the postulated motion and
so there should be no torque in the vertical direction. The torque in the horizontal plane
(perpendicular to the axis of the disk) is due to the weight and the tension:

τ = Mg(` + L sin β) − T cos βL sin β = Mg` , (34)

where we have replaced T cos β with Mg according to eq. (31). This is the rate of change
of the (horizontal component of the) spin angular momentum, dS/dt, and the spin angular
momentum is S = I0ωs. Since the torque is perpendicular to the spin, the spin precesses at a
rate given by Ω = (1/S) · (dS/dt). Putting this altogether, we have,

Mg` = ΩS = ΩI0ωs , or Ω =
Mg`

I0ωs

. (35)

Note that the precession rate is determined only by the properties of the disk and its axle. The
angle of the string, β, does not enter.

Now divide eq. (33) by eq. (31) and substitute for Ω from eq. (35):

tan β = A(1 + B sin β) , A =
M2g`3

I2
0ω

2
s

, and B =
L

`
. (36)

For a good gyroscope, ωs will be large and A will be very small. In this case, β is small and
we might try setting tanβ = sin β = β. This gives

β =
A

1 − AB
, (37)

Since A is very small, we can ignore AB in the denominator unless B = L/` is pathologically
large, giving

β = A =
M2g`3

I2
0
ω2

s

. (38)
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B Eq. (36) Eq. (37)
10 0.0010101 0.0010101
100 0.0011111 0.0011111
999 0.1205763 1.0000000
1000 0.1258252 ∞

1001 0.1310690 -1.0000000
10000 1.4706390 -0.1111111

Of course, one could have an arbitrarily long string which would cause β as given by eq. (37)
to blow up or even become negative. In this case, one should return to eq. (36). In the event
that B � 1 and AB > 1, we can ignore 1 compared to B sin β. We find

cos β =
1

AB
=

I2

0ω
2

s

M2g`2L
=

g

LΩ2
, (39)

which is exactly the angle made by a conical pendulum of length L and frequency Ω. Recall
that we are assuming the that L � `, so to first order, the disk is a point mass on the end of
a string of length L. The fact that we have a precessing disk on the end of the string is of no
importance except that it determines the frequency (Ω) at which we would like the pendulum
to go around.

For intermediate cases, we should solve the transcendental eq. (36). On method is to plot
the functions tan β/A and 1 + B sin β versus β and see where they intersect. A few sketches
will convince one that there’s always a solution between 0 and π/2 no matter what the values
of A and B (as long as they’re positive!).

Also, one can just numerically solve the equation by making a guess and correcting the guess
until both sides of the equation give the same answer. Here’s a short table giving β for various
values of B with A = 0.001 held fixed. Values are given in radians as solutions of eq. (36) and
eq. (37):

Note that eq. (38) gives β = 0.001 in all cases above. I conclude that eq. (37) provides a
useful correction to eq. (38) when B is not too large. However, when B is large, eq. (36) should
be solved. Eq. (38) just goes bad as B gets large. Eq. (37) goes catastrophically bad as B gets
large!

Problem 7.4 (10 Points)
This problem has all the same angular momentum components as the previous one but now
the forces are different. The velocity of the center of mass of the millstone is

v = ΩR (40)
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Since the millstone is rolling without slipping its angular velocity is

ω = Ω
R

b
(using ωb = ΩR) (41)

As in the previous problem L = LCM + L′.

LCM = MΩR2ẑ (42)

L′ = −
1

2
Mb2ωr̂ + I1Ωẑ (43)

where ẑ is in the vertical direction and r̂ points outward along the axle. The minus sign in L′

arrises because the millstone is rotating clockwise. We are calculating the angular momenta are
measured about the point where the horizontal axle is connected to the vertical shaft. Now,

dL

dt
=

dL′

dt
= −

1

2
Mb2ωΩθ̂ = τ (44)

where τ is the torque. Once again, dẑ
dt

= 0 anddr̂
dt

= Ωθ̂. Let us look at the forces that give rise
to the torque τ . These are the weight of the millstone, Mg, and the normal reaction N which
act in opposite directions along the same vertical line. They thus have the same lever arm R
but produce torques along opposite directions, Mg produces a torque along θ̂ and N produces
a torque along −θ̂. Thus weobtain

MgR − NR =
1

2
Mb2ωΩ (45)

which gives us

N = M

(

g +
1

2
bΩ2

)

(46)

where we have used Eqn. 29 to substitute for ω. The weight on the millstone and the normal
reaction are in opposite directions but not equal. Why does the millstone not accelarate up-
wards? The force that keeps the center of mass stationary is a vertical force at the junction
of the horizontal axleand the vertical shaft. We did not consider this force while calculating
torques because we were calculating torques about its point of application.

Problem 7.5 (10 Points)
As the car rounds the curve, there is a torque about its CM due to the friction that acts to
keep the car moving in a circle. If L is the height off the road of the CM, the torque is given by

τ = Lf = M
v2

l
L (47)
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where l is the radius of the curve. The torque is directed so as to cause the car to flip over away
from the direction in which it is turning. On a flat stretch of road, the loading on the wheels
is equal. When rounding, say, a righthand curve the normal force on the righthand wheel goes
to zero just as the car starts to roll over away from the direction of the turn.

a) We mount the flywheel with its axis of rotation horizontal and perpendicular to the
length of the car. The flywheel rotates, so the angular momentum vector points to the right
side of the car. If the car is taking a right curve, the direction of the change of the angular
momentum of the wheel is toward the rear or the car. There has to be a torque on the car to
produce this change in angular momentum. The torque comes from the normal force on the
wheels. The direction of the torque is such that one wants to decrease the normal force on the
lefthand wheels, counteracting the tendency to roll and equalizing the wheel loading. For the
car turning to the left, the direction of the change of angular momentum points forward. This
leads to an decrease in the normal component of the righthand wheels. Note that in both cases
it is the change in normal forces that counteracts the torque associated with the centripetal
force.

b) The angular momentum of the flywheel due to rotation around it’s axis is

Lw =
1

2
mR2ω. (48)

This vector is pointing to the right of the car and is rotating with angular velocity

Ω =
v

l
(49)

while the car turns. Hence, it’s change in time is

dLw

dt
= LwΩ =

1

2
mR2ω

v

l
(50)

Setting this equal to the torque due to centripetal force we found above, we have

M
v2

l
L =

1

2
mR2ω

v

l
(51)

hence the angular velocity of the wheel needed for equal loading of the wheels is

ω = 2v
ML

mR2
. (52)

Problem 7.9 (10 Points)
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The torque on the bike equals the change in the angular momentum of the wheels. The
torque with respect to the center of mass has two components, the first one due to the centripetal
force which is the frictional force between the wheels and the road and the second one from
the normal force of the road on the bike. The frictional force that keeps the bike moving in a
circle has a magnitude f = M v2

R
and lever 2l cos(θ). The lever of the normal force is 2l sin(θ).

Hence the total torque around the axis of rotation is

τ = M
v2

l
2l cos(θ) − Mg2l sin(θ) (53)

pointing forward in the direction of the motion of the bike. The magnitude of the angular
momentum of both wheels together is L = 2ml2 v

l
where v

l
is the angular velocity of wheels

around their axes ofrotation. The angular momentum points perpendicular to the plane of
the bike towards the center of the curve. The vertical component of the angular momentum
L sin(θ) points down and does not change with time. The horizontal component points towards
the center of the curve and rotates with angular velocity v

R
around it. Hence it’s change with

time is
dL

dt
= L cos(θ)

v

R
(54)

and it points opposite to the motion of the bike. Setting this equal to the torque we have

M
v2

R
2l cos(θ) − Mg2l sin(θ) = −2ml2

v

l
cos(θ)

v

R
(55)

so the angle the bike subtends with the vertical is

tan(θ) =
v2

Rg
(1 +

m

M
). (56)

K&K 7.6

The following solution is given so that you can expand your problem solving ability! K&K
tell us that a coin of mass M and radius b rolls without slipping around a circular path of
radius R at a speed v. They want to know the angle φ that the spin axis makes with respect
to the horizontal.

The total angular momentum of the coin can be written ~L = ~Lcm + ~Ls, where ~Lcm is the
angular momentum of the center of mass (cm) around a fixed inertial coordinate system, and
~Ls is the spin angular momentum around the center of mass. Taking the origin of the inertial
reference frame to be at the center of the cm’s circular motion, we have (ẑ points up):

~Lcm = ~rcm × ~pcm = Mrcmvcm r̂ × θ̂ = MΩr2

cm
ẑ, (57)
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and
~Ls = I0ωs [− sin φ ẑ − cos φ r̂] + I ′Ω ẑ, (58)

where Ω = vcm/rcm = v/R is the angular velocity of the cm around the origin and ωs = v/b is
the spin angular velocity of the coin. Here, I0 is the moment of inertia around an axis through
the cm and perpendicular to the face, while I ′ is the moment of inertia around an axis through
the cm and parallel to ẑ. Taking the time derivative of ~L we obtain

d~L

dt
= −I0ωsΩ cos φ θ̂. (59)

There are three forces acting on the coin: gravity M~g, normal force ~N , and friction ~f .
Summing the torques (around the origin) arising from these three forces gives

∑

~τ = Mgrcm θ̂ + fb cos φ θ̂ − NR θ̂. (60)

Summing the forces along ẑ and r̂ provides two additional equations we can use to eliminate f
and N :

∑

Fz = N − Mg = 0 ⇒ N = Mg;
∑

Fr = −f = −M
v2

cm

rcm

⇒ f = Mv2
rcm

R2
, (61)

where we have used vcm = v rcm

R
. Substituting Eqs. 61 into Eq. 60 and noting that rcm =

R − b sin φ, we obtain

∑

~τ =
[

−Mgb sin φ + Mv2b
rcm

R2
cos φ

]

θ̂. (62)

We are now ready to use the dynamical equation
∑

~τ = d~L
dt

to solve for φ:

−Mgb sin φ + Mv2b
rcm

R2
cos φ = −I0ωsΩ cos φ, (63)

and simplifying

tan φ =
Mv2b rcm

R2 + 1

2
Mb2

(

v
b

) (

v
R

)

Mgb
=

v2

gR

(

1

2
+

rcm

R

)

, (64)

where we have used I0 = 1

2
Mb2, ωs = v

b
, and Ω = v

R
. Finally, substituting for rcm gives

tan φ =
v2

gR

(

3

2
−

b

R
sin φ

)

. (65)
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If the friction force providing the centripetal acceleration is large enough, the angle φ need
not be small and we cannot assume the small-angle approximation. However, the gyroscope
approximation tells us that the precession is stable if Ω << ωs, or b << R. Taking this limit
leads to the final relation

tan φ =
3v2

2gR
. (66)

11


