
Physics 105 Problem Set 3 Solutions
Problem 1. (10 Points)
a) A strong human cyclist, weighing about 100 kg (including bicycle), can
bicycle up a 3 percent grade at about 30 km/h. What is her or his power
output in watts? in horsepower?

If θ is the angle the slope makes with the flat ground, tan θ = 0.03. Thus
sin θ ≈ 0.03. 1 hp = 746 W.

P = mgv sin(θ) ≈ 250 W ≈ 0.34 hp (1)

b) How does this compare to a typical human office worker climbing stairs
in an office building at a rate of one floor every 20 s?

Let us assume that the mass of a typical human worker m is 65 kg. The
height of an office floor is y = 15 feet = 4.5 m. vy = 4.5/20 = 0.225 m/s.

P = mgvy ≈ 143 W ≈ 0.19 hp (2)

c) How many kilocalories (which are known as “calories” in nutritional in-
formation) would you have to eat every day to sustain each of these (rel-
atively high) levels of activity for 3 hours per day? W = P∆t where

∆t = 3 h = 10800 s. As there are 4184 J per 1 kcal, the work in case
(a) is 650 kcal and in case (b) 370 kcal.

d) A person with an active lifestyle eats 3 to 5 thousand kilocalories per
day. Do you think that the production of mechanical work is the primary
use of food calories? It takes only 600 kcal or so to maintain these levels

of daily activity, yet we take in 3000-5000 kcal per day. Most of our energy
goes not to mechanical work but to our metabolism (primarily maintaining
our high body temperature). If al you did was sit all day, you’d still need
about 2000 kcal per day. If your average power input is 2000 kcal/day, your
average power output must also be 2000 kcal/day or about 100 W. Thus, if
50 students are in Jadwin 303 on a Wednesday night and it feels hot in the
room, it’s because there is the equivalent of a 50 × 100 = 5 kW heater in
there!

Problem 2. (10 Points)
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(a) The work done by the force is

W =
∫

path

~F · ~ds =
∫ x1,0,0
0,0,0 Fx dx +

∫ x1,y1,0
x1,0,0 Fy dy

=
∫ x1,0,0
0,0,0 6xy dx +

∫ x1,y1,0
x1,0,0 (3x2 − 3y2) dy

= 3x2

1
y1 − y3

1
(3)

(b) Likewise:

W =
∫

path

~F · ~ds =
∫

0,y1,0
0,0,0 Fy dy +

∫ x1,y1,0
0,y1,0 Fx dx

=
∫

0,y1,0
0,0,0 (3x2 − 3y2) dy +

∫ x1,y1,0
0,y1,0 6xy dy

= −y3

1
+ 3x2

1
y1 (4)

Aside. Since the work done is the same along these two paths, you might
suspect that F is a conservative force. If you have done some vector calculus,
you might know that the curl of F is zero if and only if F is conservative.
You can check that the curl of F is zero in this example.

Problem 3. (10 Points)

When the elevator is a distance r from the center, it is held in circular
motion by the centripetal force provided by the motor:

~F = −
mv2

circ

r
r̂ = −

m(2π)2r

T 2
r̂ (5)

where vcirc is the speed of the elevator around the circle. Note that the force
is directed toward the center. The circular velocity is related to the period by
vcirc = 2πr/T . The work done is the integral over distance of this expression:

W = −
∫ r=0

r=R

m(2π)2r

T 2
dr = 2m(Rπ/T )2 (6)

The work is positive as we would expect because the elevator is moving in
the direction that the motor is pulling.

Problem 4. (10 Points)

a)~F = −dU
dx

x̂ = (4x3 − 16x)x̂

2



b)x = 0,±2 m

c)An equilibrium at x0 is stable if U(x) is a local minimum. It is unstable is

U(x) is a local maximum. In other words: stable implies d2U/dx2 > 0 and
unstable if d2U/dx2 < 0. For our U(x), d2U/dx2 = 16 for x0 = 0 and so this
point is stable. At x0 = ±2, d2U/dx2 = −32 and so this point is unstable.
Expanding U(x) in a Taylor series about x = x0 gives:

U(x) = U(x0) +
dU

dx
|x=x0

(x− x0) +
1

2

d2U

dx2
|x=x0

(x− x0)
2 + higher order terms

(7)
At the minimum of the potential, dU/dx is zero and the potential, to second
order, approximates a parabola. thus, the functional form is

U(x) = U(x0) +
1

2
keff(x − x0)

2 (8)

We recall that Hooke’s law is just that U = k(x − x0)
2/2 and so we can

identify the effective spring constant of a minimum in the potential with the
second derivative of the potential.
Note that that the higher order terms in the Taylor expansion are negligible
for small displacements, which is why we can stop at (x − x0)

2. (It’s not
because the 3! in the cubic term is larger than 2!). An exception to the
observation that “any potential is a harmonic oscillator near its minimum”
is U(x) = (x − x0)

4.
Problem 5. (10 Points)

The rope is pulled in with a constant velocity v, so that the radial position
of the block changes linearly with time,

r(t) = r0 − vt (9)

and
ṙ = −v. (10)

At the same time, the block is rotating with an angular velocity ω(t). While
v is constant in time, ω is not necessarily. (Do you have an intuition for
whether ω will increase or decrease as we pull the string in?) The net motion
of the block is an inward spiral. In polar coordinates, we can separate these
two components of its motion and write

~v(t) = ṙr̂(t) + r(t)ω(t)θ̂(t) = −vr̂(t) + r(t)ω(t)θ̂(t). (11)
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One more derivative of this expression will tell us the acceleration vector ~a
of the block. We must be careful taking time derivatives in polar coordinates
because our coordinate system is rotating around with angular velocity ω(t).
In other words,

dr̂

dt
= ω(t) θ̂(t), and

dθ̂

dt
= −ω(t) r̂(t) (12)

We find,

~a(t) =
d

dt
~v(t) =

d

dt
[−vr̂(t)] +

d

dt

[

r(t)ω(t)θ̂(t)
]

= −v
dr̂

dt
+ (−vω(t) + (r0 − vt)ω̇(t))θ̂(t) + r(t)ω(t)

dθ̂

dt

= −r(t)ω(t)2
r̂(t) + (r(t)ω̇(t) − 2vω(t))θ̂(t). (13)

We see that the radial term is just the centripetal acceleration rω2. Since
the block is moving in at a constant velocity, it adds nothing extra to the
acceleration.

We are now ready to apply ~F = m~a. The force is directed only radially
inward and has magnitude F (t). In other words,

~F = −F (t)r̂(t) = m~a = −r(t)ω(t)2
r̂(t) + (r(t)ω̇(t) − 2vω(t))θ̂(t), (14)

from which we can read off two equations. First, since there is no force in
the θ̂-direction, we get

r(t)ω̇(t) − 2vω(t) = 0, (15)

or

ω̇(t) =
2v

r0 − vt
ω(t). (16)

This is a first order differential equation, which we can solve by separating
the variables and integrating. If we are careful about the limits of integration,
we don’t have to worry about the constant term. We get

∫ ω

ω0

dω′

ω′
=

∫ t

0

2v

r0 − vt′
dt′, (17)

or
ln (ω′)

ω

ω0
= −2 ln (r0 − vt′)

t

0
. (18)
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This evaluates to

ln
(

ω

ω0

)

= 2 ln
(

r0

r0 − vt

)

= ln
(

r0

r0 − vt

)2

. (19)

Finally, exponentiating both sides, we conclude that

ω(t) =
(

r0

r0 − vt

)2

ω0. (20)

In the r̂-direction, we have less work to do. The equation we get is

F (t) = mrω2, (21)

which we recognize as exactly the force we need to provide the centripetal
acceleration of the block. Just plugging in, we find that

F (t) = mr0ω
2

0

(

r0

r0 − vt

)3

. (22)
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