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1 Introduction

Why study supersymmetry? There are two sets of arguments. The first is experimental:
For many years people have held out hope that next generation particle accelerators (or
indeed other high energy particle experiments such as cosmic ray detectors, dark matter
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detectors, neutrino detectors, precision electroweak experiments, etc.) would see evidence
for supersymmetry in the world around us. The second is theoretical: the presence of a
symmetry in physics often helps in solving a problem, and supersymmetry is no exception.

The experimental set of arguments concerns what has come to be known as the Stan-
dard Model of Particle Physics. This relativistic quantum field theory describes essentially
everything that we have observed in nature that is not gravitational. It postulates that the
world around us is made of particles. In particular, the building blocks are fermionic spin
1/2 particles – electrons, muons, taus, neutrinos, and quarks – which interact by exchanging
bosonic vector particles – gluons, W and Z bosons, and photons. The Standard Model is a
gauge theory, which means it has a local continuous symmetry described by a Lie Group, in
this case SU(3)×SU(2)×U(1). Only an unbroken U(1) is observed at low energies, the U(1)
associated with the photon of electricity and magnetism. A last critical ingredient is thus
to explain the symmetry breaking pattern. The fact that we don’t observe an SU(3) at low
energies is associated with the imperfectly understood physics of confinement in quantum
chromodynamics (QCD). The breaking of SU(2) × U(1) to a diagonal U(1) on the other
hand is associated with a last critical ingredient of the Standard Model: the Higgs particle,
a spin zero bosonic particle.

Despite its successes, there are a few key unsatisfactory aspects of the Standard Model:

• Hierarchy Problem: From a modern standpoint, the Standard Model is an effective
field theory – something that accurately describes the physics at the relatively low
energies available in today’s particle accelerators. The mass of the heaviest observed
fundamental particle, the top quark at 172 GeV, gives an order of magnitude estimate
of the energy scales at and below which the Standard Model can be trusted to give
accurate results. In contrast, we have no reason to expect the Standard Model to
be accurate if extrapolated to very high energy scales, for example the Planck scale
EP = ~1/2G

−1/2
N c5/2 ∼ 1019 GeV at which quantum gravitational affects are expected

to become important. A symptom of the Standard Model’s limitations are divergences
that appear in loop corrections to the mass of the Higgs. A naive but standard way
of regulating these divergences is to cut-off the integration at an energy scale where
we expect new physics. If that scale is really EP , then mass corrections will be huge,
and the Higgs mass should be of the same order of magnitude as EP . Through the
Higgs mechanism, the other Standard Model particles will get huge masses as well. Of
course, we do not observe such huge masses, and so, without some fine tuning that will
arrange for cancellation between the various diagrams, there must be new physics at
some lower scale. Supersymmetry provides for precisely such new physics, introducing
a new class of particles that can run in loops and partially cancel these large corrections
to the Higgs mass.

The current experimental situation is not promising for supersymmetry. The LHC has
observed the Higgs to have a mass of 125 GeV, but has not observed any supersymmet-
ric partners. 125 GeV is relatively low, but the new physics is coming in at a relatively
high scale, naively at least several hundred GeV, where the loop cancellations will not
be particularly effective.

• Unification: The existence of three gauge groups SU(3) × SU(2) × U(1) has long
seemed inelegant to theorists. How much nicer would it be if the Standard Model
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could be embedded in a theory with a single gauge group, for example SU(5), SO(10),
or even E8. Giving some support to this idea is that the gauge couplings for the
three gauge groups run with energy scale and become all roughly equal at 1015 GeV.
Supersymmetry has the remarkable property of making the three couplings much closer
together at this unification scale. In addition, it provides an accurate prediction for
the Weinberg angle, i.e. the way in which the U(1) of the photon sits inside the original
SU(2)× U(1) gauge group.

• Dark Matter: Roughly 70% of the matter in the universe is not particles in the Standard
Model. Astrophysicists have come to this conclusion from a variety of observations, for
example from looking at rotation of individual galaxies, rotation of clusters of galaxies,
and the cosmic microwave background radiation. The new class of particles introduced
by supersymmetry provide a host of dark matter candidates, the most serious of which
is often called the LSP, the lightest super partner.

The second set of arguments for supersymmetry is that it helps solve various problems.
Maybe the real question we are interested in does not involve supersymmetry, but if we add
supersymmetry, we can often find solutions and then hopefully learn something about what
to expect in answer to the original question.

• String Theory: Large energy (or equivalently short distance) divergences are a generic
problem in quantum field theory. The hierarchy problem provides a case study, but
the issue is larger. Intuitively, the problem is that point-like particles of relativistic
quantum field theories are singular objects. The self energy of a charged point particle
is infinite, for example. A theory of strings is somewhat less singular. An issue with
non-supersymmetric versions of string theory however, is that we have not been able to
find stable vacuum states. Supersymmetry cures this problem and indeed also provides
a possible framework in which to unify the Standard Model (open strings) with gravity
(closed strings).

• Confinement: You can make yourself a million dollars in the Clay Mathematics Prize
Competition if you successfully explain why Yang-Mills theory (i.e. QCD without the
quarks) develops a mass gap at low energies. Add supersymmetry, and the problem
becomes much simpler. The vacuum structure of a very large variety of supersymmetric
gauge theories has at this point been successfully analyzed, giving us some insight into
the original problem of confinement in QCD.

• Partition Functions and Localization: The basic problem of quantum field theory is
to compute the path integral (or partition function). In supersymmetric theories, this
path integral can sometimes be computed exactly on special manifolds, for example
spheres. Indeed, one can go further and compute correlation functions of certain su-
persymmetric operators as well.

Problem 1.1. Using only the quantities ~, GN , and c, construct quantities that have the
units of length, mass, and time. Compute the corresponding Planck length, Planck mass,
and Planck time, using SI units.
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Problem 1.2. Another proposed source of extra physics is extra dimensions. Assume that we
live not in a four dimensional world but a (4+p)-dimensional one where the extra dimensions
are all extremely small circles of length `.

a) Noting that the dimensionality of GN is different in (4 + p) dimensions, what is the
new expression for the Planck energy EP in terms of ~, c, and GN?

b) Find a relationship between GN and the observed 4d value G4d
N . Given the observed

4d value for G4d
N , how small must ` be in order to have EP = 1 TeV? Are there some

values of p that you can rule out?

2 Coleman-Mandula Theorem

Symmetry plays a critical role in quantum field theory, and we often distinguish several
different types. There are gauge symmetries – the SU(3) × SU(2) × U(1) of the standard
model for instance. There are global symmetries; consider the approximate SU(2) flavor
symmetry of the up and down quarks. There are discrete symmetries, for example charge
conjugation C, parity P, and time T reversal. Most important of all, perhaps, are the space-
time symmetries of special relativity, also known as the Poincaré group. After all, relativistic
quantum field theories were developed out of an intent to wed quantum mechanics and special
relativity.

Given the prominence of the Poincaré group in relativistic quantum field theory, one is
led to ask whether this group might in certain contexts be a subgroup of some larger group.
The contexts in which the Poincaré group can be enlarged turn out to be surprisingly limited.
There is in fact a theorem, proven in 1967 by Coleman and Mandula, that the Poincaré group
can be combined with internal, continuous symmetries, such as the SU(3) of the standard
model, in only a trivial way, as a direct product. In other words, if one takes an element g
from the Poincaré group and an element h from a continuous internal symmetry group, then
gh = hg.

There are various interesting exceptions to the theorem. The proof involves the scatter-
ing or S matrix, and if the theory contains only massless particles, for which the S matrix
is a somewhat problematic concept, the Poincaré group can be enlarged to the conformal
symmetry group. Furthermore, discrete symmetries are not included, nor are ones that
are spontaneously broken. The biggest and most interesting loop hole, however, is super-
symmetry. In this section, we will review some elementary facts about the Poincaré group
and continuous internal symmetry groups, and then discuss how supersymmetry evades the
Coleman-Mandula theorem.

The Poincaré group is a Lie group that is generated by space-time translations along with
Lorentz transformations (which in turn consist of rotations and boosts). The infinitesimal
version (or Lie algebra version) of this group action, under which the theory is invariant,
can be written

xµ → xµ + aµ + ωµνx
ν , (2.1)

where the quantity δxµ = aµ + ωµνx
ν is taken to be small.
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In special relativity, the space-time proper distance ∆s2 = ηµν∆x
µ∆xν between two

points must be invariant under these transformations, which in turn places a constraint on
ωµν :

∆s2 → ηµν(∆x
µ + ωµλ∆x

λ)(∆xν + ωνρ∆x
ρ)

= ηµν∆x
µ∆xν + ηµνω

µ
λ∆x

λ∆xν + ηµνω
ν
ρ∆x

µ∆xρ + . . .

= ∆s2 + (ωµν + ωνµ)∆xµ∆xν + . . . . (2.2)

In other words, ωµν = −ωνµ is antisymmetric under exchange of its indices.1

While elements of the Poincaré group compose to give new elements in the group, the
infinitesimal version of this statement is that the commutator of two infinitesimal elements
(i.e. elements of the corresponding Lie algebra) yields a new infinitesimal element. We
consider infinitesimal elements δ1 and δ2 and compute

[δ1, δ2]xµ ≡ δ1δ2x
µ − δ2δ1x

µ . (2.3)

To compute δ2δ1x
µ, it is perhaps clearer to start with the arrow notation

xµ → xµ + aµ1 + ωµ1νx
ν

→ xµ + aµ1 + ωµ1νx
ν + aµ2 + ωµ2ν(x

ν + aν1 + ων1λx
λ) ,

from which it follows that

δ2δ1x
µ = ωµ2 νa

ν
1 + ωµ2 λω

λ
1 νx

ν . (2.4)

The commutator then must be

[δ1, δ2]xµ = (ωµ1 λa
λ
2 − ω

µ
2 λa

λ
1) + (ωµ1 λω

λ
2 ν − ω

µ
2 λω

λ
1 ν)x

ν . (2.5)

The new infinitesimal Poincaré transformation is

aµ = ωµ1 λa
λ
2 − ω

µ
2 λa

λ
1 , ωµν = ωµ1 λω

λ
2 ν − ω

µ
2 λω

λ
1 ν . (2.6)

Note that ω(µν) = 1
2
(ωµν + ωνµ) = 0, consistent with the requirement that ∆s2 is invariant.

We would like to be able to act not just on space-time points xµ with the Poincaré group
but on quantum fields as well. To that end, we introduce the linear operators Pµ and Mµν

which act on the coordinates such that

δxµ = iaνPν(x
µ) +

i

2
ωνλMνλ(x

µ) . (2.7)

1We will use a Minkowski metric with mostly plus signature:

ηµν =


−1

1
. . .

1

 .
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The factor of 1/2 is introduced because of the anti-symmetry so that, for example, ω12 =
−ω21 is only counted once. The factors of i allow the generators to be Hermitian rather
than anti-Hermitian operators. However, we would like to be able to act on more general
representations of the Poincaré group, in particular fields which are also functions of xµ,
ΦI(x

µ). Here I is some generalized index allowing for an arbitrary representation. The
commutator (2.5) can be written more abstractly as

[Pµ, Pν ] = 0 ,

[Pµ,Mνλ] = iηµνPλ − iηµλPν , (2.8)

[Mµν ,Mλρ] = iηµλMνρ − iηνλMµρ − iηµρMνλ + iηνρMµλ .

Problem 2.1. Reproduce the result (2.5) using Pµ and Mνλ and in particular (2.7) and the
commutator algebra (2.8).

In general, we would like to be able to represent the action of Pµ and Mµν not just
on xµ but on a quantum field ΦI(x

µ) which transforms under a representation of Poincaré
and is additionally a function of a space-time point. Here I is some generalized index.
An infinitesimal group element of Poincaré g consisting of the data (aµ, ωµν) and acting on
ΦI(x

µ) thus has two pieces, one gIJ acting by matrix multiplication on the generalized index
of the field I and the second acting on xµ,

δΦM(xµ) = gIJΦI(x
µ) + ΦI(x

µ + δxµ)− ΦI(x
µ) . (2.9)

By a Taylor series, we can write the second two terms, to leading order, as a derivative

ΦI(x
µ + δxµ)− ΦI(x

µ) = (aµ + ωµνx
ν)∂µΦI(x

µ) . (2.10)

Now it turns out that gIJ simplifies as well and depends only on the Lorentz part of the
Poincaré group. Because of the nontrivial commutator [Pµ,Mνλ], the Poincaré group is not
a direct but a semi-direct product of translations and Lorentz transformations. Translations
by themselves are straightforward to understand. They form an abelian and non-compact
subgroup of the full group. Their irreducible representations are always one dimensional, and
the corresponding matrices just constants. In fact, as far as I’m aware, for fields of physical
interest, these constants always vanish. For example, for tensor fields, shifting the location
of the origin of spacetime clearly should not affect the structure of the tangent and cotangent
bundles, leaving the space-time indices on some general tensor field T µ1···µnν1···νm invariant.

The nontrivial data in gIJ is then a representation of the Lorentz algebra only, and
Pµ = −i∂µ reduces to a derivative acting on the fields, controlling how the shift in xµ in turn
affects the field ΦI . Smooth functions can be expanded in terms of a Taylor series:

f(x+ a) = f(x) + aµ∂µf(x) + . . .

= f(x) + iaµPµf(x) + . . . (2.11)

Finite translations can be obtained as an exponential of Pµ:

f(x+ a) = eia
µPµf(x)

= f(x) + aµ∂µf(x) +
1

2
aµaν∂µ∂νf(x) + . . . (2.12)
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The Lorentz group is non-abelian and admits more interesting representations. The
Standard Model that we discussed briefly in the first section contains a Higgs field H(x) in
the trivial representation, vector fields such as the photon Aµ(x), and many spinor fields,
such as the electron ψα(x). In general, a nontrivial representation of the Lorentz group
implies that the field carries some kind of index, for example µ and α for the vector and
spinor fields respectively. Different representations imply that there are different choices of
matrices which satisfy the commutation relations (2.8) of the Poincaré group.

Problem 2.2. For a vector representation, one takes

(Mµν)
λ
ρ = iηµρδ

λ
ν − iδλµηνρ . (2.13)

(Notice that the indices µ and ν take a dual role, labeling both the Lorentz generator and its
matrix components.) For the spinor representation, one takes instead

(Mµν)α
β = − i

2
(γµν)α

β = − i
4

(γµγν − γνγµ)α
β , (2.14)

where (γµ)α
β are the Dirac γ-matrices, {γµ, γν} = 2ηµν. Verify that these two representations

of the Lorentz group obey the commutation relations (2.8).

Quantum field theories often possess additional symmetries, most notably gauge sym-
metries. Associated with the gauged Lie group, there is a Lie algebra with commutation
relations of the form

[Ta, Tb] = ifab
c Tc , (2.15)

where the Ta are Hermitian generators, and fab
c are the structure constants. The fields

transform in representations of this algebra and carry associated indices. For example, the
quarks ψaα in the standard model in addition to a spinor index α carry an index a indicating
that they transform in a fundamental representation of SU(3).

The component Pt is both an energy and also a generator of infinitesimal translations
in time. Because Pt exists as a well defined, time independent quantity, we expect that the
total energy is conserved. Often a good first step in approaching a physics problem is to
work out a complete set of conserved charges. In the context of our commutator algebra
of Pµ, Mµν and Ta, the set of conserved charges is the set which commutes with Pt. In
the context of the Poincaré group, we expect the full four momentum Pµ to be conserved,
along with angular momenta corresponding to Mxy, Myz, and Mzx. The boosts Mti on the
other hand do not commute with Pt. Having written down the full set, as is typical in
quantum mechanics one has to worry about whether the generators mutually commute as
well. Otherwise, the operators will not all be simultaneously diagonalizable. In the context
of spatial rotations, for example, one typically chooses Jz = Mxy and the Casimir operator
J2 = M2

xy +M2
yz +M2

zx.
From Noether’s theorem, we expect that continuous symmetries are associated with con-

served charges and more generally conserved currents. It should follow from Noether’s theo-
rem that [Pt, Ta] = 0. The content of the Coleman-Mandula theorem is much stronger, that
the generators Ta commute with all of the generators of the Poincaré group:

[Ta, Pµ] = 0 = [Ta,Mµν ] . (2.16)
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Thus the Ta are not only conserved but transform under the trivial representation of the
Poincaré group.

Theorem. (Coleman-Mandula) In any spacetime dimension greater than two, the only
interacting quantum field theories have Lie algebra symmetries which are a direct product of
the Poincaré algebra with an internal symmetry.

Supersymmetry requires the violation of a key assumption of the Coleman-Mandula the-
orem – that the symmetry algebra should be a Lie algebra. Recall that a Lie algebra is the
tangent space at the identity element of a Lie group, with an infinitesimal group transfor-
mation of the form

g = 1 + iεA (2.17)

where A is an element of the Lie algebra (e.g. Pµ, Mµν or Ta from before) and ε is an
infinitesimal parameter. The algebra is closed under an antisymmetric bilinear operation
called the Lie bracket

[A,B] = −[B,A] (2.18)

which is subject to the Jacobi identity

[A, [B,C]] + [B, [C,A] + [C, [A,B]] = 0 . (2.19)

Supersymmetry replaces the Lie algebra with a superalgebra. A superalgebra should
already be a familiar notion to you if you have worked with a quantum field theory that con-
tains both fermions and bosons. By the spin statistics theorem, bosons carry representations
of the Lorentz group with integer spin and their field operators must commute outside of
the light cone. On the other hand, fermions carry half-integer spin representations and anti-
commute outside the light cone. A standard Lie algebra can be constructed from bosonic
generators and commutators [, ], but once we involve fermions, it is very natural to throw
anti-commutators {, } into the mix along with the rule that the product of two fermions is
a boson, the product of a fermion and a boson is a fermion, and the product of two bosons
is again a boson.

We can formalize this notion of a superalgebra as a Z2 graded Lie algebra where fermions
have odd grading and bosons have even grading. It is also convenient to write a generalized
commutator [, } where the decision to anti-commute or commute is based on what is inside
the brackets:

[B,B} = [B,B′] ∼ B′′ , (2.20)

[B,F} = [B,F ] ∼ F ′ , (2.21)

[F, F ′} = {F, F ′} ∼ B . (2.22)

B here is for boson and F for fermion, and the notation is schematic. There is furthermore
a generalized Jacobi identity

(−1)ac[A, [B,C}}+ (−1)ba[B, [C,A}}+ (−1)cb[C, [A,B}} = 0 . (2.23)
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where a, b, c ∈ Z2 are the gradings of A, B, and C respectively.
In this course, the even generators will be the Pµ and Mµν generators of the Poincaré

group. The odd generators, or supersymmetries Qα, are then in a sense the square roots of
the Poincaré generators, schematically

{Q,Q} = P +M . (2.24)

There is thus a symmetry that is “deeper” than Poincaré and is surely therefore worthy of
study.

One more comment needs to be made. While we have found a way to nontrivially
enlarge the Poincaré algebra, the supercharges Qα still generally commute with other internal
continuous symmetry generators [Qα, Ta] = 0. This refined version of the Coleman-Mandula
theorem is due to Haag, Sohnius, and Lopuszanszki and was proven in 1975.

Problem 2.3. There is a loop hole in the Coleman-Mandula Theorem associated with the-
ories where all the particles are massless, essentially because of difficulties in defining an
S-matrix for massless particles. In this case, the Poincaré algebra is extended to the confor-
mal algebra:

[D,Pµ] = iPµ , [D,Kµ] = −iKµ , [D,Mµν ] = 0 , [Kµ, Kν ] = 0 ,

[Mµν , Kρ] = i(ηνρKµ − ηµρKν) , [Pµ, Kν ] = −2i(ηµνD +Mµν) .

where Kµ generate so-called special conformal transformations and D is the dilatation oper-
ator.

a) Compute the commutator of P 2 with Kµ and D. What happens to a massive particle
state |p〉 (where P 2|p〉 = m2|p〉, m2 6= 0) under the infinitesimal special conformal
transformation Kµ?

b) If µ, ν = 0, . . . , d − 1, then define Jµν = Mµν along with Jµ,d = 1
2
(Pµ −Kµ), Jµ,d+1 =

1
2
(Pµ+Kµ), and Jd,d+1 = D, along with the constraint that Jab = −Jba is antisymmetric.

Show that the commutators of these generators are the same as for a (d+2)-dimensional
orthogonal group, with metric signature (2, d), i.e. SO(2, d).

3 Spinors and Clifford Algebras

We must first master the formalism necessary to describe spinors and fermions. We can
attribute much of this formalism to Dirac, who had the insight that the Dirac equation
should be a kind of square root of the Klein-Gordon equation:

(γµ∂µ −m)ψ = 0 . (3.1)

Acting on the left with (γµ∂µ +m), one finds

(γµγν∂µ∂ν −m2)ψ = 0 . (3.2)

This second equation is equivalent to the Klein-Gordon equation,

(∂2 −m2)ψ = 0 , (3.3)
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provided

{γµ, γν} = γµγν + γνγµ = 2ηµν . (3.4)

From this innocuous looking anti-commutation relation follows an intricate structure that
depends sensitively on the space-time dimension – the Clifford algebra and its representa-
tions.2 The matrix γµ has a vector index that we can lower and raise using the metric ηµν
and its inverse.

3.1 Clifford Algebras

Introducing fermions ψ requires also introducing a set of γ-matrices. The choice of ψ and
the associated γµ furnish a representation of the Clifford algebra. Generically, we take the
representation to be over the complex numbers. For now, we suppress the spinor indices
α, β, . . . on ψ and γµ. Thus when we write

{γµ, γν} = 2ηµν , (3.5)

there is an implicit identity matrix in spinor space idαβ on the right hand side.
Let us begin with the even dimensional case d = 2k + 2. We group the gamma matrices

into k + 1 pairs of anti-commuting raising and lowering operators

γ0± =
1

2
(±γ0 + γ1) , (3.6)

γa± =
1

2
(γ2a ± iγ2a+1) , a = 1, . . . , k . (3.7)

Problem 3.1. Show that these linear combinations satisfy the relations

{γa+, γb−} = δab , (3.8)

{γa+, γb+} = {γa−, γb−} = 0 .

In particular, note that (γa+)2 = 0 = (γa−)2. By repeatedly acting with the k + 1 γa− on a
spinor, we can eventually reach a lowest weight state ζ such that

γa−ζ = 0 for all a . (3.9)

Starting from ζ and acting with the raising operators γa+, at most once each, we can
obtain all of the 2k+1 = 2d/2 states in the representation. The states can be labeled
s = (s0, s1, . . . , sk), where each of the sa = ±1

2
:

ζ(s) ≡ (γk+)sk+1/2 · · · (γ0+)s0+1/2ζ . (3.10)

2Clifford became a student at KCL in 1860, at the tender age of 15. He later was elected a fellow at
Trinity College, Cambridge in 1868. After surviving a shipwreck along the Sicilian coast during a voyage to
observe the solar eclipse of December 1870, he started work as a professor mathematics and mechanics at
UCL. He suffered a pair of nervous breakdowns, perhaps due to overwork, and succumbed to tuburcolosis
in 1879, at the age of 33. In the Ethics of Belief, he wrote “It is wrong always, everywhere, and for anyone,
to believe anything upon insufficient evidence.”
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The lowest weight state ζ corresponds to all sa = −1
2
.

Taking the ζ(s) as a basis, we derive the matrix elements of γµ from the definitions and
the anti-commutation relations. Starting in d = 2, we find

γ0 =

(
0 1
−1 0

)
, γ1 =

(
0 1
1 0

)
. (3.11)

The 2 × 2 matrices are chosen to obey the anticommutation relation {γµ, γν} = 2ηµν but
additionally such that the states in the representation take the simple form where

ζ(−1/2) =

(
0
1

)
, ζ(+1/2) =

(
1
0

)
. (3.12)

Note that the 2× 2 matrices that appear are related to two of the Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.13)

In particular, γ0 = iσ2 and γ1 = σ1. This relation is not surprising since these matrices give
a three dimensional Euclidean representation of the Clifford algebra

{σi, σj} = 2δij . (3.14)

Increasing d by two doubles the size of the γ-matrices. Given a representation Γµ in 2k
dimensions, we can construct a representation γµ in 2k+2 dimensions using the prescription,

γµ = Γµ ⊗
(
−1 0
0 1

)
= −Γµ ⊗ σ3 , µ = 0, . . . , d− 3 , (3.15)

γd−2 = id⊗
(

0 1
1 0

)
= id⊗σ1 , γd−1 = id⊗

(
0 −i
i 0

)
= id⊗σ2 .

The 2× 2 matrices that we add act on the index sk, which newly appears in going from 2k
to 2k + 2 dimensions. (In what follows, we will set d = 2k + 2.)

The basis choice is not unique. There are many ways of constructing this 2d/2 dimensional
representation of a Clifford algebra. We claim, however, that they are all equivalent up to
an appropriate unitary transformation, γµ → UγµU−1. In four dimensions, for instance, the
construction above leads to the γ-matrices

γ0 =

(
−iσ2 0

0 iσ2

)
, γ1 =

(
−σ1 0

0 σ1

)
, (3.16)

γ2 =

(
0 id
id 0

)
, γ3 =

(
0 −i id
i id 0

)
.

A different, more popular choice of basis in four dimensions, often found in field theory text
books, is

γµ =

(
0 σµ

−σ̄µ 0

)
, (3.17)

where σµ = (− id, σi) and σ̄µ = (− id,−σi).
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Problem 3.2. Demonstrate a unitary transformation U that relates the representations
(3.16) and (3.17). See if you can choose a basis such that the 4d gamma matrices are purely
real, a so-called “really real” representation.

The representation ζ(s) of the Clifford algebra is also a representation – the so-called
Dirac spinor representation – of the Lorentz group. In an earlier exercise, we demonstrated
that the Lorentz generators can be written as

Mµν = − i
4

[γµ, γν ] . (3.18)

The generators M2a,2a+1 commute and can be simultaneously diagonalized to give the weights
of the representation. (Each of the M2a,2a+1 operators functions like a Jz angular momentum
operator in quantum mechanics.) In terms of our raising and lowering operators, we have

Sa ≡ iδa,0M2a,2a+1 = γa+γa− − 1

2
. (3.19)

In this way ζ(s) is a simultaneous eigenstate of the Sa with eigenvalues sa. The spinors ζ(s)

thus form the 2k+1 dimensional spinor representation of the Lorentz algebra so(2k + 1, 1).
While the representation ζ(s) is irreducible as a representation of the Clifford algebra, it

is in general not irreducible as a representation of the Lorentz group. Because the Lorentz
generator Mµν is quadratic in the γ-matrices, it can never flip an odd number of spins when
acting on ζ(s). Thus the states with even and odd numbers of −1/2 spins will not mix under
the action of Mµν , and the Dirac representation falls apart into two smaller representations
in an even number of space-time dimensions.

In fact, we can construct a matrix, the analog of “gamma five” in four dimensions, to
help perform this decomposition. The matrix detects the “chirality” of the state, i.e. the
parity of the number of down spins, and commutes with Mµν . This matrix is a product of
all the other gamma matrices:

γ ≡ i−kγ0γ1 · · · γd−1 . (3.20)

Problem 3.3. Show that in terms of the Sa operators, we can write

γ = 2k+1S0S1 · · ·Sk . (3.21)

As a result, it is clear that γ is diagonal in our ζ(s) basis, taking the eigenvalue +1 when
there are an even number of −1

2
spins and −1 for an odd number of −1

2
spins. The states

with eigenvalue +1 form a Weyl representation of the Lorentz algebra, while the states with
eigenvalue −1 form a second, inequivalent Weyl representation. The eigenvalue of γ is often
called the chirality of the representation.

The matrix γ performs a second key function by allowing us to construct representations
of the Clifford algebra in odd dimensions. We simply use γ as the dth gamma matrix, as
it satisfies the requisite anti-commutation relations with the other gamma matrices to give
{γµ, γν} = 2ηµν . One interesting fact is that we could just as well take −γ as the dth

gamma matrix, which gives a second inequivalent representation of the Clifford algebra in
odd dimensions. (Note we cannot change the overall sign by conjugation γ → UγU−1.)
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3.2 Majorana spinors

A subtle feature of representations of the Clifford algebra is the possibility of imposing a
Majorana condition. A Majorana representation is a “real” (as opposed to complex repre-
sentation), and thus has half the dimensionality of Dirac representation. The subtlety comes
from the fact that we need to consider a more general reality condition than ζ∗ = ζ. We
need to allow for the fact that ζ∗ is some linear operator B acting on ζ:

ζ∗ = Bζ . (3.22)

Indeed, under a unitary transformation ζ → Uζ, and hence B → U∗BU−1. Thus even if
we can find a particular basis where B is the identity, after acting by U , we will in general
find some nontrivial B. Taking the conjugate of the definition (3.22) yields an additional
consistency condition, ζ = B∗ζ∗ = B∗Bζ, implying B∗B = id.

As we saw earlier in an exercise, an infinitesimal Lorentz transformation is generated by
something quadratic in the gamma matrices, Mµν = − i

2
γµν . For this reality condition to

make sense, we need it to be compatible with the Lorentz transformations:

(δζ)∗ = (Bδζ) , (3.23)

− i
2
ωµν(Mµνζ)∗ =

i

2
ωµνBMµνζ , (3.24)

(Mµνζ)∗ = −BMµνζ . (3.25)

On the right hand side, we can expand BMµνζ = BMµνB
−1Bζ while on the left (Mµνζ)∗ =

M∗
µνζ
∗. Thus, the matrix B had better act as

BMµνB
−1 = −M∗

µν (3.26)

on the Lorentz generators. On the individual gamma matrices, we are then allowed a sign
ambiguity, BγµB

−1 = ±γ∗µ.
We will leave the general story as a problem and focus on three low dimensional cases

of interest, d = 2, 3 and 4. In d = 2, the gamma matrices γ0 = iσ2 and γ1 = σ1 (3.11)
are manifestly real. As a result, we can take B = id. The “gamma five” matrix γ =
γ0γ1 = σ3 is real and diagonal. While the original Dirac representation is two complex
(or four real dimensional), we can reduce this representation into different types of smaller
representations. There are Weyl representations with one complex (or two real) components.
There are Majorana representations with two real components. Finally, because B is the
identity in a basis where γ is diagonal, we can have Majorana-Weyl spinors with one real
component.

In d = 3, the gamma matrices γ0 = iσ2, γ1 = σ1 and γ3 = σ3 are again all manifestly
real, allowing for a Majorana representation with B = id. In odd dimensions, there are no
Weyl representations.

In d = 4, for the basis (3.17), we can write B = γ2γ. We know that B has the correct
properties to impose a Majorana condition because

BγµB−1 = (γµ)∗ . (3.27)

13



In the basis (3.17), “gamma five” is diagonal

γ =

(
id 0
0 − id

)
(3.28)

while B is not. Moreover, γ and B do not commute, implying that they cannot be simul-
taneously diagonalized. In other words, we cannot impose both a Majorana and a Weyl
condition at the same time. We can have Majorana spinors or we can have Weyl spinors,
but not both at the same time in four dimensions.

There is an elegant general story which we leave as a problem. Curiously, the represen-
tation theoretic structure has a periodicity modulo eight as a function of dimension. This
periodicity turns out to be a rather deep feature of the Clifford algebra, with relations to
other areas of mathematics, such as Bott periodicity.

Problem 3.4. In d = 2k+2 dimensions, the matrices γµ∗ and −γµ∗ satisfy the same Clifford
algebra as γµ and so must be related to γµ by a unitary similarity transformation. We would
like to determine explicitly the form of this similarity transformation for the basis (3.15) and
study its properties. Consider two candidate matrices

B1 = γ3γ5 · · · γd−1 , B2 = γB1 . (3.29)

a) Show that

B1γ
µB−1

1 = (−1)kγµ∗ , B2γ
µB−1

2 = (−1)k+1γµ∗ , (3.30)

and also that

BiMµνB
−1
i = −M∗

µν (3.31)

for i = 1 and 2. As a result, the spinors ζ and B−1
i ζ∗ must transform in the same way

under the Lorentz group.

b) Show that

B1γB
−1
1 = B2γB

−1
2 = (−1)kγ∗ . (3.32)

As a result, both B matrices will change the eigenvalue of γ when k is odd and not
when it is even. When (d = 2 mod 4) each Weyl representation is its own conjugate,
while when (d = 0 mod 4), each Weyl representation is conjugate to the other.

c) That ζ and B−1
i ζ∗ transform the same way under the Lorentz group allow us to impose

the Majorana reality condition ζ∗ = Bζ, provided B∗B = id as discussed above. Show
that a Majorana condition is possible using B1 only if k = 0 or 3 (mod 4) and using
B2 only if k = 0 or 1 (mod 4).

d) Extending to odd dimensions, show that a Majorana condition is possible only when
k = 0 or 3 (mod 4).

e) Make sure that you understand the contents of Figure 1.
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d Majorana Weyl Majorana-Weyl min. rep.
2 yes self yes 1
3 yes - - 2
4 yes complex - 4
5 - - - 8
6 - self - 8
7 - - - 16
8 yes complex - 16
9 yes - - 16

10=2+8 yes self yes 16
11=3+8 yes - - 32
12=4+8 yes complex - 64

Figure 1: Properties of spinor representations in various dimension. A dash indicates the
condition cannot be imposed. “self” means the Weyl representation is self-conjugate under
complex conjugation while “complex” indicates complex conjugation gives the other Weyl
representation. The dimension of the smallest representation is given in the last column. The
conditions – Majorana, Weyl, Majorana-Weyl – that can be imposed on the representations
repeat as a function of the dimension modulo 8.

f) How do the details of the previous arguments change if we use a metric with mostly
minus signature?

Having completed the exercise above, one may ask if there are any other possible B’s to
consider which may satisfy the consistency conditions. If so, then BMµνB

−1 = B′MµνB
′−1,

which implies there is a linear operator B−1B′ which commutes with all of the Lorentz gen-
erators. By Schur’s Lemma, anything that commutes with all elements of an irreducible
representation must be a multiple of the identity. In odd dimensions, where the Dirac
representation is irreducible, there can be nothing else. In even dimensions, the Dirac rep-
resentation splits into two Weyl representations, and B−1B′ is not necessarily the identity.
It is instead a linear combination of the identity with γ, the two operators which act like
multiples of the identity when restricted to the Weyl representations. Indeed, in the exercise
above, we had B1 and B2 in the even dimensional case, which differed by a factor of γ.

3.3 Spinor Inner Product

In addition to the annoying complexity that the reality condition for spinors should be
generalized to ψ∗ = Bψ, a second irritating feature about spinors is that ψ†ψ is not a
Lorentz scalar, as we now verify. Under an infinitesimal Lorentz transformation, we showed
earlier that

δψα =
1

4
ωµν(γµν)α

βψβ . (3.33)

It follows that the Hermitian conjugate spinor transforms as

δψ† =
1

4
ψ†ωµνγ†νγ

†
µ (3.34)
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From the iterative construction (3.15) of the gamma matrices, it is clear that

γ†0 = −γ0 , γ†i = γi . (3.35)

Problem 3.5. Verify (3.35) for both odd and even dimensions.

In fact, under a unitary similarity transformation γµ → UγµU−1, this property is preserved,
and we expect it to hold in general. As a result, we can write the Hermitian conjugation
relation as

γ†µ = γ0γµγ0 , (3.36)

and the transformation rule (3.34) can be written

δψ† = −1

4
ψ†ωµνγ0γνγµγ0 =

1

4
ψ†ωµνγ0γµνγ0 . (3.37)

(While we have suppressed the spinor index, the structure (γ0γµνγ0)α
β means it is most

natural to write the Hermitian conjugate spinor with an upper index, (ψ†)α.) The sign and
the additional factors of γ0 will not cancel, and ζ†ψ has a nontrivial transformation under
the Lorentz group. It is in other words not a scalar quantity. In the γ0 sickness lies the cure,
and we can define a modified conjugate spinor

ψ̄ ≡ ψ†γ0 . (3.38)

In this case, the infinitesimal Lorentz transformation becomes

δψ̄ = −1

4
ψ̄ωµνγµν (3.39)

and hence

δ(ζ̄ψ) = δζ̄ψ + ζ̄δψ

= −1

4
ζ̄ωµνγµνψ +

1

4
ζ̄ωµνγµνψ

= 0 . (3.40)

Thus ζ̄ψ is a Lorentz scalar.
From two spinors, we can construct other Lorentz covariant objects as well, such as

vectors and anti-symmetric tensors:

ζ̄γµψ , ζ̄γµνψ , . . . (3.41)

Problem 3.6. Show that vµ = ζ̄γµψ is a vector, i.e. show that δvµ = −ωµνvν under the
transformation (3.33).

We should next consider how this modified definition of spinor conjugation, ψ̄ = ψ†γ0,
interfaces with the Majorana condition ψ∗ = Bψ:

ψ̄ = ψ†γ0 = ψT∗γ0 = ψTBTγ0 (3.42)
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The combination C ≡ BTγ0 is often referred to as the charge conjugation matrix, and for
Majorana spinors (in fact Dirac spinors as well), we can write the Lorentz covariant objects
as ζTCψ, ζTCγµψ, ζTCγµνψ, etc. Before, we had the relation γ†µ = γ0γµγ0. The equivalent
condition that guarantees compatibility with the Lorentz group for Majorana spinors is

−γTµ = CγµC
−1 . (3.43)

Restoring indices, we can think of Cαβ as a metric on spinor indices, such that ψ̄ζ =
ψTCζ = ψαC

αβζβ. The inverse metric is then C−1
αβ with lower indices, and we can raise

indices via ψα = ψβC
βα.

Before closing this section, we should discuss some elementary spinor manipulations that
will be useful later on in demonstrating supersymmetry. First, spinor fields are Grassman
valued, which means they anticommute:

ψαζβ = −ζβψα . (3.44)

There is a sign ambiguity then in how to define complex conjugation. We make the choice

(ψαζβ)∗ = ζ∗βψ
∗
α , (3.45)

analogous to the way Hermitian conjugation acts on matrices.
We will often need to perform various manipulations with Majorana spinors, the simplest

of which is perhaps

(ζ̄ψ)∗ = (ζαC
αβψβ)∗ = ψβC

αβζα = −ζαCαβψβ = −ζ̄ψ (3.46)

where we have made use of the fact that we can work in a basis where ζ, ψ, and C are real,
yielding the curious result that ζ̄ψ is pure imaginary.3

Problem 3.7. The Majorana Flip Relations. Show that in d = 2, 3 and 4,

λTCγµ1γµ2 · · · γµpχ = (−1)pχTCγµp · · · γµ2γµ1λ . (3.47)

In these dimensions, which allow for Majorana spinors, if we impose that λ and χ are
Majorana, then we can replace λTC with λ̄ and similarly for χ. How are these rules modified
in d = 2 and 4 to incorporate a γ matrix?

3.4 Fierz re-arrangement

Consider the following list of gamma matrices and antisymmetric products of gamma ma-
trices:

γΓ ∈ {id, γ, γµ, γµγ, γµν , γµνγ, . . .} (3.48)

3One way to change this property is to modify the definition of a barred spinor to include a factor of
i (see for example Freedman and van Proeyen). Another is to work in a mostly minus convention for the
metric (see for example Peskin and Schroeder).
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where Γ = µνλ · · · is a generalized index and γµνλ··· is an antisymmetric product over the
given indices with weight one, e.g.

γµν =
1

2
(γµγν − γνγµ) (3.49)

in the two index case. We would like to think about these matrices as vectors in a matrix
valued inner product space, with inner product 〈M1,M2〉 = tr(M †

1M2). Because of the
relation γ ∼ γ0γ1 · · · γd−1, these matrices are not all linearly independent. In fact they stop
being linearly independent once the number of indices is larger than d/2.

Problem 3.8. Convince yourself that the counting works out, that there are precisely enough
linearly independent matrices in the list (3.48) to span a vector space that has dimension

2b
d
2c × 2b

d
2c, i.e. the size of a gamma matrix.

Provided we restrict the number of indices, the list of vectors is actually orthogonal with
respect to our inner product. A key observation required is that a single gamma matrix is
traceless:

2ηµν tr(γλ) = tr({γµ, γν}γλ)
= tr(γµγνγλ + γνγµγλ)

= tr(γµγνγλ + γµγλγν)

= tr(γµ{γν , γλ})
= 2ηνλ tr(γµ) . (3.50)

Choosing µ = ν 6= λ then implies tr(γλ) = 0.

Problem 3.9. Generalize this result to show that tr(γµ1···µn) = 0, provided 0 < n < d. From
this tracelessness, argue that the list of vectors γΓ ∈ {id, γµ, γµγ, γµν , γµνγ, . . .} is orthogonal,
provided we restrict the indices such that they are linearly independent.

A completeness relation for our basis set (3.48) is then

δβαδ
δ
γ =

∑
ΓΓ′

cΓΓ′(γΓ)γ
β(γΓ′)α

δ (3.51)

for some constants to be determined cΓΓ′ where Γ and Γ′ are generalized indices that range
over the list of independent elements in the list (3.48). To determine the cΓΓ′ , we multiply
both sides by (γΓ′′)β

γ, and sum over β and γ:

(γΓ′′)α
δ =

∑
ΓΓ′

cΓΓ′ tr(γΓγΓ′′)(γΓ′)α
δ , (3.52)

By orthogonality, tr(γΓγΓ′′) = 0 unless Γ = Γ′′ and the double sum reduces to a single sum

(γΓ′′)α
δ =

∑
Γ′

cΓ′′Γ′ tr(γ
2
Γ′′)(γΓ′)α

δ . (3.53)
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For this equality to hold, we must have that cΓ′′Γ′ = 0 unless Γ′ = Γ′′. In the case of equality,
we have further that

cΓΓ =
1

tr(γ2
Γ)

= ±Γ
1

2b
d
2c

, (3.54)

where ±Γ arises because γ2
Γ = ±1 and the power of 2 occurs as a dimension of the represen-

tation of the Clifford algebra tr(id) = 2b
d
2c.

We have gone through this abstract argument because we will frequently be in a situation
in the future where we want to be able to shuffle spinor bilinears around, a manipulation of
the form (λ̄ψ)(ζ̄χ) → (λ̄χ)(ζ̄ψ). Consider a slightly more general situation where we have
only three spinors, two of which are contracted together. We will use our decomposition of
the identity δβαδ

δ
γ in terms of the generalized gamma matrix (3.48):

(λ̄ψ)χα = λ̄γψδχβδ
β
αδ

δ
γ (3.55)

= −
∑

Γ

cΓΓλ̄
γ(γΓ)γ

βχβ(γΓ)α
δψδ

= − 1

2b
d
2c
∑

Γ

±Γ(λ̄γΓχ)(γΓψ)α . (3.56)

This swapping of ψ and χ in the contraction is called a Fierz re-arrangement identity.

Problem 3.10. Show that in three dimensions, the Fierz re-arrangement identity is

(λ̄ψ)χα = −1

2
(λ̄χ)ψα −

1

2
(λ̄γµχ)(γµψ)α . (3.57)

Furthermore, show that in the special case λ = χ and the spinors are Majorana, this identity
reduces to

(λ̄ψ)λα = −1

2
(λ̄λ)ψα . (3.58)

Problem 3.11. There is yet another type of spinor representation, symplectic Majorana
fermions. They can be useful for writing down actions with extended supersymmetry. These
spinors ψiα carry an extra index i = 1 or 2, and satisfy the following reality property:

ψ̄i = εijψTj C̃ . (3.59)

The tensor ε12 = −ε21 = 1 and is zero otherwise. Construct C̃ using the B1 and B2 matri-
ces from problem 3.4. In what dimensions are symplectic Majorana fermions allowed? In
what dimensions can fermions be simultaneously symplectic Majorana and Weyl. (Note the
language may be slightly confusing. Symplectic Majorana fermions are not also Majorana.)

4 Elementary Consequences of Supersymmetry

A generic supersymmetry algebra can be written as follows:

{Qα, Q̄
β} = 2(γµ)α

βPµ ,

[Qα, Pµ] = 0 , (4.1)

[Mµν , Qα] =
1

2
(γµν)α

βQβ ,
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along with the Poincaré generators (2.8).4 The most important relation is the first line, that
the supercharges square to space-time translations. The second line means that the Qα’s
are invariant under translations, while the third implies that the Qα transform as space-time
spinors, as they should given their index. This basic algebra typically comes with a Majorana
condition that Q̄ = QTC, and so will only be allowed in the dimensions that admit Majorana
spinors.

Part of what makes supersymmetry so interesting is the variety of different algebras
that can occur along with the intricate rules that determine when they can and cannot
be constructed. Beyond the simple algebra above, one can construct so called N -extended
algebras with more super charges where QI

α carries an additional index I that runs from
one to N . There are also centrally extended algebras with additional “central elements” on
the right hand side of the first relation. In certain curved manifolds with a high degree of
symmetry, such as anti-de Sitter space, the underlying Poincaré symmetry can be replaced
with a different bosonic algebra and then extended to a super Lie algebra.

We can gain much insight from the supersymmetry algebra alone. We begin with some
elementary manipulations of the first line of (4.1), multiplying both sides by γ0:

{Qα, (Q
†)β} = −2(γµγ0)α

βP µ (4.2)

Tracing over the spinor indices then yields

tr(QQ† +Q†Q) = 2b
d
2c+1P 0 , (4.3)

where we have used the fact that tr(γµν) = 0 and that tr(id) = 2b
d
2c. The momentum

component is just the energy P 0 = E and so we see that

E =
1

2b
d
2c

tr(Q†Q) . (4.4)

(In a “really real” representation, we can replace Q†α with Qα.)
The quantity Q†Q is manifestly positive, and thus the energy in a SUSY theory is a

positive definite quantity. States |0〉 with E = 0, if they exist, are the lowest energy, or
vacuum states. Any such state must furthermore be annihilated by the supercharges

Qα|0〉 = 0 , (4.5)

and therefore preserve the supersymmetry (i.e. be invariant with respect to supersymmetry
transformations).

The trace relation gives a simple diagnostic for spontaneous symmetry breaking – where
the vacuum state breaks the symmetry although the action is invariant. If one finds that the
vacuum state |Ω〉 has positive energy, then the state breaks the supersymmetry Qα|Ω〉 6= 0.
Similarly if one finds that the vacuum state is not supersymmetric, Qα|Ω〉 6= 0, then it must
have positive energy.

4There is some arbitrariness in the normalization of the Q’s. We have chosen the two on the right hand
side of the first line in order to write some supersymmetry variations later on in a simpler way, with fewer
factors of two.
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Next, we look at the representations of the SUSY algebra. Since [Pµ, Qα] = 0, it is
also true that [P 2, Qα] = 0. As with the Poincaré group, we can use the eigenvalues of the
Casimir P 2, i.e. the mass squared, to label representations of the SUSY algebra. All the
members of a given irreducible representation will have the same value of m2.5 We pursue
the same strategy that is used in classifying representations of the Poincaré algebra and treat
the massive and massless cases separately. It will be simpler to perform the analysis in a
“really real” representation where C = γ0 and Q∗ = Q.

In the massive case, we can go to a rest frame where P µ = (m, 0, . . .). The anti-
commutation relation of the supercharges reduces to

{Qα, Qβ} = 2mδαβ. (4.6)

After a rescaling Q̃α = m−1/2Qα, we recover the familiar Clifford algebra

{Q̃α, Q̃β} = 2δαβ , (4.7)

but now in d = 2b
d
2c Euclidean dimensions. As such, it must have 2d/2 = 22b d2c−1

states. As
the number of these Qα matrices is even, we can construct a “gamma five” matrix as well,

(−1)F = i#Q̃1Q̃2 · · · Q̃d (4.8)

which anti-commutes with the other Q̃α. Previously, we interpreted the ±1 eigenvalues of
“gamma five” as chirality of the state, but here they determine whether the state is fermionic
or bosonic. Let |±〉 be an eigenstate of (−1)F . As Qα itself is fermionic, acting with it on a
state will swap the state’s fermionic/bosonic nature:

(−1)FQα|±〉 = −Qα(−1)F |±〉 = ∓Qα|±〉 . (4.9)

One more remarkable thing we can learn comes from the fact that (−1)F is traceless (see
problem 3.9). The trace is also the sum of the eigenvalues, and so there must be an equal
number of bosonic and fermionic states in the super multiplet (irreducible representation).
The pain we endured in learning about Clifford algebras and spinors is paying off!

For massless particles, the best we can do it pick a frame where P µ = (E,−E, 0, 0, . . .),
and the SUSY algebra becomes

{Qα, Qβ} = 2E(id +γ01)αβ . (4.10)

Problem 4.1. Show that the matrix 1
2
(id +γ01) acts like a projector,(

1

2
(id +γ01)

)2

=
1

2
(id +γ01) , (4.11)

half of whose eigenvalues are equal to zero and the other half are equal to one.

5There are interesting exceptions to this rule when the space-time is curved and the underlying Poincaré
algebra is replaced with something else.
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Using the projector, we can choose a new basis where half of the Qα commute with one
another and the other half do not:

{Qα′ , Qβ′} = 4Eδα,β , {Qα′′ , Qβ′′} = 0 (4.12)

where the primed and double primed indices run over only d
2

= 2b
d
2c−1 values. Rescaling the

nontrivial Q’s a bit differently this time, Q̃α′ = (2E)−1/2Qα′ , we find a Clifford algebra with
half as many Q’s as before. We can repeat the previous argument with this smaller algebra.
The massless supermultiplet has fewer states, 2d/4 instead of 2d/2. Half of these states are
bosons and the other half fermions.

Finally we draw some conclusions from the commutator [Qα,Mµν ] = i
2
(γµν)α

βQβ or
equivalently the fact that Qα has spin. Acting with Qα thus must change the Lorentz group
representation of the state. Let us focus on the 4d case, where massive states are labeled
by their remaining SO(3) spin quantum number while massless states are characterized by
a helicity under the remaining SO(2). We can think of Qα as carrying spin (or helicity)
one half. Using our quantum mechanics intuition, acting with Qα should be like tensoring
the underlying representation of the particle by a spin one half representation and should
lead to new possible representations with angular momentum either larger or smaller by a
quantized unit of 1/2.

In a supermultiplet, there will be a state with maximum spin jmax (or helicity in the
massless case). The remaining states then have spins jmax − 1

2
, jmax − 1, etc. Acting with

the appropriate lowering Q operator on the jmax state should lead to a new state with spin
or helicity less by an amount one half, jmax − 1/2.

An annoying complication is that if jmax is large enough, the multiplets tend to have
more positive helicity states than negative and so are not CPT complete. The standard
procedure to remedy the problem and obtain a theory that is CPT invariant is to add by
hand a “mirror multiplet” with a corresponding lowest helicity state and use raising instead
of lowering operators.

We can consider a few examples. In four dimensions, the smallest representation of a
Clifford algebra is 4 dimensional. Focusing on massless states, we can then use two of the
four Qα’s to create a multiplet, leading to one raising and one lowering operator and two
states with helicities λ and λ+ 1

2
. One of the states is fermionic and the other bosonic. Such

a set of states is not CPT complete and needs to be supplemented with a mirror multiplet
with helicities −λ and −λ − 1

2
. One important example is the multiplet

(
−1

2
, 0, 0, 1

2

)
–

really
(
0, 1

2

)
and its mirror – corresponding to a field theory with a complex scalar and

a Majorana fermion. (Note the Dirac equation reduces the number of on-shell fermionic
degrees of freedom from the size of the representation, four, down to two.) Another option is
to have

(
−1,−1

2
, 1

2
, 1
)

corresponding to a gauge field and its superpartner, sometimes called
a photino or gluino. A gauge field in 4d has two on-shell degrees of freedom, corresponding
to two polarizations. The massive multiplets will be twice as large. One has

(
−1

2
, 0, 0, 1

2

)
,

which is the same as massless
(
0, 1

2

)
multiplet along with its mirror. We will construct

actions later in the course with precisely these particle contents.
In general, going to higher dimension forces us to consider representations with larger

and larger spin. While the numbers of Q’s grow exponentially, the number of polarization
states for a particle with a given spin tends to grow as a power law, linearly for a gauge
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field for example, or quadratically for a graviton. Ten dimensions turns out to be the largest
dimension with a multiplet with helicities less than or equal to one. In this dimension, the
smallest spinor representation is 16 dimensional Majorana-Weyl. For a massless multiplet, we
can use 8 of the corresponding supercharges to construct four pairs of raising and lowering
operators. Acting with at most four lowering operators will change the spin by at most
an amount 2, corresponding to the helicity difference between the two polarizations of a
photon. (In more detail, the 16 possible states divide up between the 8 polarization states
of a photon and the 8 physical degrees of freedom of a Majorana-Weyl fermion.) In other
words, supersymmetric gauge theories (without gravity) must have d ≤ 10.

Eleven dimensions is the largest dimension with a multiplet with helicities less than or
equal to two. Now the smallest representation is a 32 dimensional Majorana spinor. We get
eight pairs of raising and lowering operators, corresponding to a maximum helicity difference
of 4, i.e. the difference in helicity between two polarizations of a graviton. In other words,
supergravity theories (without higher spin fields) must have d ≤ 11.6

4.1 Two Component Notation

It is very common in four dimensions to work with a spinor basis where γ is diagonal, a so-
called Weyl basis. In this case, the four component representation breaks apart into spinors
with two components each. Let us discuss what the SUSY algebra looks like in this basis.
We introduce projectors Π± = 1

2
(1 ± γ) which satisfy the properties that Π∓Π± = 0 and

Π±Π± = Π±. Note also that γµΠ± = Π∓γµ. Using these projectors, we define spinors which
are eigenvectors of γ

Q± = Π±Q . (4.13)

There is something immediately confusing here. The claim is that Q+ contains the same
information as Q, and yet Π+ is a projector which has a large kernel when acting on a
Dirac spinor. In order for Q+ to contain the same information, the kernel of Π+ when
acting on the space of Majorana spinors needs to be trivial. Indeed, it is, as can be seen
straightforwardly in a “really real” representation where Q∗ = Q has real components while
γ is pure imaginary. The only way for Π+ to vanish when acting on a Majorana spinor is
for all the components of Q to vanish.

As a result of this definition of Q±, we find that Q± = Π±Q = Q†Π†±γ0 = QΠ∓. Using
further that Q is Majorana, Q∗ = BQ, we can write (Q±)∗ = Π∗±Q

∗ = Π∗±BQ = BΠ∓Q =
BQ∓. (We have used that −γ∗B = Bγ in four dimensions.) In other words, complex
conjugation exchanges the chirality of the spinors, which was a reason we saw earlier why in
four dimensions we could not have spinors that were simultaneously Weyl and Majorana.

6The multiplet has 44 graviton states, 128 gravitino states, and 84 states associated with an antisymmetric
three-form, for a grand total 28 = 256 states. The number of degrees of freedom of a graviton map to the
number of metric degrees of freedom. The metric starts out as a d×d symmetric matrix, but we can remove
one row and column using diffeomorphism invariance (or the freedom to change variables). The remaining

trace also drops out of the equations of motion, leading to d(d−1)
2 − 1 = d(d−3)

2 degrees of freedom. The
gravitino ψαµ has a spinor and a vector index, but is “gamma traceless”, γµψαµ = 0, leading to 16×9−16 = 128
on-shell degrees of freedom. An anti-symmetric three index tensor has 9× 8× 7/3! = 84 on-shell degrees of
freedom.
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Now we act to the right and left of the first line of the SUSY algebra (4.1) with these
projectors. For example, if we consider {(Π±Q)α, (Q̄Π∓)β}, we obtain

{Q±α , (Q±)β} = −2(Π±γ
µΠ∓)α

βP µ = −1

2
(Π±γµ)α

βP µ . (4.14)

Similarly, if we consider {(Π±Q)α, (Q̄Π±)β, we obtain instead

{Q±α , (Q̄∓)β} = −2(Π±γµΠ±)α
βP µ = 0 . (4.15)

We further multiply by γ0 on both sides in order to replace the Q̄ with Q∗, yielding

{Q±α , (Q∗±)β} = 2(Π±γµγ0)α
βP µ ,

{Q±α , (Q∗∓)β} = 0 . (4.16)

Because the spinor Q is Majorana, these equations are more than is necessary to reconstruct
the algebra. We can reconstruct Q− from Q∗+ and vice versa. Let us therefore toss all of
the Q− generators and replace Q+ with Q̃. We find then that

{Q̃α, Q̃
∗β} = 2(Π+γµγ0)α

βP µ

{Q̃∗α, Q̃β} = 2(Π−γµγ0)αβP
µ

{Q̃α, Q̃β} = 0 = {Q̃∗α, Q̃∗β} (4.17)

The matrices Π±γµγ0 have a very simple form in the basis (3.17) as we now discuss.
In Weyl notation, where γ is diagonal, one typically breaks the four component Dirac

spinor into two, two-component pieces

ψ =

(
λa
χȧ

)
(4.18)

where a, ȧ = 1, 2 and uses the Clifford algebra in the basis (3.17). To make the supersym-
metry algebra look more compact, we introduce

σµ
aḃ

= (Π+γ
µγ0)aḃ ,

σ̄µȧb = (Π−γ
µγ0)ȧb , (4.19)

leading to

{Q̃a, Q̃b} = 0 , {Q̃∗ȧ, Q̃∗ḃ} = 0 ,

{Q̃a, Q̃
∗
ḃ
} = 2σµ

aḃ
Pµ , {Q̃∗ȧ, Q̃b} = 2σ̄µȧbPµ , (4.20)

This form of the algebra appears in many text books and is known as the two component
formalism.

Problem 4.2. Show that the definition (4.19) of the σ matrices is compatible with our
previous definition σµ = (id, σi) and σ̄µ = (id,−σi) used to write down the gamma matrices
(3.17).
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We should reconsider our inner products in this two component notation. Note that
C = γ0γ2γ = diag(σ2, σ2). Thus

ψ†γ0ψ = λ†χ− χ†λ
ψTCψ = λTσ2λ+ χTσ2χ . (4.21)

Finally, we write down the Majorana condition in two component notation. From the con-
dition

ψ∗ = Bψ (4.22)

where B = γ2γ, one finds that

λ∗ = −σ2χ , χ∗ = σ2λ . (4.23)

4.2 Witten Index

We argued for something above that is not always true. Specifically, we claimed that
tr(−1)F = 0, since it was just like the “gamma five” matrix we considered in our con-
struction of the Clifford algebra. While it is true that the trace vanishes when acting on
a supermultiplet with nonzero energy, for the vacuum there is no such constraint. Witten
took advantage of this fact to write down his index

W = trH(−1)F (4.24)

where the trace is over the whole Hilbert space, not just the positive energy states. Because
tr(−1)F is nearly always zero, this index measures the difference between the number of
fermionic and bosonic vacuum states

W = {# of bosonic vacua} − {# of fermionic vacua} . (4.25)

By definition, it is an integer. It cannot be continously varied and cannot receive correc-
tions as coupling constants are varied. It provides perhaps the simplest example of a non-
renormalization theorem in supersymmetry. In a generic quantum field theory, one could
well imagine that varying parameters leads to a vacuum state becoming a nonzero energy
state or vice versa. In a supersymmetric theory, however, the nonzero energy states are all
paired – one fermion and one boson. Thus the vacuum states have to disappear or appear
in pairs, such that the Witten index remains invariant. A nonzero Witten index must also
mean that supersymmetry cannot be spontaneously broken. There must always be a few
vacuum states left that cannot pair off and disappear.

Problem 4.3. It is possible to have extended supersymmetry where the QI
α carry an extra

index I = 1, 2, . . .N . Assuming Majorana fermions and forgetting about central charges, the
first (and most important) line of the supersymmetry algebra is modified to

{QI
α, Q

J
β} = −2δIJ(γµC−1)αβPµ . (4.26)

Let us restrict to the four dimensional case where we can choose the QI
α to be N copies of a

four dimensional Majorana-Weyl spinor representation.
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a) What is the typical size of a massive particle multiplet? of a massless one?

b) For a massless multiplet, what is the difference in helicity between the highest weight
and lowest weight states? What is the largest N for which one can restrict to particles
with spin less than or equal to one (i.e. gauge theories)? to particles with spin less
than or equal to two (i.e. gravitational theories)?

c) For N = 2, N = 4 and N = 8 theories, try to describe the particle content of some
massless multiplets with small spin, i.e. less than or equal to two.

5 4d Wess-Zumino Model

The simplest four dimensional supersymmetric theory is often called the Wess-Zumino model.
It has a Majorana Fermion ψ(x) along with some scalar fields. Off-shell, ψ(x) has four real
components which are reduced to two real components on-shell by the Dirac equation. As
we saw before, for supersymmetry, there must then be a pair of real scalar fields A(x) and
B(x) as well.

Why does the Dirac equation reduce the number of degrees of freedom from 4 to 2?
From a classical point of view, we associate a degree of freedom to the ability to choose the
position and momentum of a particle. If the particle is described by a second order differential
equation, those two quantities – position and momentum (or equivalently velocity) – are the
integration constants of the differential equation. The Dirac equation, on the other hand, is
not a single second order but a quadruplet (in 4d) of first order equations. In general, we
can replace a single second order differential equation with a pair of first order equations,
e.g. in place of

φ′′(x) = p(x)φ′(x) + q(x)φ(x) , (5.1)

we could introduce π(x) = φ′(x) and write instead

π′ = pπ + qφ , (5.2)

φ′ = π . (5.3)

Going backward, we expect the four first order components that make up the Dirac equation
should correspond to a pair of second order differential equations and thus to two degrees
of freedom. Identifying which components of the spinor ψ(x) correspond to “position” and
which to “momentum” is unfortunately a bit ambiguous. The canonical commutation rela-
tion involves ψ(x) with itself and yields no insight. Somehow, the components of ψ(x) should
be thought of as position and momentum at the same time, in some linear combination.

Following our nose, we test the following free theory for supersymmetry

L0 = −1

2
(∂µA)(∂µA)− 1

2
(∂µB)(∂µB)− i

2
ψ̄γµ∂µψ . (5.4)

The bosonic part leads straightforwardly the the expected equations of motion �A = 0 =
�B. Note we can replace the pair of real scalars with a complex scalar φ = A+ iB and its
conjugate φ∗ = A− iB, in which case the Lagrangian becomes

L0 = −1

2
(∂µφ

∗)(∂µφ)− i

2
ψ̄γµ∂µψ . (5.5)
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The fermionic action may seem more mysterious. The factor of i should be thought of
as combining with the ∂µ to give the Hermitian generator of translations Pµ. The resulting
expression is indeed real, as we can verify explicitly. We work in a “really real” representation
where the γµ have real coefficients and C = γ0:(

iψ̄γµ∂µψ
)∗

= −i
(
ψ̄γµ∂µψ

)∗
= −i

(
ψTCγµ∂µψ

)∗
. (5.6)

We use the result that (ψαχβ)∗ = χ∗βψ
∗
α = −ψ∗αχ∗β, and further that ψ∗ = ψ in this “really

real” basis for the gamma matrices. As the matrix Cγµ is real, taking the complex conjugate
of the expression in parentheses yields a minus sign showing that indeed(

iψ̄γµ∂µψ
)∗

= iψ̄γµ∂µψ . (5.7)

Let us also verify that we get the correct equation of motion for the fermion. Varying
the action with respect to ψ, we obtain

δL0 = − i
2
δψTCγµ∂µψ −

i

2
ψTCγµ∂µδψ

= − i
2
δψTCγµ∂µψ +

i

2
(∂µψ

T )Cγµδψ − i

2
∂µ(ψTCγµδψ) . (5.8)

Note that it’s important here that the fermion is real. With a complex fermion, we should
vary ψ and ψ̄ independently, similar to what we would do with a complex scalar. We now
use one of the Majorana flip relations to replace (∂µψ)TCγµδψ with −δψTCγµ(∂µψ). We
also throw out the total derivative term, assuming that we can implement the appropriate
boundary conditions. The result is the Dirac equation:

δL0 = −iδψTCγµ∂µψ (5.9)

To investigate supersymmetry, we will vary the action by an infinitesimal Grassman
valued object ε which transforms as a Majorana spinor. This object ε we can think of in
rough analogy to the parameter aµ that we used in considering infinitesimal translations.
While Pµ has engineering dimension one, the infinitesimal length aµ must have engineering
dimension -1. Similarly, Q as the square root of P will have engineering dimension 1/2 while
ε has engineering dimension −1/2. To translate between δ and Q, we have

[δ1, δ2] = [ε̄1Q, ε̄2Q]

= ε̄α1 ε̄
β
2{Qα, Qβ} . (5.10)

Note that δ = ε̄Q = Q̄ε is bosonic and so it is natural to take a commutator.
The supersymmetric variation should rotate a scalar into a fermionic operator and a

fermion into a scalar operator. By dimension counting, we should be able to relate the
variation of a scalar, e.g. [Q, φ], directly to ψ. The free scalar has engineering dimension
one, while the fermion has engineering dimension 3/2. A natural guess is

δφ = ε̄(a+ bγ)ψ,

δφ∗ = ε̄(−a∗ + b∗γ)ψ , (5.11)
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where a and b are constants. The −a∗ in the second line comes from the fact that ε̄ψ is
purely imaginary in our conventions while we find +b∗ because ε̄γψ is real. If we vary φ twice,
we would like to produce a total derivative acting on φ, i.e. an infinitesimal translation. A
natural guess then for the variation of ψ is

δψ =
1

2

(
(1 + cγ)/∂φ+ (1− c∗γ)/∂φ∗

)
ε . (5.12)

We have used the freedom to rescale ε to fix the coefficient of /∂φ to be (1 + cγ) for c an
undetermined constant. The coefficient of /∂φ∗ is then fixed by the Majorana property.

Let us begin by seeing if the constants a, b, and c can be adjusted to make this infinitesimal
transformation a symmetry of the action. (We must check that the variation of the action
vanishes off-shell. Of course it will vanish on-shell, because that is how the equations of
motion are derived in the first place.) The variation takes the form

δL0 = −1

2
(∂µδφ

∗)(∂µφ)− 1

2
(∂µφ

∗)(∂µδφ)− iδψTCγµ∂µψ , (5.13)

where we have used (5.9). We need look only at the terms proportional to φ. The result for
the terms proportional to φ∗ will follow by complex conjugation:

δL0|φ = −1

2
(−a∗ε̄∂µψ + b∗ε̄γ∂µψ) ∂µφ− i

2

[
(/∂φ+ cγ /∂φ)ε

]T
Cγµ∂µψ . (5.14)

Now using that −γTµC = Cγµ (3.43) while γTC = Cγ, we see that

δL0|φ =
1

2
[a∗ε̄∂µψ − b∗ε̄γ∂µψ + iε̄γµγν∂νψ + icε̄γµγγν∂νψ] (∂µφ) (5.15)

Next, we write γµγν = 1
2
{γµ, γν} + 1

2
[γµ, γν ] = ηµν + γµν and remark that γµν∂µφ∂νψ =

∂µ(γµνφ∂νψ) is a total derivative, allowing us to group terms:

δL0|φ =
1

2
[(a∗ + i) ε̄∂µψ + (−b∗ − ic) ε̄γ∂µψ] (∂µφ) . (5.16)

For the variation to vanish, we thus require a = i and b = ic∗.
Returning now to the issue of whether or not we are dealing with supersymmetry, we can

see if we get something sensible for [δ1, δ2]φ:

δ1δ2φ = δ1ε̄2(a+ bγ)ψ

=
1

2
ε̄2(a+ bγ)

[
(1 + cγ)/∂φ+ (1− c∗γ)/∂φ∗

]
ε1

=
1

2
(a+ bc)ε̄2/∂φε1 +

1

2
(ac+ b)ε̄2γ /∂φε1

+
1

2
(a− bc∗)ε̄2/∂φ∗ε1 +

1

2
(−ac∗ + b)ε̄2γ /∂φ

∗ε1 . (5.17)

To simplify the commutator, we need the Majorana flip relations that ε̄2γ
µε1 = −ε̄1γµε2

along with ε̄2γγ
µε1 = ε̄1γγ

µε2:

[δ1, δ2]φ = (a+ bc)ε̄2/∂φε1 + (a− bc∗)ε̄2/∂φ∗ε1 . (5.18)
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We argued before that ε̄2γ
µε1 has the correct transformation properties to be a Lorentz

vector. Thus, if the second term can be made to vanish, we have found that [δ1, δ2] produces
an infinitesimal translation when acting on φ, as it should if we are discussing supersymmetry.
In addition to a = i and b = ic∗ that we found in demanding δL0 vanish, we now also find
a = bc∗, allowing us to set c∗ = ±1 and b = ±i. We will make the positive sign choice,
leading to

[δ1, δ2]φ = 2iε̄2/∂φε1 . (5.19)

The supersymmetry transformation can be cast in a more compact form using the pro-
jectors Π± ≡ 1

2
(1 + γ):

δφ = 2iε̄Π+ψ , δφ∗ = 2iε̄Π−ψ , (5.20)

δψ = Π+/∂φε+ Π−/∂φ
∗ε . (5.21)

These oeprators Π± project the fermions onto positive or negative chirality states, i.e. into
the space of Weyl fermions. It perhaps makes sense that some kind of projector appears, as
the fermion has more degrees of freedom than a single scalar.

Finally, we need to check that [δ1, δ2]ψ is indeed an infinitesimal translation. We find
that

δ1δ2ψ = 2i(∂µε̄1Π+ψ)γµΠ−ε2 + 2i(∂µε̄1Π−ψ)γµΠ+ε2

= i(ε̄1∂µψ)γµε2 − i(ε̄1γ∂µψ)γµγε2 (5.22)

This doesn’t yet look much like ε̄1γ
µε2 multiplying ∂µψ, in analogy to what we obtained for

the scalar, but we can use our Fierz rearrangement identities. In 4d, we have the following
independent gamma matrices:

id , γµ , γ , γµγ , γµν . (5.23)

Note that there are 1 + 4 + 1 + 4 + 6 = 16 of these matrices, which is indeed equal to 4× 4,
the size of gamma matrices for these Majorana fermions in 4d. The relevant Fierz identity
is then

(λ̄ρ)χ = −1

4
(λ̄χ)ρ− 1

4
(λ̄γµχ)(γµρ)− 1

4
(λ̄γχ)(γρ)

+
1

4
(λ̄γµγχ)(γµγρ) +

1

8
(λ̄γµνχ)(γµνρ) . (5.24)

The extra factor of 1/2 in the last term compensates for the overcounting from γµν = −γνµ.
We are interested in the special case (ε̄1ρ)ε2− (ε̄2ρ)ε1 where ρ is either ∂µψ or γ∂µψ. Because
of the Majorana flip relations (3.47) supplemented by a couple of extra relations that also
involve γ, it turns out only the terms that involve γµ and γµν survive:

(ε̄1ρ)ε2 − (ε̄2ρ)ε1 = −1

2
(ε̄1γµε2)(γµρ) +

1

4
(ε̄1γµνε2)(γµνρ) . (5.25)

Problem 5.1. Show that ψTCγλ = λTCγψ and ψTCγγµλ = λTCγγµψ.
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We find then the following

[δ1, δ2]ψ = − i
2

(ε̄1γµε2)γλγµ∂λψ +
i

8
(ε̄1γµνε2)γλγµν∂λψ

+
i

2
(ε̄1γµε2)γλγγµγ∂λψ −

i

8
(ε̄1γµνε2)γλγγµνγ∂λψ

= −i(ε̄1γµε2)γλγµ∂λψ

= −2i(ε̄1γµε2)∂µψ + i(ε̄1γµε2)γµγλ∂λψ . (5.26)

In proceeding from the first to the second line, we have used that γ anticommutes with γµ

but commutes with γµν and also that γ2 = 1. In going from the second to the third equality,
we used the anticommutation relations for γλ and γµ.

We haven’t completely succeeded here. There is still the second term in the last line of
(5.26), but notice that this second term is proportional to the equation of motion for the
fermion, γµ∂µψ = 0. What is going on here is that the supersymmetry algebra has failed to
close off-shell. In order to get the required translation, we need to impose the equation of
motion. We say that the supersymmetry algebra here closes on-shell. More formally, we can
write

ε̄α1 ε2β{Qα, Q̄
β} = 2ε̄1γµε2P

µ

= 2ε̄α1 ε2β(γµ)α
βP µ . (5.27)

as expected from the first line of our original statement of the supersymmetry algebra (4.1)
back in section 4.

In this particular case, there is an improved formalism where we can get the supersym-
metry algebra to close off-shell as well, but it requires adding auxiliary fields, i.e. fields that
do not carry dynamical degrees of freedom. In this case, we would need to add a complex
scalar field traditionally called F . Then the degrees of freedom would balance off-shell – four
bosonic and four fermionic.

Problem 5.2. Consider the following improved Lagrangian

L = −1

2
(∂µφ

∗)(∂µφ)− i

2
ψ̄γµ∂µψ +

1

2
F ∗F , (5.28)

along with the improved SUSY transformation rules

δφ = 2iε̄Π+ψ ,

δψ = γµ(∂µφ)Π−ε+ γµ(∂µφ
∗)Π+ε+ FΠ+ε+ F ∗Π−ε , (5.29)

δF = 2iε̄Π−γ
µ∂µψ . (5.30)

a) Why doesn’t F show up in δφ? Why doesn’t φ show up in δF?

b) Verify that the Lagrangian is invariant under these SUSY transformations.

c) Verify that the SUSY algebra closes off-shell, i.e. without imposing the equations of
motion. This problem is rather lengthy, requiring examining [δ1, δ2] acting on φ, ψ,
and F .

Finding the appropriate auxiliary fields to close the SUSY algebra off-shell is in fact in
general a difficult problem. In the case of N = 1 and 2 supersymmetry, answers are usually
known. For many cases with N = 4 and 8 SUSY, the problem remains unsolved.
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5.1 Interactions

We can add interactions to this model, but only in a rather limited fashion because of the
constraints from supersymmetry. In the interest of simplicity, we will work with on-shell
SUSY and no additional auxiliary fields. Consider the following interaction Lagrangian

Lint = −V (φ, φ∗) + U(φ, φ∗)iψ̄Π+ψ + U(φ, φ∗)∗iψ̄Π−ψ . (5.31)

Note the second and third terms are complex conjugates of each other. Provided then that
V is real, the interaction is a real quantity as well. This modified Lagrangian is not invariant
under the original SUSY transformations, but it is under a minor modification of them,

δφ = 2iε̄Π+ψ , δφ∗ = 2iε̄Π−ψ ,

δψ = γµ(∂µφ)Π−ε+ γµ(∂µφ
∗)Π+ε+W (φ, φ∗)∗Π+ε+W (φ, φ∗)Π−ε . (5.32)

To verify SUSY of the new interacting Lagrangian, we start with the extra pieces that now
do not cancel out in δL0 because of the modification of the supersymmetry transformations.
From the derivation of the equation of motion for ψ, we can write the left-over piece as

δL0|leftover = −iψ̄γµ∂µ (W ∗Π+ε+WΠ−ε), (5.33)

= −iψ̄
[
(∂W ∗)(/∂φ)Π+ε+ (∂̄W ∗)(/∂φ∗)Π+ε+ (∂W )(/∂φ)Π−ε+ (∂̄W )(/∂φ∗)Π−ε

]
.

Next we consider the SUSY variation of the interactions, which we break up into terms that
are linear and cubic in ψ: δLint = δ1Lint + δ3Lint. The linear terms are as follows

δ1Lint = −(∂V )(2iε̄Π+ψ)− (∂̄V )(2iε̄Π−ψ) (5.34)

+iU(γµ(∂µφ)Π−ε+ γµ(∂µφ
∗)Π+ε+W ∗Π+ε+WΠ−ε)

TCΠ+ψ + c.c.

+iUψTCΠ+(γµ(∂µφ)Π−ε+ γµ(∂µφ
∗)Π+ε+W ∗Π+ε+WΠ−ε) + c.c.

We use that Π+γµ = γµΠ−, γTµC = −Cγµ and γTC = Cγ, along with projection conditions
that Π±Π∓ = 0 and Π2

± = Π±:

δ1Lint = −(∂V )(2iε̄Π+ψ)− (∂̄V )(2iε̄Π−ψ) (5.35)

−iUε̄(/∂φ)Π+ψ + iUW ∗ε̄Π+ψ + c.c.

+iUψ̄(/∂φ)Π−ε+ iUW ∗ψ̄Π+ε+ c.c. (5.36)

Using the Majorana flip identities, this expression simplifies somewhat further

δ1Lint = −(∂V )(2iψ̄Π+ε)− (∂̄V )(2iψ̄Π−ε) (5.37)

+2iUψ̄(/∂φ)Π−ε+ 2iUW ∗ψ̄Π+ε+ c.c.

The combination δL0 + δ1Lint has to vanish independently of δ3L∫ because of the differ-
ing numbers of fermions in the expressions. Pairing up terms, we find that the following
expressions (and their complex conjugates) must vanish

∂W − 2U = 0 ,

∂̄W = 0 , (5.38)

∂V − UW ∗ = 0
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The second equation implies the remarkable fact that W must be a holomorphic function
of the fields, i.e. depend only on φ and not its complex conjugate φ∗. The first and third
equations (along with their complex conjugates) can be assembled and used to solve for V
as a function of W :

V =
1

2
WW ∗ . (5.39)

(There are some integration constants which we have set to zero here.)

Problem 5.3. Verify that δL3 = 0 as well, and so the action is supersymmetric. You will
need some Fierz identities.

The holomorphic function W(φ) defined such that

∂W
∂φ

= W (5.40)

is usually given the name superpotential. The choice ofW determines all of the interactions
in the Wess-Zumino model! Since W is holomorphic, its image is the entire complex plane.
Even if W never vanishes, it must come arbitrarily close to zero. Although it is possible to
break SUSY spontaneously by taking W = 1/φ, there will still be in some sense a SUSY
vacuum at infinity that the system can roll toward, possibly by tunneling out of a non-SUSY
vacuum with positive energy. A number of years ago, there was a flurry of activity concerned
with this phenonenon, dubbed meta-stable SUSY breaking.

Problem 5.4. Verify that the SUSY variations (5.32) close on-shell.

Consider for a moment a superpotential of the form

W =
1

2
mφ2 +

1

3
λφ3 . (5.41)

We see that the quadratic term proportional to φ2 will produce mass terms m2 for the scalar
φ and m for its superpartner ψ in the original Lagranigan. The cubic term will on the other
hand lead to genuine interactions, a Yukawa and its complex conjugate of the schematic
form φψ̄ψ as well as a quartic |φ|4 potential for the scalar.

The holomorphic nature of W along with some global symmetries can greatly constrain
the way in whichW can be renormalized as a function of energy scale. First consider a U(1)
symmetry under which φ and Π+ψ have the same charge q, φ→ eiαqφ and Π+ψ → eiαqΠ+ψ.
Hence, φ∗ and Π−ψ will have the opposite charge, φ∗ → e−iαqφ∗ and Π−ψ → e−iαqΠ−ψ. The
correlation between φ and Π+ψ appears for consistency with the SUSY transformation rules
(5.32). A more concise way of writing the transformation rule for the fermion is to use the
gamma five matrix, ψ → eiqαγψ.7 By construction, the potential V as well as the Yukawas
Uψ̄Π+ψ and U∗ψ̄Π−ψ will be inert under such a symmetry transformation provided W is
inert under this U(1) as well.

7One might worry that such a transformation destroys the reality property of the Majorana spinor.
Consider however a “really real” representation where ψ∗ = ψ. In such a basis, γ is pure imaginary and
hence eiqαγ is purely real.
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There is the possibility of a more subtle global symmetry as well, under which the su-
percharge Q transforms. This symmetry is usually called R-charge, and the conventional
normalization is that Π+Q should have charge -1, Q→ e−iαγQ. Hence, the R-charge of Π+ψ
must be one less than the R-charge of φ for consistency with the SUSY transformation rules.
If the superpotential itself W has R-charge 2, then the Lagrangian will again be invariant
with respect to this global symmetry.

Coming back to the simple model (5.41), the first step in the renormalization argument
is to assume that m and λ are not numbers but scalar fields in part of some larger supersym-
metric field theory. Their only role for us, however, will be to take on expectation values 〈m〉
and 〈λ〉 that lead to masses and interactions of the dynamical field φ and its super partner
ψ. Given their new interpretation as fields, we can restore a U(1)×U(1)R symmetry to the
theory. The relevant charge assignments for the individual fields such that the superpotential
has charge zero and two respectively are

U(1) U(1)R
φ 1 1
m −2 0
λ −3 −1

(5.42)

When λ is very small, the theory is nearly free, and we have good perturbative control
over the behavior. However, as λ gets larger, so do the interactions, and much more compli-
cated behavior can ensue in a generic quantum field theory. Through loop corrections one
can generate additional interactions, for example φ4. Non-polynomial and non-perturbative
expressions like e−φ

2/λ could appear as well. Here, however, supersymmetry and the U(1)
symmetries make the rules much stricter. To respect the symmetries, the potential must be
a holomorphic function with the scaling form

W = mφ2f

(
λφ

m

)
. (5.43)

Without holomorphicity, we could satisfy the charge constraints much more easily by includ-
ing the complex conjugate fields φ∗, m∗, and λ∗. In the limit where λ is very small, we can
expand this function out as a power series involving only non-negative powers of λ. After
all, the theory should be well-behaved with respect to λ in this nearly free limit:

W =
∞∑
n=0

gnm
1−nλnφn+2 . (5.44)

However, we also ought to be able to take a massless limit and expect the theory to be
well-behaved. Thus we can rule out all terms with n > 1. The generic form of the super
potential is then

W = g0mφ
2 + g1λφ

3 . (5.45)

We can determine the constants g0 and g1 by matching to (5.41) in the weakly interacting
limit λ → 0. However, the constants g0 and g1 must be independent of λ, m and φ and
so we have fixed W for all λ, and the super potential is not renormalized. There are some
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subtleties here which have to do with choice of renormalization group scheme and other
subtleties associated with massless limits and Wilsonian RG, but we shall gloss over them.

This argument is easily generalizable to more complicated superpotentials. Each time we
add a new coupling and new interaction term, e.g. λ′φ4, we also get a new U(1) symmetry
to add to the mix, which constrains the renormalization of the new coupling. This argument
can be further generalized to include gauge fields, which I hope we will have time to see
later.

Problem 5.5. Can you modify the argument above for a superpotential of the form W =
1
2
mφ2 + λφr for r some positive integer, r ≥ 3?

6 From Super Maxwell to Super Yang-Mills with Mat-

ter

Gauge symmetry is an important part of real world physics, in particular the Standard
Model, and it is a critical part of these lectures to incorporate supersymmetry into gauge
theories. We start with the simplest gauge theory – a Maxwell field with a U(1) symmetry
group – and then proceed to make it more complicated, first generalizing to a non-abelian
simple Lie group, e.g. SU(n), and then adding matter fields that are charged under the gauge
group. The lessons we learn in the simpler cases will carry over to the more complicated
ones and make our life easier later on.

Before embarking, let us first do some simple counting on our fingers. A gauge theory is
characterized by a massless vector field Aaµ that transforms in the adjoint representation of
the gauge group. Naively, Aµ should have the same number of space-time degrees of freedom
as the number of dimensions, µ = 0, 1, . . . d− 1. However, this counting does not agree with
our experience in four dimensions where the photon has just two polarizations. In Lorentz
gauge ∂µA

µ = 0, the equation of motion for the photon is that of d massless scalar fields
∂2Aµ = 0. However ∂µA

µ = 0 does not completely fix the gauge and we are free to perform a
shift Aµ → Aµ+∂µΛ provided ∂2Λ = 0. This freedom allows us to remove one component of
Aµ, say A1. The gauge constraint ∂µAµ = 0 then removes an additional degree of freedom.
If we choose a reference frame where the photon is traveling in the 1 direction, then its
momentum vector will be pµ = (E,E, 0, 0, . . .). In momentum space, the gauge constraint
implies pµAµ = 0, leaving only the components A2, A3, . . . , Ad−1 free.

For the simplest supersymmetry, we should then add the same number of fermionic
degrees of freedom in the form of spin 1/2 fermions. [[ Spin 3/2 particles are called gravitinos.
A discussion of them would quickly lead us into supergravity which I want to avoid. ]] So
we should look at our table of fermions in various dimensions contained in figure 1 and see
when the counting matches. Recall that the Dirac equation removes half of the degrees
of freedom, and so we need to see when the numbers in the last column, divided by two,
are equal to d − 2. The match happens precisely for d = 3, 4, 6 and 10. We can have
supersymmetric gauge theories in other dimensions as well, but they will require adding
fields in other representations of the Lorentz group, for example scalars.
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6.1 Maxwell Field

We will focus on the four dimensional case in what follows. Our action here is constructed
from a U(1) gauge field Aµ and its corresponding field strength Fµν = ∂µAν − ∂µAν and a
Majorana fermion λ where λ̄ = λTC:

SSM = −
∫

d4x

(
1

4
FµνF

µν +
i

2
λ̄γµ∂µλ

)
, (6.1)

The theory is free, and perhaps not very interesting on its own. We could add charged matter
fields to get a supersymmetric version of QED, which we will do later in the non-abelian
case. Our interest here though is in the fact that it is supersymmetric:

δAµ = iε̄γµλ , (6.2)

δλ = −1

2
Fµνγ

µνε . (6.3)

Note that the transformation rules are consistent with naive engineering dimensions of the
fields, where Aµ has dimension one and λ has dimension 3/2. We need to deal with the
variation δλ̄:

δλ̄γµ∂µλ = ∂µ(δλ̄γµλ)− (∂µδλ̄)γµλ

= ∂µ(δλ̄γµλ) + λ̄γµ∂µδλ , (6.4)

integrating by parts and using one of the Majorana flip identities (3.47). Discarding the
total derivative, the total SUSY variation reduces to

δS = −
∫

d4x
(
F µν∂µδAν + iλ̄γρ∂ρδλ

)
= −

∫
d4x

(
F µνiε̄γν∂µλ−

i

2
λ̄γρ∂ρFµνγ

µνε

)
. (6.5)

To proceed, we use again a Majorana flip identity, this time on ε̄γν∂µλ, and rewrite γργµν =
γρµν + ηρµγν − ηρνγµ:

δS = −
∫

d4x

(
−iF µν(∂µλ̄)γνε−

i

2
λ̄(∂ρFµν)(γ

ρµν + 2ηρµγν)ε

)
. (6.6)

The combination γρµν∂ρFµν = γρµν∂[ρFµν] = 0 vanishes by a Bianchi identity, and the re-
maining bits combine to give a total derivative:

δS =

∫
d4x ∂µ

(
iF µνλ̄γνε

)
, (6.7)

which can be discarded assuming SUSY preserving boundary conditions.
We next verify that the SUSY algebra closes in the proper way, consistent with (4.1).

The simpler task is closure on the gauge field:

[δ1, δ2]Aµ = −iε̄2γµ
(

1

2
F λργλρε1

)
− (1↔ 2)

= −iε̄2
(

1

2
γµλρ + ηµλγρ

)
F λρε1 − (1↔ 2) . (6.8)
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By the Majorana flip identities (3.47), the γµνρ term will cancel out of the commutator,
leaving

[δ1, δ2]Aµ = −2iε̄2γ
νε1Fµν

= (2iε̄2γ
νε1)∂νAµ − ∂µ(2iε̄2γ

νε1Aν) (6.9)

The first term is a translation and the second a gauge transformation. Thus the supersym-
metry closes up to gauge transformations.

Closure on the fermions, as usual, is a more complicated story involving Fierz rearrange-
ment identities. We find

[δ1, δ2]λ = −2∂µ

(
i

2
ε̄1γνλ

)
γµνε2 − (1↔ 2)

= −iγµν(ε̄1γν∂µλ)ε2 − (1↔ 2) . (6.10)

We will need in particular the same 4d Fierz identity (5.24) that we used in verifying closure
of the SUSY algebra for the Wess-Zumino model. We take λ = ε1, χ = ε2, and ρ = γν∂µλ.
From the Majorana flip identities (3.47), the only term on the right hand side of the Fierz
identity that will contribute to the commutator are the ones that involve γµ and γµν . Hence
we find

[δ1, δ2]λ =
i

2
(ε̄1γρε2)γµνγργν∂µλ−

i

4
(ε̄1γ

ρσε2)γµνγρσγν∂µλ (6.11)

We now need to go through some rather tedious manipulations with the gamma matrices.
The strategy here is to try to either get an infinitesimal translation, i.e. ε̄1γµε2∂

µλ, or some-
thing that will vanish by the equations of motion, i.e. stuff times /∂λ. Here we go for the
simpler one:

γµνγργν = −γµνγνγρ + 2γµρ

= −3γµγρ + 2γµρ

= −3ηµρ − γµρ

= −4ηµρ + γργµ . (6.12)

And now for the more complicated one:

γµνγρσγν = [γµν , γρσ]γν + γρσγµνγν

= 2(ηνργµσ − ηµργνσ + ηµσγνρ − ηνσγµρ)γν + 3γρσγµ

= 2γµσγρ + 6ηµργσ − 6ηµσγρ − 2γµργσ + 3γρσγµ

= 2γµσρ + 2γµηρσ + 4ηµργσ − 2γµρσ − 2γµηρσ − 4ηµσγρ + 3γρσγµ

= 4γσρµ + 4ηµργσ − 4ηµσγρ + 3γρσγµ

= 4γσργµ + 3γρσγµ

= −γρσγµ (6.13)

In the second line, we used the fact that − i
2
γµν are generators of the Lorentz algebra.

Assembling the various pieces, we find for the commutator

[δ1, δ2]λ = −2i(ε̄1γ
µε2)∂µλ+

i

2
(ε̄1γρε2)γργµ∂µλ+

i

4
(ε̄1γρσε2)γρσγµ∂µλ . (6.14)
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The first term is a translation. The second two vanish by the equations of motion. There is no
gauge transformation piece here because λ does not transform under gauge transformations.
Thus we have demonstrated that the SUSY algebra closes on-shell.

We did not expect the algebra to close off-shell. Fixing a gauge in 4d, the gauge field
has 3 off-shell degrees of freedom while the Majorana fermion has 4. Thus we need one
more bosonic degree of freedom to put together an off-shell formalism. The corresponding
auxiliary field is often given the name D.

Problem 6.1. How does the calculation of δS and [δ1, δ2] above get modified in three dimen-
sions?

6.2 Super Yang-Mills

We now generalize the supersymmetric Maxwell theory to an arbitrary (semi-simple) Lie
group G. Superficially, the action appears nearly identical but where now the gauge field Aµ
and Majorana fermion λ are assumed to transform in the adjoint representation of G:

SSYM = − 1

g2
YM

∫
d4x

(
1

2
tr(FµνF

µν) + i tr(λ̄γµDµλ

)
. (6.15)

Each term hides some cubic and quartic interactions; the kinetic terms are constructed
from covariantized derivatives, Dµλ = ∂µλ − i[Aµ, λ] and Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ].
By judiciously rescaling the fields, the interaction strength gYM appears only as an over-all
renormalization of the action. We can move gYM to a more conventional location by sending
λ→ gYMλ and Aµ → gYMAµ.

Some Lie Algebra and Lie Group Background

To unpack the trace tr, we need to review some facts about Lie groups, Lie algebras, and
their representations. Given a Lie group G, there is a corresponding Lie algebra g and a set
of generators of that algebra ta which obey the commutation relations

[ta, tb] = if cabtc (6.16)

where f cab = −f cba are (real) structure constants of the algebra. The indices a, b, c run
from one to dim(G) where dim(G) is the dimension of G. In fact, for the Lie groups that
we are interested in, we may take the structure constants to be completely antisymmetric in
all indices. We will raise and lower indices with the Kronecker delta δab, and therefore the
placement of an index, up or down, will not mean much. The generators (indeed any three
elements of the algebra) obey the Jacobi relation

0 = [[ta, tb], tc] + [[tc, ta], tb] + [[tb, tc], ta] , (6.17)

which in turn puts constraints on the fabc. We will always take the generators to be Hermitian
t†a = ta.

In general, we will be interested in Lie groups which decompose as

G = G1 ×G2 × · · · ×Gn , (6.18)
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where Gi is either U(1); one of the classical Lie groups SU(n), SO(n), or Sp(n); or one of
the exceptional Lie groups G2, F4, E6, E7 or E8. In fact, most of our interest will be in just
two cases, Gi = U(1) which we discussed above or Gi = SU(n). Indeed, the standard model
of particle physics involves just G = U(1)× SU(2)× SU(3).

Given a Lie algebra, we can then in turn find representations of that Lie algebra acting
on a vector space. The defining or fundamental representation is induced by the definition
of the group itself. For example, SU(n) is the group of n × n unitary complex matrices
with determinant 1. It naturally acts on vectors in an n dimensional vector space. This
construction of SU(n) is the fundamental representation.

To go from the Lie group to the Lie algebra, we use the exponential map,

g = eiθ
ata .

Indeed, eiH is a unitary matrix if H is Hermitian. Pursuing the example of SU(n), from the
matrix relation that log det g = tr log g, it follows that the generators ta in the fundamental
representation must be traceless matrices. For example, for SU(2), we could write down the
Pauli spin matrices as generators

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ1 =

(
1 0
0 −1

)
.

They are Hermitian, traceless matrices. Moreover, there are three of them, consonant with
the fact that the dimension of SU(2) is 22 − 1 = 3. When we anti-commute them, we find

[σa, σb] = 2iεcabσc , (6.19)

yielding structure constants 2εcab proportional to the Levi-Civita tensor. In fact, it is con-
ventional to use a normalization of the generators where the structure constants are the com-
ponents of the Levi-Civita tensor itself, without the two, which we can achieve by rescaling
σa → τa = 1

2
σa. In general, SU(n) is an n2 − 1 dimensional group which has a fundamental

representation with n2 − 1 traceless generators.
Another important representation is the adjoint representation. Given that the Lie alge-

bra in the fundamental representation can act on an n dimensional vector space on which
the group also acts, there must be an induced action of the group on the Lie algebra itself,
treating the Lie algebra as a vector space in its own right. For g ∈ G, t ∈ g, and v ∈ Rn,
being a little sloppy about the disinction between the group and algebra and their repre-
sentations, we have tv → gtv = gtg−1gv, where gtg−1 must still be an element in the Lie
algebra. This adjoint group action then induces an adjoint action of the Lie algebra on itself.
Let us take g to be close to the identity element and expand in a Taylor series

gtg−1 = eiste−is ≈ t+ ist− its+ . . . = t+ i[s, t] + . . . (6.20)

The adjoint action of the Lie algebra on itself is nothing but the commutator. In other
words, we should be able to find an adjoint representation with generators ta which are
dim(G)× dim(G) matrices which act on an arbitrary element of the Lie algebra, viewed as
an dim(G) dimensional vector. The defining relation of the Lie algebra (6.16) makes it clear
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what these matrices must be. In the adjoint representation, the generators of the Lie algebra
must be the structure constants themselves,

(ta)
b
c = if bac . (6.21)

As the indices run from 1 to dim(G), we see that indeed the ta are indeed dim(G)× dim(G)
matrices in this representation. For the SU(2) case we considered above, the fundamental
representation has generators which are 2× 2 matrices, while the adjoint representation will
have 3 × 3 matrices. More generally for SU(n), the fundamental will have n × n matrix
generators while the the adjoint will have (n2 − 1)× (n2 − 1) matrices.

Given an object Aµ or λ which transforms in the adjoint representation of the Lie group,
we secretly mean then that they have adjoint indices Aaµ and λa which can be contracted with
the generators of the Lie algebra. A confusing point now involves what representation to use
in writing down the generators ta and furthermore how to normalize the ta. In computing
an object like tr(FµνF

µν) where Fµν = F a
µνta, we need to specify the representation for the

ta and determine tr(tatb). For a compact Lie group, this trace is proportional to a Kronecker
delta function

tr(tatb) = Cδab , (6.22)

where C > 0 – sometimes called the quadratic invariant of the representation – depends on
the representation.

We have a proposal to use the structure constants themselves for the adjoint representa-
tion:

tr(tatb) = f cadf
d
bc . (6.23)

Given that this trace is proportional to the delta function, we must have that

C(adj) =
fabcf

abc

dim(G)
. (6.24)

Unfortunately, this expression tr(tatb) = Cδab is still ambiguous. As we saw already in
the example of SU(2), if we rescale the generators, ta → λta by a real number, the structure
constants will also be rescaled fabc → λfabc and hence the quadratic invariant as well,
C → λ2C. As the structure constants are independent of the choice of representation, what
will be invariant is the ratio of the quadratic invariants for different representations. For a
general representation r, we define the index as the ratio

T (r) =
C(r)

C(fund)
. (6.25)

Returning to our example SU(2) with generators in the fundamental representation τa =
1
2
σa, we can calculate these quadratic invariants. We find that C(fund) = 1

2
while for the

adjoint C(adj) = 2. More generally for SU(n), we will use a normalization for the generators
where C(fund) = 1

2
still but C(adj) = n. Thus T (adj) = 2n.

Problem 6.2. Construct generators for the Lie algebra su(3) normalized such that C(adj) =
3 and C(fund) = 1

2
.
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Returning to our super Yang-Mills theory, for SU(n) it is conventional to write the kinetic
term for the gauge field normalized such that

− 1

4g2
YM

∫
d4xF a

µνF
aµν ,

with an implicit sum over the adjoint indices a. Restoring the generators, it is further
conventional to use the fundamental representation

− 1

2g2
YM

∫
d4x trf(FµνF

µν) ,

However, sometimes people write the kinetic term using adjoint generators, so beware. The
difference in normalization will be the ratio C(adj)/C(fund) = T (adj).

Verifying Supersymmetry

The action (6.15) is supersymmetric with respect to essentially the same transformation
rules as the Maxwell action

δAµ = iε̄γµλ , (6.26)

δλ = −1

2
Fµνγ

µνε . (6.27)

Similar to what we did for the interacting Wess-Zumino model, we can divide up the super-
symmetry variation of the action into terms that are linear and cubic in λ. These linear and
cubic terms must vanish independently. There is in fact only one cubic term, which comes
from varying λ̄γµ[Aµ, λ] in the kinetic term for the gaugino λ. As there is only one term, we
can be careless about overall normalization

δ3L ∼ tr(λ̄γµ[(ε̄γµλ), λ])

= tr(tatb)f
b
cdλ̄

aγµ(ε̄γµλ
c)λd

∼ fabcλ̄
aγµ(ε̄γµλ

b)λc . (6.28)

(6.29)

For the structure constants, we know that fabc is antisymmetric in the bc indices. We will
use the Fierz re-arrangement identities to put λb and λc in the same spinor bilinear. Many
of the terms in the identity should then cancel by anti-symmetry of the bc indices. In fact
only two terms survive, the “antisymmetric” ones involving γµ and γµν :

fabcλ̄
aγµ(ε̄γµλ

b)λc = −fabcλ̄aγµ(λ̄bγµε)λ
c

=
1

4
fabcλ̄

aγµ(λ̄bγνλ
c)γνγµε−

1

8
fabcλ̄

aγµ(λ̄bγνρλ
c)γνργµε (6.30)

where we used a Majorana flip identity in the first line and the Fierz identity in 4d in the
second. After some further manipulations with the gamma matrices, we will achieve the
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desired result:

γµγνγµ = −(d− 2)γν , (6.31)

γµγνργµ = γµ(γνρµ + γνδρµ − γρδνµ)

= (d− 2)γνρ + γργν − γνγρ

= (d− 4)γνρ . (6.32)

The second product γµγνργµ therefore vanishes in exactly four dimensions. (In three dimen-
sions, the γµν structure would not be present in the Fierz identity to begin with.) However,
in higher dimensions, we are potentially in trouble here, as this cubic variation δ3L will
not vanish on its own. Anyway, in 4d (and also with a slight variation in 3d) we find the
following seeming contradiction:

fabcλ̄
aγµ(ε̄γµλ

b)λc = −1

2
fabc(λ̄

bγνλ
c)λ̄aγνε

=
1

2
fabcλ̄

bγµ(ε̄γµλ
a)λc

= −1

2
fabcλ̄

aγµ(ε̄γµλ
b)λc , (6.33)

where in the second line we have used a Majorana flip identity and moved some of the spinors
around, and in the last line we used the antisymmetry of the structure constants. We have
arrived at an equation of the form x = −1

2
x. The only way for this equation to be satisfied

is if the corresponding product of spinors vanishes. Hence we have found that δ3L = 0. We
move on now to the linear terms.

The next obstacle in our way is to generalize the integration by parts argument we used
earlier in varying the kinetic term for the gaugino. Before, we had just ∂µ, but now we have
Dµ. In particular, what we would like to be true is the following

tr(δλ̄γµDµλ) = ∂µ tr(δλ̄γµλ) + tr(λ̄γµDµδλ) . (6.34)

We need to check what happens to the new connection term proportional to Aµ:

−i tr(δλ̄γµ[Aµ, λ]) = i tr([Aµ, λ̄]γµδλ)

= −i tr([λ̄, Aµ]γµδλ)

= −i tr(λ̄γµ[Aµ, δλ]) . (6.35)

In the first line, we used a Majorana flip identity, and in the third cyclicity of the trace, that
tr(AB) = tr(BA).

We can thus write the supersymmetric variation of the linear terms in the Lagrangian
immediately a more compact way, dropping a boundary term:

δ1L = − 1

g2
YM

(
tr(F µνδFµν) + 2i tr(λ̄γρDρδλ)

)
. (6.36)

The variation of the field strength is then

δFµν = ∂µδAν − i[Aµ, δAν ]− (µ↔ ν)

= iε̄γνDµλ− (µ↔ ν) . (6.37)
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Assembling the pieces, the variation of the Lagrangian is then

δ1L = − 1

g2
YM

(
2i tr(F µν ε̄γνDµλ)− i tr(λ̄γρDργµνF

µνε)
)
. (6.38)

As in the Maxwell case, we again employ the identity γργµν = γρµν + ηρµγν − ηρνγµ and find

δ1L = − 1

g2
YM

(
−2i tr(F µνDµλ̄γνε)− 2i tr(λ̄DµF

µνγνε)− i tr(λ̄γρµνDρFµνε)
)

(6.39)

The first two terms add up to a total derivative which can be dropped, and the third term
vanishes by a Bianchi identity, exactly as we saw in the Maxwell case. The added wrinkle
are the connection terms Aµ in the covariant derivatives Dµ. We have packaged things in a
way such that these Aµ terms go harmlessly along for the ride.

Problem 6.3. Show that tr(F µνDµλ̄γνε) + tr(λ̄DµF
µνγνε) = ∂µ tr(F µνλ̄γνε). Prove that

D[µFνρ] = 0 and hence that γµνρDµFνρ = 0. Note the definition DµFνρ ≡ ∂µFνρ − i[Aµ, Fνρ].

Finally, we should verify that the supersymmetry algebra closes up to equations of motion
and gauge transformations. The calculation is very similar to what we did in the abelian
case. For the gauge field, we find

[δ1, δ2]Aµ = −(2iε̄2γ
νε1)Fµν

= 2i(ε̄2γ
νε1)∂νAµ −Dµ(2iε̄2γ

νε1Aν) (6.40)

using the fact that Fµν = DµAν − ∂νAµ.

Problem 6.4. Show also that [δ1, δ2]λ is an infinitesimal translation, up to equations of
motion and gauge transformations.

6.3 Super Yang-Mills with Matter

We will be a little bit less thorough in our presentation of of super Yang-Mills with matter
fields than we have been heretofore. Most of the requisite calculations we have seen at this
point in a simpler context. What we need to do is assemble all the ingredients in one place.
What we are about to write down is the super Yang-Mills action of the previous section plus
the interacting Wess-Zumino model from section 5. The added wrinkle is that the scalar
and fermion from the Wess-Zumino model now transform in a representation of the gauge
group and hence can interact through the exchange of gauge bosons (and also, because of
supersymmetry, gauginos).

In addition to the gauge field Aaµ and gaugino λa of section 6.2, we add a scalar φi and
Majorana fermion ψj transforming in an arbitrary representation r of the gauge group G.
The indices i, j run from one to dim(r). For example, for the fundamental of SU(n), they
would run from one to n. Note that φi and ψj must transform in the same representation r
because of the constraints of supersymmetry.

The covariant derivatives acting on φi and ψj must involve Lie algebra generators in the
correct representation. We write

Dµφ
i = ∂µφ

i − iAaµ(ta)
i
jφ

j ,

Dµψ
i = ∂µψ

i − iAaµ(ta)
i
jψ

j . (6.41)
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Scaling out an overall factor of the coupling constant, we divide up the Lagrangian into
three pieces:

L =
1

g2
YM

(LSYM + LWZ + LYuk) . (6.42)

The first piece is the super Yang-Mills action from section 6.2:

LSYM = −
(

1

4
F a
µνF

aµν +
i

2
λ̄a /Dλa − 1

2
(Da)2

)
.

We have added an auxiliary field Da, transforming in the adjoint representation of the gauge
group, that will allow us to close the SUSY algebra off-shell. The SUSY transformation rules
for these adjoint fields are

δAaµ = iε̄γµλ
a ,

δλa = −1

2
F a
µνγ

µνε− iγDa ,

δDa = iε̄γ /Dλa . (6.43)

The second term in the Lagrangian is the interacting Wess-Zumino model of section 5.
We have added an auxiliary field F i transforming in the representation r of the gauge group,
again so that we can close the SUSY algebra off-shell.

LWZ = −1

2
(Dµφ

∗
i )(D

µφi)− i

2
ψ̄iγ

µDµψ
i +

1

2
F ∗i F

i

+F i∂iW + F ∗i ∂̄
iW∗ + (∂i∂jW)iψ̄iΠ+ψ

j + (∂̄i∂̄jW∗)iψ̄iΠ−ψj . (6.44)

We are using the shorthand notation that ∂iW = ∂W
∂φi

, and similarly ∂̄iW∗ = ∂W∗
∂φ∗i

. The

transformation rules for these matter fields are

δφi = 2iε̄Π+ψ
i , δφ∗i = 2iε̄Π−ψi ,

δΠ+ψ
i = (/Dφi)Π−ε+ F iΠ+ε ,

δΠ−ψi = (/Dφ∗i )Π+ε+ F ∗i Π−ε

δF i = 2iε̄Π− /Dψ
i , δF ∗i = 2iε̄Π+ /Dψi . (6.45)

An awkward feature of this model is that φi and φ∗i will in general transform in complex
conjugate representations of the gauge group G. The adjoint representation for SU(n) is real,
and the issue does not appear here, but if we were to choose the fundamental representation of
SU(n), the complex conjugate representation is different, often called the anti-fundamental.
One might worry that we have used only one type of generator (ta)

i
j in writing down the

Lagrangian even though we have potentially two different representations at play. In fact,
everything is okay since the representation and its complex conjugate are related, t

(r̄)
a =

−(t
(r)
a )T .
As δφi transforms into one chirality of the fermion Π+ψ

i and δφ∗i transforms into the
other Π−ψi, we find that the different chiral pieces of the Majorana fermion ψ will transform
in different, complex conjugate representations of the gauge group! As one might expect,
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there is no consistent way of acting on a Majorana spinor with a complex representation
and preserving the reality property of the spinor. We could restrict to real representations,
but what is almost always done in the literature is to work instead with Weyl fermions. The
kernel of Π+ acting on a Majorana spinor is trivial, and hence we can think of ψ+ = Π+ψ
as a repackaging of the degrees of freedom of the Majorana spinor into a Weyl spinor, as we
discussed in section 4.1. If ψ+ transforms in the fundamental representation, then ψ− = Π−ψ,
which is also ψ∗+, will transform in the anti-fundamental. As one can see by staring at the
Lagrangian above, we can consistently replace our Majorana spinor ψ everywhere by a Weyl
spinor ψi+ and its complex conjugate ψ−i, where the location of the index i implies whether
it is a fundamental or anti-fundamental representation.

The one sticky point is the kinetic term, which we have written by an abuse of notation
as 1

2
ψ̄i /Dψ

i. Let us go back to the Wess-Zumino model case with no Aµ. We can perform the
following manipulation:

ψ̄+γ
µ∂µψ+ = Π+ψγ

µ∂µΠ+ψ

= ψ̄Π−γ
µ∂µΠ+ψ

= ψ̄γµ∂µΠ+ψ

=
1

2
ψ̄γµ∂µψ +

1

2
ψ̄γµγ∂µψ . (6.46)

The second term in the last line is a total derivative, by the Majorana flip identities. Thus
we can replace a kinetic term for a chiral spinor ψ+/∂ψ+ by a kinetic term for a Majorana
spinor 1

2
ψ̄ /∂ψ. What we really mean by 1

2
ψ̄i /Dψ

i is thus ψ+i
/Dψi+.

One might think the story ends here, but there is a problem. Given that the matter fields
interact by exchanging gauge bosons, supersymmetry implies that they must also interact
by exchanging gauginos. Therefore, for the action to be invariant, we need to add by hand
the following interaction terms

LYuk = −φ∗i λ̄a(ta)ijΠ+ψ
j − ψ̄iΠ−(ta)

i
jλ

aφj − i

2
φ∗i (ta)

i
jφ

jDa . (6.47)

Having added the first two Yukawa’s, we find we need to add the last term as well to get the
supersymmetry variation to vanish.

There is in fact one further term one can add to this last piece of the Lagrangian when
the gauge group is abelian. In this case the auxiliary field D is not charged under the U(1)
and so a term ξD in the Lagrangian is gauge invariant. Furthermore, δD is a total derivative,
and so ξD is supersymmetric (up to a boundary term that we neglect). Such a term is often
called a Fayet-Iliopoulos term, or FI term for short.

Ideally, we should do what we have done in previous cases, i.e. verify that δL = 0 up
to total derivatives and also verify that [δ1, δ2] acts as an infinitesimal translation. Let us
briefly summarize what pieces of this calculation we have effectively already done and what
pieces remain to be completed.

We verified previously that δLSYM = 0 and also that [δ1, δ2] acting on Aaµ was an infinites-
imal translation up to gauge transformations. We left as an exercise that [δ1, δ2]λa should be
an infinitesimal translation as well. We did not previously include the auxiliary field Da in
these calculations, and so in principle we could do that now and generalize the calculation
off-shell.
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Regarding closure of the SUSY algebra for the Wess-Zumino model, we verified in the
non-interacting case that [δ1, δ2] is an infinitesimal translation up to the equations of motion.
We left it as an exercise to show that off-shell including the auxiliary field F , [δ1, δ2] functions
as an infinitesimal translation as well. Even though the exercise was posed at the end of the
discussion of the free case, it applies without change to the interacting case as well.

We verified previously that δLWZ = 0 in the case when the covariant derivatives Dµ were
merely partial derivatives ∂µ. In fact, we saw in the argument surrounding (6.34) that the
distinction between Dµ and ∂µ does not really matter for the most part. The exception is
when we actually need to look at terms involving δAaµ. In other words, some thought and
reflection ought to convince the reader that δLWZ will continue to vanish in the present case
up to terms proportional to δAµ.

These nonvanishing terms in δLWZ proportional to δAµ must then cancel against δLYuk.
Indeed they do, but we will not check it.

7 Scale Dependence of Super Yang-Mills with Matter

In this chapter, we will try to understand some of the interplay between the renormalization
group – the idea that physics can depend on energy scale in QFT – and supersymmetry.

The gauge coupling famously depends on the energy scale. The one loop computation
of this dependence in QCD was performed in 1973 by David Gross and Frank Wilczek and
independently by David Politzer. The three were awarded the Nobel Prize in 2004. In QCD,
one finds that the coupling strength gets stronger as one goes to lower energy scales, and
conversely weaker as one goes to higher energy scales. Strong coupling at low scales gives
some intuition for confinement and chiral symmetry breaking that we observe in nature.
Conversely, weak coupling at high scales, also called asymptotic freedom, is consistent with
collider experiments.

We can express this dependence using a beta function:

βg ≡ µ
dg

dµ
= − b

16π2
g3 +O(g5) , (7.1)

where g is the coupling and µ is the energy scale. The first coefficient b is determined by a
collection of one-loop diagrams. We quote the result

b =
11

6
T (adj)− 1

3

∑
a

T (ra)−
1

6

∑
n

T (rn) , (7.2)

where the sum on a is over Weyl fermions, with the ath fermion in the ra representation
of the gauge group. The sum on n is over complex bosons in representations rn. Recall
the index T (r) is the ratio of the quadratic invariants C(r)/C(fund). Clearly T (fund) = 1
while for SU(n), we discussed above that T (adj) = 2n. We include in b only light species of
matter, whose mass is much less than the reference scale µ0. Heavier species are essentially
Boltzmann suppressed and have a negligible effect on the running of the coupling.

Assuming we know the coupling g(µ0) at some reference scale µ0, we can integrate the
differential equation (7.1) to give a result for the coupling at a nearby scale µ ≈ µ0:

1

g2(µ)
= − b

8π2
log

(
Λ

µ

)
. (7.3)
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The quantity

Λ ≡ µ0 exp

(
− 8π2

bg2(µ0)

)
. (7.4)

is a “strong coupling scale” defined to yield g(µ0) at µ = µ0. Of course, as we have only
computed the beta function to leading order, we should not trust this equation once µ = Λ,
but Λ still can give a rough estimate of where we expect the coupling to get large. For
asymptotically free theories such as QCD where b > 0, this scale occurs below the reference
scale Λ < µ0. Theories that are weakly coupled at low energy, such as QED, have b < 0,
and the scale Λ occurs above the reference scale Λ > µ0. (For QED, note that T (adj) = 0,
and the index for the matter fields is simply their electric charge, T (q) = q.)

From the expression (7.2) for b, clearly if there is enough light charged matter around,
then b < 0 and the theory will be free at low energy. The usual jargon here is to refer to high
energy behavior as ultraviolet or UV and low energy behavior as infrared or IR. Theories
which are asymptotically free or UV free have a negative beta function (b > 0). Theories
which are IR free have a positive beta function (b < 0).

For supersymmetric Yang-Mills with matter, the one loop beta function takes on a more
restricted form. For each gluon, we also by supersymmetry must have a gluino in the adjoint
representation. Furthermore, for each Weyl fermion in a general representation r, we must
have a complex boson in the same representation. The b coefficient simplifies to

b =
3

2
T (adj)− 1

2

∑
n

T (rn) . (7.5)

In these notes, we are particularly interested in the case of SU(n) Yang-Mills with Nf

matter multiplets, i.e. Nf Weyl fermions and Nf complex bosons, in the fundamental repre-
sentation, and Nf matter multiplets in the anti-fundamental representation. In this case, we
have the further simplification b = 3n−Nf . The choice 3n = Nf thus separates the IR free
theories with Nf > 3n from their UV free cousins with Nf < 3n. This analysis is one-loop
and receives higher order corrections. The two loop beta function has been computed:

βg = − g3

16π2
(3n−Nf ) +

g5

128π4

(
2nNf − 3n2 − Nf

n

)
+O(g7) . (7.6)

If we start with Nf > 3n, both the O(g3) and O(g5) terms are positive, and the only
nontrivial zero of βg is at g = 0, corresponding to the free IR limit. However, if we approach
Nf = 3n from below, something interesting happens. The negative O(g3) term competes
with positive O(g5) contribution (see figure 2), and there is a possibility of finding a new
nontrivial zero β(g∗) = 0 with g2

∗ > 0, as we flow down in energy scale from the free UV
limit.

There is a question whether we can trust such a zero, computed from only the first two
terms in a power series in g, but we have another parameter at our disposal, n. Imagine we
take both n and Nf large such that 3n−Nf = δ where δ is an O(1) quantity. We can find
a root of βg at

g2
∗ =

8π2δ

3n2
(7.7)

46



g*
g

β

Figure 2: Schematic plot of the beta function up to two loops for super Yang-Mills theory
with Nf . 3n.

that we can indeed trust since the next O(g7) term is down by a factor of n compared to the
first two terms. In this range where 3n−Nf is positive and order one, we conclude that the
IR limit is a weakly interacting fixed point with g2

∗ = O(n−1).

Problem 7.1. The beta function to two loops for QCD is

βg = − g3

48π2
(11n− 2Nf )−

g5

256π4

(
34

3
n2 − 1

2
Nf

(
2
n2 − 1

n
+

20

3
n

))
+O(g7) . (7.8)

Try to repeat for ordinary QCD the Caswell-Banks-Zaks style analysis that we performed in
the supersymmetric case.

This fixed point theory has nothing to do with supersymmetry. We could have performed
the same analysis in a generic Yang-Mills theory in a large n and Nf limit, about the point
where the one-loop contribution to βg vanishes. The phenomenon was first reported by
William E. Caswell in 1974, and is usually called the Banks-Zaks fixed point.

What is special about super Yang-Mills with matter is that the nature of higher loop
corrections to βg is highly constrained by holomorphicity. The arguments are similar to what
we saw for the superpotential in the context of the Wess-Zumino model; we will come to
these arguments somewhat later. For the moment, let us merely state the result, and try to
understand some of its consequences. The claim is that in the appropriate renormalization
group scheme, the beta function is exact at one loop. There are no higher loop corrections.

There seems to be an immediate contradiction, in that we wrote down a nonzero O(g5)
contribution above to βg. The scheme in which there are nonzero O(g5) terms is one in
which the kinetic terms for the matter fields are canonically normalized, e.g. |Dµφ|2. The
scheme in which the O(g5) terms vanish is one in which the kinetic terms have explicit wave
function renormalization factors, e.g. |Dµφ|2Zφ. The main resulting difference for βg is the
appearance of anomalous dimensions.
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What do we mean by anomalous dimensions? By dimensional analysis, we can establish
the classical scaling dimension of our fields by looking at their kinetic terms. Scalar fields
have dimension ∆φ = 1 in four space-time dimensions. Fermions have dimension ∆ψ = 3

2
.

Interactions, however, can shift these values through renormalization effects, ∆(µ) = ∆(µ0)+
γ(µ) where γ(µ) is scale dependent. The renormalization shift, (∂µφ)2 → (∂µφ)2Zφ(µ),
induces an anomalous dimension via

γ =
µ

2

dZ

dµ
. (7.9)

Supersymmetry then means γ must be the same for fields in the same multiplet.
In the RG scheme with canonical kinetic terms, the “exact” beta function is

µ
d(1/g2

YM)

dµ
=

1

2

3T (adj)−
∑

n T (rn)(1− 2γ(rn))

8π2 − 1
2
T (adj)g2

, (7.10)

where γ(rn) is the anomalous dimension associated to the (φ, ψ) multiplet transforming in
the rn representation. The numerator is very close to what it was before, with the exception
of the additional dependence on the γ(rn).

These anomalous dimensions have consequences that go beyond effects on βg. In the
superpotential W , suppose we have an interaction term of the form λrφ1φ2 . . . φn, with
associated coupling constant λr. We argued in the context of the Wess-Zumino model that
λr is not renormalized through quantum effects. What we meant more specifically is the
following. Suppose the theory has a weakly coupled limit at some reference scale µ0 where we
can calculate all of the classical scaling dimensions of the fields. In this limit, the operator
φ1 · · ·φn will have scaling dimension dr =

∑
i ∆i(µ0). Consequently, λr will have scaling

dimension 3 − dr. (The superpotential results in a potential term in the Lagrangian of the
form |∂W|2 and thus must have scaling dimension ∆W = 3.) Pulling out the scale µ0, we
can write the superpotential coupling in the form

λr(µ0) = λr0 µ
3−dr
0 , (7.11)

where λr0 is dimensionless. Non-renormalization of the superpotential means this form
continues to be valid at an arbitrary scale µ:

λr(µ) = λr0 µ
3−dr . (7.12)

We can further define a beta function for the superpotential couplings:

βλr ≡ µ
dλr
dµ

= (3− dr)λr . (7.13)

We should be careful again, however, about RG scheme dependence. This result is in a
scheme where the kinetic terms are not canonically normalized. Through a field redefinition,
φi → Z

−1/2
i φi, we can get canonically normalized kinetic terms at the price of introducing

anomalous dimensions into the beta functions βλr for the super potential couplings. In the
canonically normalized scheme, we have instead

βλr = (3− dr −
∑
i

γi)λr . (7.14)
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This result has the possibility of giving you the wrong idea about how composite operators
behave in general interacting theories. In the supersymmetric case, one consequence of this
argument is the demonstration that if we know the scaling dimensions ∆i(µ) of the φi at an
arbitrary scale µ, then the dimension of the composite operator φ1 · · ·φn will be

∑
i ∆i(µ).

While true in the free limit, this additivity is almost never true in a typical QFT scenario.
Some nomenclature and further insight from physics. Physics must depend on dimen-

sionless quantities. At a scale µ, we expect λr to appear in the combination λrµ
∑
i ∆i−3. If∑

i ∆i − 3 > 0, then perturbative effects, which come with positive powers of the coupling
λr should get weak at small values of µ, i.e. in the IR. We call such a coupling irrelevant.
Similarly, for

∑
i ∆i − 3 < 0, perturbative effects should get strong in the IR. We call such

a coupling relevant. The critical case,
∑

i ∆i = 3, where λ does not change with scale, is
called marginal.

Leigh and Strassler proposed a clever strategy for thinking about supersymmetric gauge
theories where the couplings g and λr can be made independent of scale. Suppose the
conditions βr = 0 and βg = 0 are not all linearly independent as functions of g and λr. Then
there will be a submanifold in the the (g, λr) coupling space where the beta functions vanish.
Changing the couplings in such a way as to stay on this manifold corresponds to turning on
an exactly marginal operator. The presence of these marginal operators in turn means these
scale invariant theories will have nontrivial interactions.

As an example, consider an SU(n) gauge theory with 2n (Qi, qi) multiplets transforming
in the fundamental of SU(n) and 2n (Q̃j, q̃j) multiplets transforming in the anti-fundamental.
We introduce a third multiplet (Φ,Ψ) transforming in the adjoint. This matter content allows
for a superpotential termW = λ tr(Q̃jΦQj) which is classically marginal. The beta function
for the gauge coupling vanishes as well at one loop since b = 0. Now let us consider what
happens once we allow for anomalous dimensions γΦ and γQ. By symmetry, it must be that
γQ = γQ̃. Both βg and βλ will vanish when γΦ + 2γQ = 0, putting one condition on two
variables, g and λr, and allowing for a line of fixed points which goes through the origin,
where the coupling does not depend on scale. The exact curve turns out to be λ = g, and
along this line, the theories have N = 2 extended supersymmetry.

Another example is Yang-Mills with three adjoint multiplets (Φi,Ψi), i = 1, 2, 3. Consider
a superpotential of the form

W = a tr Φ1Φ2Φ3 + b tr Φ3Φ2Φ1 + c tr(Φ3
1 + Φ3

2 + Φ2
3) . (7.15)

There is a weak coupling limit whereW is classically marginal and also b = 0. The anomalous
dimensions γi = γ are all equal by symmetry. The beta functions βg, βa, βb and βc will
all vanish provided γ = 0, putting one condition on four variables and leaving a three
dimensional space of fixed points. A one dimensional sub-space of this manifold, where
g = a = −b and c = 0, has N = 4 extended supersymmetry.

Problem 7.2. This pair of questions involves an SU(n) × SU(n) supersymmetric gauge
theory with three types of field multiplets. We have scalars Ai, i = 1, 2, and their fermionic
super partners ai transforming in the (n, n̄) representation of SU(n) × SU(n), where the
notation (n, n̄) is short for (fundamental, anti-fundamental). We have the multiplet (Bj, bj),
j = 1, 2, transforming in the (n̄, n). And we have two types of adjoint multiplets (Φk, ψk),
k = 1, 2, Φ1 transforming in the adjoint of the first SU(n) and Φ2 transforming in the adjoint
of the second.
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a) We start with the superpotential

W = λ1 tr(Φ1(A1B1 + A2B2)) + λ2 tr((B1A1 +B2A2)Φ2)

Do the beta functions vanish in the perturbative limit? What is the dimension of the confor-
mal manifold on which the beta functions vanish?

b) Consider the special case λ1 = λ2 = λ. Let us add a mass term to the super potential
δW = M tr(Φ2

1 − Φ2
2). At energies low compared to the mass, the adjoint fields cannot be

produced and we can “integrate them out”. Assuming that at low energies there is a classical
and supersymmetric solution to the equations of motion that involves extremizing W with
respect to the Φi, use the “equations of motion” to remove the Φi from the super potential
and calculate a new effective superpotential at low energy. For this new superpotential, is
there a choice of anomalous dimensions for which the beta functions vanish? What is the
new dimension of the conformal manifold on which the beta functions vanish?

7.1 The Theta Parameter and Non-Renormalization

To explain why the beta function in SYM is, for a particular choice of RG scheme, one-loop
exact, we need to back up and discuss the theta angle in gauge theories. There is a possibility
of an additional term in a gauge theory of the form

Sθ =

∫
d4x

θ

16π2
tr(FµνF̃

µν) , (7.16)

where F̃µν = 1
2
εµνλρF

λρ is often called the dual field strength. Note that FµνF
µν = −F̃µνF̃ µν ,

and so there is only one new linearly independent combination to consider here. In the
presence of a boundary, such a theta term reduces to a Chern-Simons term on the boundary:

Sθ =

∫
d4x

θ

8π2
εµνρσ∂µ tr

(
Aν∂ρAσ −

2i

3
AνAρAσ

)
. (7.17)

The issue is that even thought this second expression for Sθ looks like a total derivative, Aµ
need not be globally defined throughout the space-time. (In the context of supersymmetry,
we would also need a boundary term for the gaugino, λ, of the rough form θλ̄Π+λ.)

Consider instead of our usual Minkowski space, the Euclidean setting. Instead of working
in an infinite space, we imagine the system in a box with spherical boundary S3. We
furthermore demand our field strength Fµν die off at infinity and so the corresponding gauge
potential should be pure gauge

Aµ = −i(∂µh)h−1 , (7.18)

where h(xµ) is an element of the gauge group. Plugging this expression into the total
derivative form (7.17) and using the identity ∂µh

−1 = −h−1(∂µh)h−1, we find

Sθ = − θ

24π2

∫
d4x εµνρσ∂µ tr

[
h−1(∂νh)h−1(∂ρh)h−1(∂σh)

]
= − θ

24π2

∫
S3

d3ξ εabc tr
[
h−1(∂ah)h−1(∂bh)h−1(∂ch)

]
, (7.19)
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where in the second line, we express the bulk integral as a boundary integral over the S3.
We claim this integral (7.19) is always an integer. All simple non-Abelian gauge groups

contain SU(2) subgroups. So consider the following form for h, living in an SU(2) subgroup
of a more general group,

h = (h1)n , h1(xµ) =
t+ ixiσi√
t2 + xixjδij

. (7.20)

One can compute that

Sθ[h] = nθ . (7.21)

The integer n is usually called the instanton number of the gauge field. It is a topological
invariant which does not change under arbitrary continuous deformations of the fields. In
other words, we could deform our choice of h in a continuous way, but we would still get n.

Problem 7.3. Verify that Sθ[h] = nθ.

(As SU(2) is not a subgroup of U(1), the physics of theta angles in Abelian theories is
conceptually rather different. One needs instead of an S3, a nontrivial S1 along which one
can integrate the gauge potential.)

Back in the Minkowski setting, the path integral involves eiSθ . As a result, the path
integral cannot be sensitive to the shift θ → θ+2π. In other words, the coupling θ is defined
only modulo 2π. Anticipating the holomorphic arguments to come, it is convenient to define
a complexified coupling that depends on both the gauge coupling g and θ:

τ =
θ

2π
+ i

4π

g2
. (7.22)

With respect to the complexified coupling, the equivalence is τ ∼ τ + 1.
To understand the reason for the word instanton, we can replace our S3 with a cylinder.

The caps of the cylinder we orient along constant time slices. If we work in a temporal
gauge where At = 0, then the only contribution to the integral (7.19) will come from the
caps of the cylinder. The fact that the difference in the value of the integral over the caps is
nonzero means that something nontrivial happened in the middle, an instanton. Nontrivial
here means that in the middle of the cylinder, the field strengths cannot vanish. There
is some nonzero energy barrier that must be overcome to take the theory from one global
configuration for Aµ to another.

The goal here is to be able to use the same non-renormalization arguments for gYM that
we used for the superpotential W(φ) in the context of the interacting Wess-Zumino model.
The claim is that through the supersymmetry constraints, the kinetic term for the field
strength and gaugino can be packaged into the same superpotential that we unearthed in
discussing the Wess-Zumino model. To the original superpotential W(φ), we add a gaugino
bilinear

W(φ)→W(τ, λ̄λ, φ) =W(φ) +
τ

8πi
tr(λ̄λ) . (7.23)

Roughly, in the construction of the action, the role of φ for this extra term is now played by
the Majorana fermion λ. The role of ψ is played by the field strength Fµν , and the F term
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is swapped out for a derivative of the gaugino /∂λ. In the context of the action, the (∂W)F
term from before is replaced by the gaugino kinetic term λ̄/∂λ. The Yukawa’s (∂2W )ψ̄Π+ψ
and ∂̄2W∗ψ̄Π−ψ become the field strength kinetic terms FµνF

µν and FµνF̃
µν .

We should be a bit more careful in this last step as we want to emphasize the holomorphic
nature of this construction. In addition to the holomorphic coupling τ , we should introduce
self-dual and anti-self-dual field strengths,

F±µν = Fµν ∓ iF̃µν . (7.24)

With these objects, we can write the kinetic term for the gauge field in a “more holomorphic”
manner. Note that

1

2
F+
µνF

+µν = FµνF
µν − iFµνF̃ µν , (7.25)

and so

τ

16πi
F+
µνF

+µν − τ̄

16πi
F−µνF

−µν =
1

4g2
FµνF

µν − θ

32π2
FµνF̃

µν . (7.26)

In slightly more detail then, it is the self-dual field strength F+
µν that appears in W and

the anti-self-dual field strength F−µν that appears in W∗. One uses both W and W∗ in the
construction of the action, and the sum leads to the standard kinetic term for the Fµν along
with the θ term.

We are bending over a little bit backwards not to introduce superfields and superspace
notation here. The rules for converting a superpotential into an action are much more natural
in superspace, where one performs an integral of W over a pair of Grassman variables, and
the various terms emerge after some Taylor expansion. Having come so far without it,
however, it would be a needless distraction at this point to introduce it here.

Having packaged the the τ , λ, and Fµν dependence of the overall super Yang-Mills action
into a superpotential, we can use the same holomorphicity arguments that we employed
before in the interacting Wess-Zumino model. We promote τ to the expectation value of
some external field, in which case W must depend holomorphically on τ . In fact, we have
more than holomorphicity here. We also have the equivalence τ ∼ τ + 1, which must be
true at any scale. The claim is that the only way the superpotential can be renormalized is
through non-perturbative effects:

W(τ, λ̄λ, φ) =
( τ

8πi
+O(e2πinτ )

)
tr(λ̄λ) +W(φ) +O(e2πinτ ) , (7.27)

where n is a positive integer. The exponential factors are designed to be invariant under
τ → τ+1. At the same time, the exponents scale as 1/g2, which are invisible in perturbation
theory, where g is small. Hence the name non-perturbative. We cannot allow negative powers
of n (or n = 0 for that matter) because we expect the theory to have a well-behaved weakly
coupled limit.

The claim then is that τ is renormalized only at one-loop perturbatively and by non-
perturbative corrections. No higher loop perturbative corrections are allowed. This is a
weaker non-renormalization theorem than we had for the original superpotential, but it is
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still quite useful and allows us to find nontrivial fixed points of the renormalization group
for gauge theories, as we have seen already.

There is one lacuna here, that of converting the one-loop beta function to the canonical
result (7.10) that involved anomalous dimensions of the fields. We gave some hint of how
the argument should go, that we need to rescale the kinetic terms for the (φ, ψ) matter
multiplets by the appropriate wave function renormalization factors Zφ and also, it turns
out, the kinetic terms for the gauge field itself, to clear out 1/g2 from the kinetic term and
redistribute gYM factors among the various cubic and quartic interactions.

To see how the argument goes in detail requires some quantum field theory knowledge.
Let us try to give a flavor of it. The beta function for our super Yang-Mills theory with matter
is determined by the self-energy diagram for the gluon. (The contributions from the vertices
and wave-function renormalization of the charged fields must cancel by gauge invariance.)
In computing the one-loop contribution to this self-energy, we have to consider the various
charged fields that run in this loop – the (φn, ψn) multiplets and, since this is a non-abelian
theory, the gluons and gluinos themselves. When we rescale these fields by gYM or the wave-
function renormalization factors Zn, these rescalings will affect the loop computation. Let
us distinguish the “physical” gYM we get after rescaling from the g associated with the exact
one-loop beta function. These extra rescalings of the fields in the one-loop gluon propagator
introduce the following relation between g and gYM:

1

g2
YM

=
1

g2
+

1

16π2

(
T (adj) log

(
1

g2

)
+
∑
n

T (rn) log(Zn)

)
. (7.28)

From this shift, taking a derivative with respect to µ, one can deduce that the canonical
beta function (7.10) follows from the one loop result (7.1).

7.2 Anomalies

Classically, Noether’s theorem guarantees that for every continuous global symmetry, there
is a corresponding conserved current. Quantum mechanically, however, not only the action
must be invariant under the symmetry transformation; the measure of the path integral
must be invariant as well. Occasionally there are problems on this latter front, and these
problems are called anomalies.

Let us suppose we have a global U(1) symmetry and corresponding current jµ which
classically should be conserved, ∂µj

µ = 0. Furthermore, let us suppose we have fermions ψI
which have charge qI under this U(1) as well as transform in some rI representation of a
gauge group G. One such anomaly, which plays an important role for our study of gauge
theories, is

∂µj
µ =

∑
I qIT (rI)

16π2
tr(FµνF̃

µν) . (7.29)

If this sum
∑

I qIT (rI) 6= 0 fails to vanish, we say the U(1) symmetry is anomalous. There are
several ways of getting at this result. The most time honored and tested is the computation
of a triangle diagram in perturbation theory with external legs corresponding to the gluons
of the gauge group G and the photon of the U(1) were we to weakly gauge it. The anomaly
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actually makes it impossible to couple the jµ current to an external photon and “gauge the
symmetry,” so perhaps a better way of thinking about this third leg is simply as the insertion
of the corresponding current.

Anomalies are an important, intricate, and subtle story in QFT. We gather here just a
few details that will be important in what follows.

• In the case of several U(1) global symmetries, the structure of the right hand side of
(7.29) means that we can always take linear combinations of the U(1)’s so that at most
one is anomalous.

• Violations in charge conservation will be associated with changes in the instanton
number. As a result, such violations are non-perturbative and highly suppressed at
weak coupling, proportional to e−8|n|π2/g2 .

• We saw the FµνF̃
µν structure previously, in the θ term in the action for the gauge

field. The appearance of this structure means that the effects of the anomaly are
equivalent to an explicit breaking of the U(1) symmetry that we can realize by assigning
a transformation rule to the θ angle. While ψi → eiqiαψi under the U(1) symmetry, we
can obtain the same violation of current conservation by sending

θ → θ + α

[∑
I

qIT (rI)

]
. (7.30)

Let us consider our SQCD theory with Nf massless squarks Qi
I where i is a fundamental

index of SU(n) and I is a flavor index that runs from one to Nf . We also have their fermionic
quark superpartners, Weyl fermions qiI . Similarly we have have Nf massless quarks in the
antifundamental of SU(n), Q̃I

i and their superpartners. The symmetry groups are the SU(n)
gauge group and two U(Nf ) global flavor groups. We can separate out a pair of abelian
factors from the flavor groups U(Nf ) = SU(Nf )×U(1). These two U(1)’s are then frequently
re-diagonalized into a U(1)A and a U(1)B, A for axial and B for baryon.

Let us discuss this rediagonalization in more detail in a way that will help explain the
nomenclature, axial and baryon. When we have massless fermions, there are two types
of U(1) symmetries that we can associate with them, one that uses a gamma five matrix
ψ → eiαγψ often called axial, and one that doesn’t ψ → eiαψ often called vector. It this
second one that we couple to the photon and that gives rise to electric charge. The first is
often anomalous.

In our case, we start out with a U(1) that acts on the Weyl fermion qiI and oppositely
on its complex conjugate qi†I but not on the q̃Ii or q̃I†i . We have a second U(1) that acts on
q̃Ii and its complex conjugate but not on qiI or qi†I . Rediagonalizing, we will have a U(1)A
under which qiI and q̃Ii have the same charge (but qi†I and q̃I†i have opposite charge because
of the complex conjugation). We will have a U(1)B under which qiI and q̃Ii have opposite
charge. In analogy with QED, we call U(1)A axial because qiI and q̃Ii have the same U(1)A
charges but are in conjugate representations of SU(n). We call the second U(1)B baryonic
because, as we will discuss in more detail shortly, there is the possibility of constructing
gauge invariant baryonic like objects from anti-symmetrized products of the Qi

I only which
hence have positive U(1)B charge (or similarly from the Q̃I

i only which have negative U(1)B
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SU(n) SU(Nf ) SU(Nf ) U(1)B U(1)A U(1)R′ U(1)R
Qi
I n Nf 1 1 1 1 1− n

Nf

Q̃I
i n 1 Nf −1 1 1 1− n

Nf

Figure 3: Charge assignments for the quarks fields in SQCD.

charge). From our expression for the anomaly (7.29), we see that U(1)A will be anomalous
while U(1)B is not.

In these supersymmetric theories, as we saw in the discussion of the interacting Wess-
Zumino model, there is the possibility of another global U(1) symmetry, often called R-
symmetry, under which the super charges transform. The superpotential must have R-charge
two, and our superpotential is proportional to λ̄λ, from which we conclude that λ should
have R-charge one. The R-charge assignments for the quark fields are somewhat arbitrary at
this point. If we want to allow for the possibility of adding mass terms to the superpotential
mJ
I Q̃

I
iQ

i
J (without giving the mass matrix mJ

I and R-charge assignment), then we should
assign Q̃I

i and Qi
J R-charge one. Let us call this R-symmetry R′ because it is anomalous,

according to our result (7.29).
We can always define a new R-symmetry by taking a linear combination of U(1)R′ with

U(1)A. In fact, there is a unique combination which is not anomalous. The charge assign-
ments for this U(1)R are given in the last column in the table in figure 3.

The limit Nf → 0 is special regarding the anomaly. In this limit, we have pure super
Yang-Mills and no flavor symmetries. We cannot get rid of the anomaly in U(1)R′ by taking
a linear combination with U(1)A. The effect of the anomaly in U(1)R′ is equivalent to shifting
the theta angle by

θ → θ + αT (adj) (7.31)

where T (adj) = 2n for SU(n). Because θ is an angle, shifts by α = 2π
T (adj)

are symmetries of

the theory. We say that the U(1)R′ is broken by the anomaly to a discrete ZT (adj) subgroup.
In the case of SU(n), this subgroup is Z2n.

7.3 Higgs vs. Coulomb vs. Confinement

A goal of these notes is to explore the low energy behavior of supersymmetric gauge theories.
We have already done a little in this direction, determining conditions that allow for the beta
functions to vanish in the IR. This type of low energy behavior is among the most interesting
– a low energy, interacting, scale invariant fixed point. In these theories, the Poincaré group
is enlarged to a conformal symmetry group – one of the loop holes we mentioned in the
Coleman-Mandula Theorem – or in the supersymmetric case, a superconformal symmetry
group.

Terms often used in a low energy description are confined phase, Higgsed phase, and
Coulomb phase. Confinement is sometimes interchanged with “mass gap” and “trivial” –
trivial in the sense that at low enough energy, there are no excitations because of the mass
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gap. In QCD, there is observed to be a mass gap associated with the lightest meson in the
theory, a pion. In a Higgsed vacuum, on the other hand, a charged scalar forms a condensate,
the corresponding Goldstone mode gets “eaten” by the gauge boson, and there is partial or
complete breaking of the gauge symmetry. A third possibility is a Coulomb phase, like QED,
where unbroken Abelian factors have photons that mediate long range interaction. We need
a more precise characterization of these different behaviors. It would also be useful to know
whether there are sharp boundaries between the various behaviors or whether one can be
continuously deformed into another.

One way to characterize these phases is through the potential between two charged objects
interacting via the gauge field. In QED, the potential between two massive electrons is the
usual Coulomb potential, at least for distances large compared to the inverse mass scale set
by the electrons,

V (R) =
e2

R
. (7.32)

Because of the running of the coupling, at very small distances, or for massless electrons,
e(R) will depend on the separation, getting weaker in the IR (at long distances). For a
Higgsed phase, the gauge bosons become massive, and the Coulomb potential gets screened

V (R) ∼ e−mR

R
, (7.33)

although there may be some residual constant potential left over at long distances. For
confinement, the expectation is that thin narrow flux tubes connect the charged particles,
leading to a potential that grows linearly with separation

V (R) ∼ Λ2R . (7.34)

An issue with these descriptions in a gauge theory is that they assume a single charged
particle is a good observable, when in fact it’s not. While the action of a global symmetry
changes the state of a theory, gauge symmetry is better thought of as a redundancy in the
description. States which are related by gauge transformations are actually equivalent states.
A better set of observables are gauge invariant quantities.

One important such quantity, which will help to reformulate the description of various
types of potentials between charged objects (which are not gauge invariant on their own), is
the Wilson loop. A Wilson loop is a non-local operator constructed by integrating the gauge
potential Aaµ along a closed contour,

A = trPei
∮
A (7.35)

where P stands for path ordering the insertions of Aaµ along the contour. Various representa-
tions of the gauge group can be used, giving rise to a small zoo of representation dependent
Wilson loops. Morally, however, one should think about a Wilson loop as a quark traveling
along a contour through space-time. As the loop is closed, perhaps a more accurate inter-
pretation is as a quark-antiquark pair that is created at some time ti, propagates for a while,
and then annihilates, closing the contour at some later time tf . For a rectangular loop of
width R and length T , in the confining phase, the action should evaluate to TV (R) and give
rise to an “area law” for the Wilson loop 〈A〉 ∼ e−cLR where c is some constant. In the Higgs
phase, on the other hand, the potential vanishes at large separation, leading to a perimeter
law A ∼ e−c

′(L+R).
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8 The Low Energy Behavior of SQCD

8.1 The Classical Moduli Space

Let us focus on the terms in the super Yang-Mills action with matter that depend on the
auxiliary field Da:

1

2
(Da)2 +

i

2
φ∗i (ta)

i
jφ

jDa . (8.1)

Integrating out Da will lead to a quartic potential for the scalar fields φj. We are interested
in a solution to the equations of motion that preserves supersymmetry, namely a static
solution for which the potential will vanish. Remember nonzero energy solutions break
supersymmetry. The analysis will be classical; these types of terms in a supersymmetric
action tend to get altered through renormalization effects. Nevertheless, it is an important
first step toward an understanding of the low energy behavior of SQCD.

These static supersymmetry preserving solutions are given by the condition that φ∗i (ta)
i
jφ

j

appropriately summed over the matter fields vanish. In the context of SQCD, we can expand
this condition out

0 =
∑
a

(ta)
i
j

(
QI†
i Q

j
I − Q̃

I
i Q̃

j†
I

)
(8.2)

where we have used that for complex conjugate representations, the generators obey (t
(r)
a )T =

−(t
(r)
a ).
In the case that Nf < n, we can use color and flavor rotations to put the Q and Q̃

matrices in the diagonal form

Q =


a1

. . .

aNf

 ; Q̃T =


ã1

. . .

ãNf

 . (8.3)

Note these are not square matrices. They have n − Nf more rows than columns. Plugging
these diagonal matrices into the the “D-flatness” condition (8.2), we find a supersymmetric
solution provided the difference |aI |2 − |ãI |2 is independent of I. The difference need not
vanish completely as the (ta)

i
j matrices are traceless.

We should use gauge invariant operators to describe this moduli space of vacua, and one
obvious choice here are mesons

M I
J = Q̃J

i Q
i
I , (8.4)

providing N2
f quantities to parametrize the space of vacua.

The underlying physics here is the Higgs mechanism. We are giving expectation values
to the fields M I

J which classically break the SU(n) gauge symmetry down to SU(n − Nf ).
This breaking implies that (n2 − 1) − ((n − Nf )

2 − 1) = 2Nfn − N2
f bosons get a mass.
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By the Higgs mechanism, to get a mass, each of these bosons ate a squark Qi
J or Q̃I

i . Of
the original 2Nfn superfields, then only 2Nfn − (2Nfn − N2

f ) = N2
f survive, matching the

number of meson fields M I
J that we found.

For Nf > n, some additional gauge invariant objects can be created. In this case, we can
diagonalize the squark fields into the form

Q =

 a1

. . .

aNf

 ; Q̃T =

 ã1

. . .

ãNf

 . (8.5)

Again, we require that |aI |2 − |ãI |2 is independent of I to satisfy the D-flatness condition
(8.2). We can form the mesons M I

J as before, but now we also have the possibility of making
baryonic objects

BI1···In = QI1
i1
· · ·QIn

in
εi1···in , (8.6)

B̃I1···In = Q̃i1
I1
· · · Q̃in

In
εi1···in . (8.7)

These objects justify the earlier U(1)B nomenclature, as they are charged under this global
U(1) symmetry.

Giving expectation values to these objects B, B̃, and M I
J will in general completely Higgs

the gauge group SU(n). Unlike in the case Nf < n, however, they form an overcomplete
basis with which to describe the moduli space. One such relation between the fields is

BI1···InB̃J1···Jn = M
[I1
J1
· · ·M In]

jn
, (8.8)

but in general there are many more. From the perspective of the Higgs mechanism, only
n2 − 1 squarks can get eaten, leaving 2Nfn − (n2 − 1) degrees of freedom, but there are in
general 2

(
Nf
n

)
+N2

f meson and baryon fields. In the special case n = Nf , the relation (8.8) is
the only one between the mesons and baryons, leaving a N2

f + 1 dimensional moduli space.

We can also envision adding mass terms to the superpotential for the squarks, mJ
I Q̃

i
JQ

I
i .

We can select the mass matrix mJ
I at will, giving mass to some or all or none of the Q and Q̃.

We will take advantage of this freedom later. We think of these mass terms as setting a scale
in the RG flow. For energy scales large compared to the mass, the mass is a negligible effect,
and the quarks are effectively massless. For energy scales small compared to the mass, the
quarks are not produced and get effectively removed from the theory, leading to an SQCD
with a smaller value of Nf .

Nf < n

Classically, the moduli space for the mesonic expectation values MJ
I is flat. However, quan-

tum mechanically there is famously a non-perturbative superpotential:

Wnp = (n−Nf )

[
Λ3n−Nf

detM

] 1
n−Nf

= (n−Nf )

[
|Λ|3n−Nf einθ

detM

] 1
n−Nf

. (8.9)
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We have used the complexified strong coupling scale

Λ = µ exp

[
2πi

b

(
θ

2π
+ i

4π

g2(µ)

)]
= µ exp

(
2πi

b
τ

)
(8.10)

where b = 3n − Nf for SQCD. This expression is in addition to the classical τ λ̄λ term
that generates the kinetic term in the action for the gauge field. The form Wnp is highly
constrained by symmetry and holomorphy. We are forced to use the meson fields M I

J by
gauge invariance and holomorphy. Moreover, we require a super potential with R-charge
two, which fixes the power of detM . The anomalous U(1)A must act on detM and θ in an
equivalent way, which then forces the power of Λ in the numerator.

We can check that this super potential is consistent with an RG flow generated by adding
a mass term for a meson. Imagine we add a mass term such that the superpotential becomes

W =
τ

8πi
tr(λ̄λ) + (n−Nf )

[
Λ

3n−Nf
Nf

detM

] 1
n−Nf

+mJ
IM

I
J . (8.11)

We choose the mass matrix mJ
I = mδI1δJ1 such that it has a single very large entry m in the

upper left hand corner, giving a mass to precisely one of the mesons. We have also labeled
the strong coupling scale with a subscript Nf , allowing for the fact that it depends on the
theory. The off-diagonal components M1

j and M j
1 , j 6= 1 get set to zero by the mass. The

equation of motion for the meson M1
1 is then

m− 1

M1
1

[
Λ

3n−Nf
Nf

M1
1 det M̂

] 1
n−Nf

= 0 . (8.12)

where M̂ is the meson matrix with the first column and row removed. Replacing M1
1 with

its low-energy expectation value,

m〈M1
1 〉 =

[
mΛ

3n−Nf
Nf

det M̂

] 1
n−Nf+1

, (8.13)

we obtain a new superpotential

W =
τ

8πi
tr(λ̄λ) + (n−Nf + 1)

[
mΛ

3n−Nf
Nf

det M̂

] 1
n−Nf+1

(8.14)

where it remains to make the identification Λ
3n−Nf+1
Nf−1 ≡ mΛ

3n−Nf
Nf

.
In other words, if we have this non-perturbative super potential for some value of Nf < n,

it follows we will continue to have this super potential for all smaller values of Nf as well.
Establishing that we have this non-perturbative super potential in the first place is a bit
trickier. In the case Nf = Nc − 1, the superpotential depends on τ as e2πiτ , a one instanton
effect. The superpotential was calculated using an instanton approach by Finnell and Pouliot
in 1995, for the Nc = 2 and Nf = 1 case, finding precisely a result of the form (8.9). Because
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we can always break the SU(n) gauge symmetry down to SU(2) by appropriately giving
expectation values to the squark fields and moving out on the Higgs branch, this SU(2)
result in turn implies the result for larger n.

A couple of comments are in order:

• The presence of the superpotential implies that SQCD has no vacuum for 0 < Nf < n.
The ground state of the theory is off at |M | → ∞, and the mesonic fields will all roll
off there.

• This type of superpotential cannot exist for Nf > n. We expect the theory to have
a well behaved weakly coupled limit, when Λ → 0. If Nf > n, this non-perturbative
contribution to the super potential would diverge as Λ→ 0.

The fractional power 1
n−Nf

in the non-perturbative superpotential implies it is multi-

valued as a function of 〈detM〉. In the Nf = 0, case, there would be n distinct roots. Indeed,
we can consider a situation in which the N2

f mesons have large and generic expectation values,
breaking the gauge group down to SU(n−Nf ). If the expectation values are large enough,
we can take the scale to be high enough that everything is weakly coupled and a classical
analysis remains valid. Quite generically then, a pure SU(n−Nf ) super Yang-Mills theory
is associated with having an (n−Nf )

th root in the superpotential.

Let Λ be the scale of the original theory with Nf flavors and SU(n) gauge group. Let Λ̂ be
the scale of the Higgsed theory with SU(n−NF ) gauge group and no flavors. We can match
the RG flows at the scale set by M by relating Λ3n−Nf = Λ̂3(n−Nf ) detM . This matching
has the interesting consequence of making the superpotential for the Higgsed SU(n − NF )
theory, which has the standard form ∼ τ tr(λ̄λ), depend on M through the scale Λ̂. (Recall
that τ implicitly depends logarithmically on the scale Λ̂.)

In the context of the interacting Wess-Zumino model, we saw that a superpotential leads
to a term in the full action of the form F∂φW where F is the auxiliary scalar associated
with φ, needed to make the algebra close on-shell. Here, we have two equivalent ways of
writing the superpotential, either for the Higgsed theory using just the τ tr(λ̄λ) piece or the
original theory which involves the non-perturbative contribution (8.9) but where Λ does not
have an implicit dependence on detM . Matching the FM∂MW contributions to the action,
we conclude that the gaugino bilinear gets an expectation value

tr(λ̄λ) = 64π2

(
Λ3n−Nf

detM

) 1
n−Nf

= 64π2Λ̂3 . (8.15)

This result shows there are actually n − Nf equivalent solutions, corresponding to n − Nf

vacua of SU(n−Nf ) super Yang-Mills theory.
Of course, we are free to set Nf = 0 at this point and make a slightly more general claim.

Super Yang-Mills with SU(n) gauge group has n equivalent vacua, corresponding to the n
different choices of the root of (8.15). The Z2n residual discrete U(1)R symmetry that we
discussed above is broken further to Z2 by this condensation.
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Nf = n, confinement with chiral symmetry breaking

The superpotential can be written with the help of a Lagrange multiplier A:

Wnp =
[
detM −BB̃ − Λ2n

]
A . (8.16)

Note that the Λ2n term deforms the classical moduli space, that obeyed the constraint
detM = BB̃. Symmetries and the constraint of having a classical limit forbid any more
elaborate B and M dependent deformation of the moduli space.

Problem 8.1. We leave it as an exercise to show that adding a mass matrix for the mesons,
we can recover the non-perturbative superpotential (8.9) in the Nf < n cases.

Nf = n+ 1, confinement without chiral symmetry breaking

The classical moduli space is not modified in this case, but we shall not go through the
analysis. We leave it as an exercise to show that the constraints of the MJ

I , BI , and B̃j fields
can be recovered from the superpotential

Wnp =
1

Λ2n−1
(M I

JBIB̃
J − detM) . (8.17)

Problem 8.2. Verify that adding a mass mM1
1 and integrating out the (n+ 1)th flavor will

lead to the constraint (8.8) appropriate for the Nf = n theory.

Nf > n+ 1

There are three distinct regimes. One we have discussed before, 3n < Nf , where the theory
is IR free. Another regime where the theory is also IR free is n+ 2 ≤ Nf <

3n
2

. Perhaps the
most interesting regime is 3n

2
< Nf < 3n. We discussed already that in the large n limit,

there is a fixed point theory with a controllably small coupling g∗ and Nf . 3n, where the
beta functions vanish. It turns out that this fixed point theory extends all the way down to
Nf = 3n

2
although the couplings do not remain small as Nf decreases.

This 3n > Nf > n+ 1 area of our “phase diagram” was first mapped out by Seiberg with
the help of a duality named after him. The idea is that the low energy physics of our SQCD
theory is equivalent to the low energy physics of a different SQCD theory with gauge group

ñ = Nf − n (8.18)

and again Ñf = Nf flavors but also the mesons M I
J of the original theory. The new Nf

flavors are taken to transform under conjugate representations of the flavor symmetries. We
write down the analog of figure 3 for the dual theory in figure 4. There is also a term in the
superpotential in the dual theory W = Q̃IMJ

I QJ . Consistent with supersymmetry, there
must be fermionic mesinos, partners to the M I

J .
Consistent with our proposed phase diagram, the conformal window of one theory 3n

2
<

Nf < 3n is mapped to the conformal window of the dual theory 3ñ > Ñf >
3ñ
2

. On the
other hand, the upper IR free region of the first theory Nf > 3n gets mapped to the lower
IR free region of the second theory ñ+ 2 ≤ Nf < 3ñ.
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SU(Nf − n) SU(Nf ) SU(Nf ) U(1)B U(1)R
QiI Nf − n 1 Nf −1 n

Nf

Q̃Ii Nf − n Nf 1 1 n
Nf

M 1 Nf Nf 0 2
(

1− n
Nf

)
Figure 4: Charge assignments for the quarks fields in the dual SQCD.

Problem 8.3. One typical check people make in this business is to match the anomalies. If
we sum over the R-charges of the fermions in the theory, the following two quantities must
remain invariant through the duality, the so-called R- and R3-anomalies.∑

i

R(ψi) ,
∑
i

R(ψi)
3 . (8.19)

Verify that these quantities do not change as a result of the Seiberg duality.
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A Sources

The preceding notes have drawn heavily from

• N. Lambert, “Supersymmetry” (class notes for CM439Z/CMMS40 at King’s College
London) as well as “Supersymmetry and Gauge Theory” (class notes for 7CMMS41),

nms.kcl.ac.uk/neil.lambert/

I have set the level and course material largely using these notes.

• J. Polchinski, String Theory, vol. 2, Appendix B.

All you need to know about supersymmetry in 35 pages. The style is very dense, and
you can spend hours working out the equations on each page.

• D. Z. Freedman and A. Van Proeyen, Supergravity.

Supergravity does not start until page 185, and many of the early chapters duplicate
material that we will cover in a nicer and more thorough fashion than we have time
for.
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• S. Weinberg, Quantum Field Theory, vol. 3.

Technical, thorough, and index heavy. Weinberg uses four component fermions. An
early chapter includes a proof of Coleman-Mandula. Another reasonable looking source
for a proof is a Scholarpedia page,

http://www.scholarpedia.org/article/Coleman-Mandula theorem

apparently written by Mandula himself.

• J. Wess and J. Bagger, Supersymmetry and Supergravity.

The canonical reference. They use two component fermions. The book is easy to read,
but one often wishes for more text and fewer equations. As equation heavy as it is,
much of the technical detail is left to exercises.

• P. Argyres, An Introduction to Global Supersymmetry, 2001.

A very nice set of lecture notes (essentially a text book) from a course that Phil Argyres
taught at Cornell nearly 20 years ago. It was the canonical reference when I was a
graduate student. It is available free from his website

http://homepages.uc.edu/∼argyrepc/cu661-gr-SUSY/index.html

• K. Intriligator and N. Seiberg, “Lectures on Supersymmetric Gauge Theories and
Electric-Magnetic Duality,” arXiv:hep-th/9509066.

A canonical reference for the low energy behavior of SQCD.
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