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1 Introduction

Symmetry plays a critical role in quantum field theory, and we often distinguish several
different types. There are gauge symmetries – the SU(3) × SU(2) × U(1) of the standard
model for instance. There are global symmetries; consider the approximate SU(2) flavor
symmetry of the up and down quarks. There are discrete symmetries, for example charge
conjugation C, parity P, and time T reversal. Most important of all, perhaps, are the space-
time symmetries of special relativity, also known as the Poincaré group. After all, relativistic
quantum field theories were developed out of an intent to wed quantum mechanics and special
relativity.

Given the prominence of the Poincaré group in relativistic quantum field theory, one is
led to ask whether this group might in certain contexts be a subgroup of some larger group.
The contexts in which the Poincaré group can be enlarged turn out to be surprisingly limited.
There is in fact a theorem, proven in 1967 by Coleman and Mandula, that the Poincaré group
can be combined with internal, continuous symmetries, such as the SU(3) of the standard
model, in only a trivial way, as a direct product. In other words, if one takes an element g
from the Poincaré group and an element h from a continuous internal symmetry group, then
gh = hg.

This module is about two important loop holes to the Coleman-Mandula Theorem: su-
persymmetry and conformal symmetry. The proof of the theorem involves the scattering or
S matrix, and if the theory contains only massless particles, for which the S matrix is a some-
what problematic concept, the Poincaré group can be enlarged to the conformal symmetry
group. The proof further assumes the symmetry is generated by a Lie algebra, while super-
symmetry involves a generalization of a Lie algebra, called a Lie super-algebra. There are
other loop holes to the Coleman-Mandula Theorem which we will not discuss here. Discrete
symmetries and spontaneously broken symmetries can both be used to extend the Poincaré
group.

That the Poincaré group can be extended in these special ways suggests special roles
for both conformal symmetry and supersymmetry. Conformal symmetry is important for
critical phenomena in condensed matter and statistical physics. It also plays a central
role in the renormalization group for quantum field theory. Last but not least, it is an
essential technical tool in the development of string theory. For supersymmetry, two sets of
arguments outline its importance. The first is experimental: For many years people have
held out hope that the next generation particle accelerators (or indeed other high energy
particle experiments such as cosmic ray detectors, dark matter detectors, neutrino detectors,
precision electroweak experiments, etc.) would see evidence for supersymmetry in the world
around us. The second is theoretical: the presence of a symmetry in physics often helps in
solving a problem, and supersymmetry is no exception. We now provide some more detail
for each of these motivations, starting with conformal symmetry.

• Critical Phenomena: There are many statistical and condensed matter systems which
undergo second order phase transitions. At the critical point, these systems often
admit effective field theory descriptions which have conformal symmetry. One oft cited
example is the Ising model in two dimensions, with spins σi = ±1 on sites of a square
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lattice. The nearest neighbor spins are allowed to interact, leading to a Hamiltonian

H = −J
∑
〈ij〉

σiσj . (1.1)

At high temperature, the spins are disordered. Their average value vanishes: 〈σ〉 = 0.
On the other hand, at low temperature the spins will pick an orientation 〈σ〉 6= 0. In
fact, the two phases are related by Kramers-Wannier duality, and there is a second order
phase transition between the high and low temperature phases at the self-dual point.
At this critical point, there are fluctuations at all scales, and the theory is invariant
under changes of scale. These scale transformations are an important generator of the
full conformal symmetry group as we will see later.

• Renormalization Group: Perhaps the most difficult aspect of quantum field theory
(QFT) is that the rules depend on the energy scale. A famous example of this phe-
nomena is the energy dependence of quantum chromodynamics (QCD). A theory or
quarks and gluons, at high energies these quarks and gluons are nearly free particles.
However, at low energy, the interaction strength grows and they condense to form
mesons and baryons, for example the pions observed in cosmic rays or the protons and
neutrons in the nucleus of the atom. This dependence on energy scale is called the
renormalization group.

In the limit of very high energy (UV) or low energy (IR), the QFT has a fixed point
behavior, where it no longer depends on scale.1 In the case of QCD, these fixed points
have a simple nature. There is a free fixed point in the UV, where the particles cease
to interact with each other, and a trivial fixed point in the IR. We say the IR fixed
point is trivial because all of the bound states formed have mass. If we go to an energy
scale below the mass of the lightest particle (a pion), there is not enough energy to
produce any excitations, and the theory is empty, or trivial. Free and trivial are not
the only options, however. It is possible to have a scale invariant, interacting theory
of massless particles. These interacting conformal field theories are a major subject
of these lectures and provide the generic fixed point behavior of a Lorentz invariant
QFT. They are thus important starting points from which to begin the analysis of a
general QFT.

• String Theory: The renormalization group is a way of curing the divergences that ap-
pear in generic QFT calculations. Intuitively, the problem is that point-like particles
of relativistic QFTs are singular objects. The self energy of a charged point particle
is infinite, and many other processes, for example scattering, generate similar infini-
ties. Renormalization emerges from adding counter-terms to cure the divergences but
that introduce a scale dependence to various physical quantities such as masses and
coupling strengths. One might take the reasonable point of view that QFT, with its
singular behavior and consequent scale dependence, is the wrong starting point for
a fundamental description of the physical world. A theory of extended objects, for

1People have speculated about more general behavior, for example limit cycles, but such QFTs usually
have additional pathologies. For example, they may be non-unitary.
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example strings, is somewhat less singular. Indeed string theory has emerged as one of
the leading frameworks in which to unify the Standard Model of Particle Physics (open
strings) with gravity (closed strings) at a quantum level. The string, as it propagates
through time, traces out a 1+1 dimensional world sheet which hosts its own QFT. This
QFT is a conformal field theory.

Moving on now to supersymmetry, the experimental set of arguments concerns what has
come to be known as the Standard Model of Particle Physics. This relativistic quantum
field theory describes essentially everything that we have observed in nature that is not
gravitational. It postulates that the world around us is made of particles. In particular,
the building blocks are fermionic spin 1/2 particles – electrons, muons, taus, neutrinos, and
quarks – which interact by exchanging bosonic vector particles – gluons, W and Z bosons,
and photons. The Standard Model is a gauge theory, which means it has a local continuous
symmetry described by a Lie Group, in this case SU(3)× SU(2)×U(1). Only an unbroken
U(1) is observed at low energies, the U(1) associated with the photon of electricity and
magnetism. A last critical ingredient is thus to explain the symmetry breaking pattern.
The fact that we don’t observe an SU(3) at low energies is associated with the imperfectly
understood physics of confinement in quantum chromodynamics (QCD). The breaking of
SU(2)×U(1) to a diagonal U(1) on the other hand is associated with a last critical ingredient
of the Standard Model: the Higgs particle, a spin zero bosonic particle.

Despite its successes, there are a few key unsatisfactory aspects of the Standard Model:

• Hierarchy Problem: From a modern standpoint, the Standard Model is an effective
field theory – something that accurately describes the physics at the relatively low
energies available in today’s particle accelerators. The mass of the heaviest observed
fundamental particle, the top quark at 172 GeV, gives an order of magnitude estimate
of the energy scales at and below which the Standard Model can be trusted to give
accurate results. In contrast, we have no reason to expect the Standard Model to
be accurate if extrapolated to very high energy scales, for example the Planck scale
EP = ~1/2G

−1/2
N c5/2 ∼ 1019 GeV at which quantum gravitational affects are expected

to become important. A symptom of the Standard Model’s limitations are divergences
that appear in loop corrections to the mass of the Higgs. A naive but standard way
of regulating these divergences is to cut-off the integration at an energy scale where
we expect new physics. If that scale is really EP , then mass corrections will be huge,
and the Higgs mass should be of the same order of magnitude as EP . Through the
Higgs mechanism, the other Standard Model particles will get huge masses as well. Of
course, we do not observe such huge masses, and so, without some fine tuning that will
arrange for cancellation between the various diagrams, there must be new physics at
some lower scale. Supersymmetry provides for precisely such new physics, introducing
a new class of particles that can run in loops and partially cancel these large corrections
to the Higgs mass.

The current experimental situation is not promising for supersymmetry. The LHC
has observed the Higgs to have a mass of 125 GeV, but has not observed any super-
symmetric partners. If such partners exist, they are then likely to have masses larger
than can be observed by the LHC. 125 GeV is relatively low, but the new physics is
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coming in at a relatively high scale, naively at least several hundred GeV, where the
loop cancellations will not be particularly effective.

• Unification: The existence of three gauge groups SU(3) × SU(2) × U(1) has long
seemed inelegant to theorists. How much nicer would it be if the Standard Model
could be embedded in a theory with a single gauge group, for example SU(5), SO(10),
or even E8. Giving some support to this idea is that the gauge couplings for the
three gauge groups run with energy scale and become all roughly equal at 1015 GeV.
Supersymmetry has the remarkable property of making the three couplings much closer
together at this unification scale. In addition, it provides an accurate prediction for
the Weinberg angle, i.e. the way in which the U(1) of the photon sits inside the original
SU(2)× U(1) gauge group.

• Dark Matter: Roughly 70% of the matter in the universe is not particles in the Standard
Model. Astrophysicists have come to this conclusion from a variety of observations, for
example from looking at rotation of individual galaxies, rotation of clusters of galaxies,
and the cosmic microwave background radiation. The new class of particles introduced
by supersymmetry provide a host of dark matter candidates, the most serious of which
is often called the LSP, the lightest super partner.

The second set of arguments for supersymmetry is that it helps solve various problems.
Maybe the real question we are interested in does not involve supersymmetry, but if we add
supersymmetry, we can often find solutions and then hopefully learn something about what
to expect in answer to the original question.

• String Theory: An issue with non-supersymmetric versions of string theory is that we
have not been able to find stable vacuum states. Supersymmetry cures this problem.

• Confinement: You can make yourself a million dollars in the Clay Mathematics Prize
Competition if you successfully explain why Yang-Mills theory (i.e. QCD without the
quarks) develops a mass gap at low energies. Add supersymmetry, and the problem has
already been solved. The vacuum structure of a very large variety of supersymmetric
gauge theories has at this point been successfully analyzed, giving us some insight into
the original problem of confinement in QCD.

• Partition Functions and Localization: The basic problem of quantum field theory is
to compute the path integral (or partition function). In supersymmetric theories, this
path integral can sometimes be computed exactly on special manifolds, for example
spheres. Indeed, one can go further and compute correlation functions of certain su-
persymmetric operators as well.

1.1 Dimensional Analysis

Dimensional analysis is a powerful tool in physics. It often allows you to deduce the answers
to questions about which you have at best a foggy grasp of the details. A case in point is
deducing the velocity of surface waves on a liquid – so-called capillary waves. These are
the waves that you see moving away from a small stone that you toss in a lake, that travel
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maybe at a few dozen centimeters per second. Let’s begin with the assumption that this
speed should have something to do with the density of the liquid ρ, the surface tension σ,
and the acceleration due to gravity g. If you further know that ρ is measured in mass per
unit volume kg m−3, σ in force per unit length kg s−2, and acceleration in distance per unit of
time squared m s−2, then the unique quantity with units of velocity that can be constructed
from these numbers is (gσ/ρ)1/4. Plugging in the numbers for water, for which σ = 72.8 mN
m−1, one gets 16 cm s−1, not bad for a back of the envelope estimate. Or one could turn
this calculation around and estimate the surface tension for water from a stone throwing
experiment at your local pond.

Similar dimensional analysis estimates will be crucial in our discussion of conformal and
super symmetry in this class. We include a couple of problems to tone your skills.

Problem 1.1. Using only the quantities ~, GN , and c, construct quantities that have the
units of length, mass, and time. Compute the corresponding Planck length, Planck mass,
and Planck time, using SI units.

Problem 1.2. Another proposed source of extra physics is extra dimensions. Assume that we
live not in a four dimensional world but a (4+p)-dimensional one where the extra dimensions
are all extremely small circles of length `.

a) Noting that the dimensionality of GN is different in (4 + p) dimensions, what is the
new expression for the Planck energy EP in terms of ~, c, and GN?

b) Find a relationship between GN and the observed 4d value G4d
N . Given the observed

4d value for G4d
N , how small must ` be in order to have EP = 1 TeV? Are there some

values of p that you can rule out?

For a relativistic quantum field theory, we almost always work in units where ~ and c
are dimensionless quantities set equal to one. This choice gives time and distance the same
units. It also gives momentum, energy, and mass the same units, and relates mass to one
over distance, leaving us precisely one unit to work with, which we could either call length
or mass.

To put these notions to work consider the action for a free scalar field:

S = −
∫

ddx
(
(∂µφ)(∂µφ) +m2φ2

)
. (1.2)

From the knowledge that that action is dimensionless – after all eiS must be a sensible
expression in computing the path integral now that ~ = 1 – we can conclude that φ has
mass dimension

(mass)
d−2

2 .

We will often write this fact as ∆φ = d−2
2

, where ∆φ is the scaling dimension of the field φ.
We can introduce an interaction to the theory by adding a gφn term to the Lagrangian.

(Usually n is restricted to positive integer values to preserve analyticity.) Note that the
coupling g will in general be dimensionful. To keep the interaction under control, we can
try to keep it small and compute processes in a Taylor expansion in g. However, one should
ask small compared to what? To address this question, we can make a dimensionless ratio
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g/Ed−n∆φ where E is a characteristic energy of the process under consideration. The sign
of d − n∆φ then becomes of crucial importance. For d − n∆φ > 0, this dimensionless ratio
becomes arbitrarily small at high energies but very large at low energies. Such an interaction
is said to be relevant (i.e. relevant at low energies). In contrast, if d − n∆φ < 0, then the
ratio becomes arbitrarily small at low energies but large at high energies. We say such an
interaction is irrelevant (i.e. irrelevant at low energies). Note the mass m is relevant in this
language, like in the case of QCD where the fact that all the particles have masses drives the
theory to a gapped or trivial fixed point in the IR. (There is older nomenclature you may
run into: relevant = normalizable and irrelevant = non-normalizable.)

The final case d − n∆φ = 0, called a classically marginal coupling, is relevant for our
study of conformal symmetry and conformal field theory. In this case, g itself is dimension-
less. Unfortunately, just because we can write such a term in a Lagrangian doesn’t mean
that g stays dimensionless at a quantum level. Typically loop corrections give anomalous
dimensions to the quantum fields in a theory. And then d− n∆φ is no longer zero.

Problem 1.3. Consider an interacting scalar field

S = −
∫

ddx ((∂µφ)(∂µφ) + gφn) . (1.3)

where n is a positive integer. For what pairs (n, d) can the coupling g be dimensionless?

Problem 1.4. Consider the Lagrangian for a Dirac spinor in d dimensions

S = −
∫

ddx

(
i

2
ψ̄γµ∂µψ + g(ψ̄ψ)n

)
(1.4)

What is the scaling dimension of ψ? (You may assume the conjugate spinor ψ̄ has the same
scaling dimension as ψ. Moreover, the gamma matrices are dimensionless.) For what (n, d)
can g be made dimensionless, assuming n is a positive integer? Considering now also the
scalar field of the previous problem. In what dimensions do φψ̄ψ and φ2ψ̄ψ lead to classically
marginal couplings?

Problem 1.5. Start with the assumption that the supersymmetry transformation Q squares
to the momentum operator Q2 ∼ P and moreover converts fermions into bosons and bosons
into fermions. Try to guess how Q acts on φ and ψ, purely based on dimensional analysis.

Problem 1.6. Consider QED in d dimensions

S = −
∫

ddx

(
1

4
F µνFµν +

i

2
ψ̄γµ(∂µ + igAµ)ψ

)
(1.5)

where Fµν = ∂µAν−∂νAµ. What is the scaling dimension of g? What is special about d = 4?

These kinds of finger counting exercises will be very valuable for us, in figuring out the
constraints on supersymmetry transformations, in deciding whether or not a quantum field
theory is conformally invariant, and in other situations as well. There is in fact an argument
to be made that this subsection of the notes is the most important in the entire module,
with implications far beyound theoretical physics.
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2 Coleman-Mandula Theorem

In this chapter, we will review the Poincaré group, the conformal group, and continuous
internal symmetry groups, and then discuss how supersymmetry and conformal symmetry
evade the Coleman-Mandula theorem. (Space and time prevent us from including a proof of
the theorem.) A presentation of the supersymmetry algebra will have to wait until Chapter
7. In the intervening chapters, we will instead develop conformal field theory. The second
half of the module will be devoted to supersymmetry.

The Poincaré group is a Lie group that is generated by space-time translations along with
Lorentz transformations (which in turn consist of rotations and boosts). The infinitesimal
version (or Lie algebra version) of this group action, under which the theory is invariant,
can be written

xµ → xµ + aµ + ωµνx
ν , (2.1)

where the quantity δxµ = aµ + ωµνx
ν is taken to be small.

In special relativity, the space-time proper distance ∆s2 = ηµν∆x
µ∆xν between two

points must be invariant under these transformations, which in turn places a constraint on
ωµν :

∆s2 → ηµν(∆x
µ + ωµλ∆x

λ)(∆xν + ωνρ∆x
ρ)

= ηµν∆x
µ∆xν + ηµνω

µ
λ∆x

λ∆xν + ηµνω
ν
ρ∆x

µ∆xρ + . . .

= ∆s2 + (ωµν + ωνµ)∆xµ∆xν + . . . . (2.2)

In other words, ωµν = −ωνµ is antisymmetric under exchange of its indices.2

While elements of the Poincaré group compose to give new elements in the group, the
infinitesimal version of this statement is that the commutator of two infinitesimal elements
(i.e. elements of the corresponding Lie algebra) yields a new infinitesimal element. We
consider infinitesimal elements δ1 and δ2 and compute

[δ1, δ2]xµ ≡ δ1δ2x
µ − δ2δ1x

µ . (2.3)

To compute δ2δ1x
µ, it is perhaps clearer to start with the arrow notation

xµ → xµ + aµ1 + ωµ1νx
ν

→ xµ + aµ1 + ωµ1νx
ν + aµ2 + ωµ2ν(x

ν + aν1 + ων1λx
λ) ,

from which it follows that

δ2δ1x
µ = ωµ2 νa

ν
1 + ωµ2 λω

λ
1 νx

ν+aµ1 + aµ2 + ωµ1νx
ν + ωµ2νx

ν . (2.4)

2We will use a Minkowski metric with mostly plus signature:

ηµν =


−1

1
. . .

1

 .
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Note the terms in red will drop out of the commutator. The commutator then must be

[δ1, δ2]xµ = (ωµ1 λa
λ
2 − ω

µ
2 λa

λ
1) + (ωµ1 λω

λ
2 ν − ω

µ
2 λω

λ
1 ν)x

ν . (2.5)

The new infinitesimal Poincaré transformation is

aµ = ωµ1 λa
λ
2 − ω

µ
2 λa

λ
1 , ωµν = ωµ1 λω

λ
2 ν − ω

µ
2 λω

λ
1 ν . (2.6)

Note that ω(µν) = 1
2
(ωµν + ωνµ) = 0, consistent with the requirement that ∆s2 is invariant.

We would like to be able to act not just on space-time points xµ with the Poincaré group
but on quantum fields as well. To that end, we introduce the linear operators Pµ and Mµν

which act on the coordinates such that

δxµ = iaνPν(x
µ) +

i

2
ωνλMνλ(x

µ) . (2.7)

The factor of 1/2 is introduced because of the anti-symmetry so that, for example, ω12 =
−ω21 is only counted once. The factors of i allow the generators to be Hermitian rather than
anti-Hermitian operators. The commutator (2.5) can be written more abstractly as

[Pµ, Pν ] = 0 ,

[Pµ,Mνλ] = iηµνPλ − iηµλPν , (2.8)

[Mµν ,Mλρ] = iηµλMνρ − iηνλMµρ − iηµρMνλ + iηνρMµλ .

Problem 2.1. Reproduce the result (2.5) using Pµ and Mνλ and in particular (2.7) and the
commutator algebra (2.8).

In general, we would like to be able to represent the action of Pµ and Mµν not just on
xµ but on a quantum field ΦI(x

µ) which transforms under a representation of Poincaré and
is additionally a function of a space-time point. Here I is some generalized index allowing
for an arbitrary representation of the group. An infinitesimal group element of Poincaré g
consisting of the data (aµ, ωµν) and acting on ΦI(x

µ) thus has two pieces, one gIJ acting by
matrix multiplication on the generalized index of the field I and the second acting on xµ,

δΦI(x
µ) = g J

I ΦJ(xµ) + ΦI(x
µ + δxµ)− ΦI(x

µ) . (2.9)

By a Taylor series, we can write the second two terms, to leading order, as a derivative

ΦI(x
µ + δxµ)− ΦI(x

µ) = (aµ + ωµνx
ν)∂µΦI(x

ρ) . (2.10)

Now it turns out that gIJ simplifies as well and depends only on the Lorentz part of the
Poincaré group. Because of the nontrivial commutator [Pµ,Mνλ], the Poincaré group is not
a direct but a semi-direct product of translations and Lorentz transformations. Translations
by themselves are straightforward to understand. They form an abelian and non-compact
subgroup of the full group. Their irreducible representations are always one dimensional, and
the corresponding matrices just constants. In fact, as far as I’m aware, for fields of physical
interest, these constants always vanish. For example, for tensor fields, shifting the location
of the origin of spacetime clearly should not affect the structure of the tangent and cotangent
bundles, leaving the space-time indices on some general tensor field T µ1···µn

ν1···νm invariant.
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The nontrivial data in gIJ is then a representation of the Lorentz algebra only, and
Pµ = −i∂µ reduces to a derivative acting on the fields, controlling how the shift in xµ in turn
affects the field ΦI . Smooth functions can be expanded in terms of a Taylor series:

f(x+ a) = f(x) + aµ∂µf(x) + . . .

= f(x) + iaµPµf(x) + . . . (2.11)

Finite translations can be obtained as an exponential of Pµ:

f(x+ a) = eia
µPµf(x)

= f(x) + aµ∂µf(x) +
1

2
aµaν∂µ∂νf(x) + . . . (2.12)

The action of the Lorentz group on the coordinate dependence of ΦI can be written in
a similar derivative fashion, as Mµν = i(xµ∂ν − xν∂µ). Indeed, using this representation of
Mµν along with Pµ = −i∂µ, one can recover the commutation relations (2.8). However, this
representation of the action of the Lorentz group on functions is not the whole story. The
Lorentz group is non-abelian and admits more interesting representations. The Standard
Model that we discussed briefly in the first section contains a Higgs field H(x) in the trivial
representation, vector fields such as the photon Aµ(x), and many spinor fields, such as the
electron ψα(x). In general, a nontrivial representation of the Lorentz group implies that
the field carries some kind of index, for example µ and α for the vector and spinor fields
respectively. Different representations imply that there are different choices of matrices
which satisfy the commutation relations (2.8) of the Poincaré group.

Problem 2.2. For a vector representation, one takes

(Mµν)
λ
ρ = iηµρδ

λ
ν − iδλµηνρ . (2.13)

(Notice that the indices µ and ν take a dual role, labeling both the Lorentz generator and its
matrix components.) For the spinor representation, one takes instead

(Mµν)α
β = − i

2
(γµν)α

β = − i
4

(γµγν − γνγµ)α
β , (2.14)

where (γµ)α
β are the Dirac γ-matrices, {γµ, γν} = 2ηµν. Verify that these two representations

of the Lorentz group obey the commutation relations (2.8).

Quantum field theories often possess additional symmetries, most notably gauge sym-
metries. Associated with the gauged Lie group, there is a Lie algebra with commutation
relations of the form

[Ta, Tb] = ifab
c Tc , (2.15)

where the Ta are Hermitian generators, and fab
c are the structure constants. The fields

transform in representations of this algebra and carry associated indices. For example, the
quarks ψaα in the standard model in addition to a spinor index α carry an index a indicating
that they transform in a fundamental representation of SU(3).
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The component Pt is both an energy and also a generator of infinitesimal translations
in time. Because Pt exists as a well defined, time independent quantity, we expect that the
total energy is conserved. Often a good first step in approaching a physics problem is to
work out a complete set of conserved charges. In the context of our commutator algebra
of Pµ, Mµν and Ta, the set of conserved charges is the set which commutes with Pt. In
the context of the Poincaré group, we expect the full four momentum Pµ to be conserved,
along with angular momenta corresponding to Mxy, Myz, and Mzx. The boosts Mti on the
other hand do not commute with Pt. Having written down the full set, as is typical in
quantum mechanics one has to worry about whether the generators mutually commute as
well. Otherwise, the operators will not all be simultaneously diagonalizable. In the context
of spatial rotations, for example, one typically chooses Jz = Mxy and the Casimir operator
J2 = M2

xy +M2
yz +M2

zx.
From Noether’s theorem, we expect that continuous symmetries are associated with con-

served charges and more generally conserved currents. It should follow from Noether’s theo-
rem that [Pt, Ta] = 0. The content of the Coleman-Mandula theorem is much stronger, that
the generators Ta commute with all of the generators of the Poincaré group:

[Ta, Pµ] = 0 = [Ta,Mµν ] . (2.16)

Thus the Ta are not only conserved but transform under the trivial representation of the
Poincaré group.

Theorem. (Coleman-Mandula) In any spacetime dimension greater than two, the only
interacting quantum field theories have Lie algebra symmetries which are a direct product of
the Poincaré algebra with an internal symmetry.

2.1 Supersymmetry

Supersymmetry requires the violation of a key assumption of the Coleman-Mandula theorem
– that the symmetry algebra should be a Lie algebra. Recall that a Lie algebra is the tangent
space at the identity element of a Lie group, with an infinitesimal group transformation of
the form

g = 1 + iεA (2.17)

where A is an element of the Lie algebra (e.g. Pµ, Mµν or Ta from before) and ε is an
infinitesimal parameter. The algebra is closed under an antisymmetric bilinear operation
called the Lie bracket

[A,B] = −[B,A] (2.18)

which is subject to the Jacobi identity

[A, [B,C]] + [B, [C,A] + [C, [A,B]] = 0 . (2.19)

Supersymmetry replaces the Lie algebra with a superalgebra. A superalgebra should
already be a familiar notion to you if you have worked with a quantum field theory that con-
tains both fermions and bosons. By the spin statistics theorem, bosons carry representations
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of the Lorentz group with integer spin and their field operators must commute outside of
the light cone. On the other hand, fermions carry half-integer spin representations and anti-
commute outside the light cone. A standard Lie algebra can be constructed from bosonic
generators and commutators [, ], but once we involve fermions, it is very natural to throw
anti-commutators {, } into the mix along with the rule that the product of two fermions is
a boson, the product of a fermion and a boson is a fermion, and the product of two bosons
is again a boson.

We can formalize this notion of a superalgebra as a Z2 graded Lie algebra where fermions
have odd grading and bosons have even grading. It is also convenient to write a generalized
commutator [, } where the decision to anti-commute or commute is based on what is inside
the brackets:

[B,B} = [B,B′] ∼ B′′ , (2.20)

[B,F} = [B,F ] ∼ F ′ , (2.21)

[F, F ′} = {F, F ′} ∼ B . (2.22)

B here is for boson and F for fermion, and the notation is schematic. There is furthermore
a generalized Jacobi identity

(−1)ac[A, [B,C}}+ (−1)ba[B, [C,A}}+ (−1)cb[C, [A,B}} = 0 . (2.23)

where a, b, c ∈ Z2 are the gradings of A, B, and C respectively.
In this course, the even generators will be the Pµ and Mµν generators of the Poincaré

group. The odd generators, or supersymmetries Qα, are then in a sense the square roots of
the Poincaré generators, schematically

{Q,Q} = P +M . (2.24)

There is thus a symmetry that is “deeper” than Poincaré and is surely therefore worthy of
study.

One more comment needs to be made. While we have found a way to nontrivially
enlarge the Poincaré algebra, the supercharges Qα still generally commute with other internal
continuous symmetry generators [Qα, Ta] = 0. This refined version of the Coleman-Mandula
theorem is due to Haag, Sohnius, and Lopuszanski and was proven in 1975.

2.2 Conformal Symmetry

The proof of the Coleman-Mandula theorem relies on the existence of an S-matrix (or scat-
tering matrix), which contains the data of all of the scattering amplitudes in the theory. A
definition of the S-matrix requires the notion of asymptotic initial and final states, where the
ingoing and outgoing particles are far from each other and essentially non-interacting. How-
ever, if the underlying theory is scale invariant, then there is no notion of “far”, and there
are difficulties in defining the S-matrix. One issue for the S-matrix is the presence of long
range forces that occur when the particles that mediate those forces are massless. (Indeed,
for a scale invariant theory, all the particles must be massless because a mass would define
a scale.) You may have seen similar issues in a quantum mechanics class, in looking at the
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scattering cross section of a charged particle in a Coulomb potential. These problems stem
from the masslessness of the photon. Scale invariant theories provide another important loop
hole to the Coleman-Mandula theorem.

The Poincaré group was the set of transformations which left the Minkowski tensor ηµν
invariant. The conformal group is the set of coordinate transformations which leave the
Minkowski tensor invariant up to a position dependent rescaling

η′µν ≡
∂xα

∂x′µ
∂xβ

∂x′ν
ηαβ = Ω(x)ηµν . (2.25)

Note the Poincaré group, for which Ω(x) = 1 forms a subgroup of the conformal group. A
further generator of the conformal group is the scale transformation xµ → x′µ = λxµ for
which Ω = λ−2. The rule (2.25) relates the Jacobian of the transformation to the scaling
factor Ω, to wit Ωd = J2. The word conformal is used to imply that the action of the group
does not change the angle between intersecting curves. In the Euclidean context, when
ηµν = δµν , the cosine of the angle between two vectors is given by v · w/|v||w|, and indeed,
whether one is in the Euclidean or Minkowski signature, this quantity is invariant under
conformal transformation.

Let us try to construct the infinitesimal elements of the conformal group. Consider a
general coordinate transformation

xµ → x′µ = xµ + εµ(x) , (2.26)

assuming εµ(x) is small. Using the rule

η′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
ηαβ ,

we find to linear order that

ηµν → ηµν − (∂µεν + ∂νεµ) +O(ε2) . (2.27)

From the definition of a conformal transformation (2.25) with Ω(x) ≈ 1−f(x), we can make
the identification

∂µεν + ∂νεµ = f(x)ηµν . (2.28)

Taking a trace fixes

f(x) =
2

d
∂ρε

ρ . (2.29)

We would now like to establish what kinds of ε satisfy the constraint (2.28). To this
end, we take a partial derivative ∂ρ of (2.28) and permutations and construct the linear
combination

∂µ(∂νερ + ∂ρεν − fηνρ) + ∂ν(∂µερ + ∂ρεµ − fηµρ)− ∂ρ(∂µεν + ∂νεµ − fηµν) = 0 (2.30)

from which we conclude

2∂µ∂νερ = ηνρ∂µf + ηµρ∂νf − ηµν∂ρf . (2.31)
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We further take a trace, which produces

2∂2ερ = (2− d)∂µf , (2.32)

indicating something rather special about conformal symmetry in two dimensions. We will
specialize to the case d > 2 in the remainder of this argument.

We combine a symmetrized version of ∂ν of (2.32)

∂2(∂νεµ + ∂µεν) = (2− d)∂µ∂νf

along with ∂2 of (2.28) to find

(2− d)∂µ∂νf = ∂2fηµν . (2.33)

Finally taking a trace tells us that (d − 1)∂2f = 0 and hence that ∂µ∂νf = 0 vanishes,
provided d > 2. In other words, f can be at most linear in the coordinates,

f = A+Bµx
µ , (2.34)

and εµ at most quadratic,

εµ = aµ + bµνx
ν + cµνρx

νxρ , (2.35)

with the restriction cµνρ = cµρν . Plugging this ansatz into the constraint (2.28) yields the
following conditions:

• aµ is unconstrained and generates infinitesimal translations.

• bµν = ληµν + ωµν where ωµν = −ωνµ generate the Lorentz group and the trace part is
an infinitesimal scale transformation.

• cµνρ = ηµρbν + ηµνbρ− ηνρbµ for a constant vector bµ. These transformations are called
special conformal transformations and act on coordinates as

xµ → x′µ = xµ + 2(x · b)xµ − bµx2 . (2.36)

We give the finite versions of these infinitesimal transformations as table 2.2. Translations
and Lorentz transformations generate the Poincaré group, as we have discussed at length. In
total, we have d translations, d(d−1)

2
Lorentz transformations, one dilatation, and d generators

of special conformal transformations for (d+1)(d+2)
2

generators in total. It is no accident that
this number is the same as the dimension of the special orthogonal group SO(d+2). There is
an exercise a little later on to demonstrate that the conformal symmetry group is equivalent
to SO(d, 2) (or SO(d+ 1, 1) in the Euclidean setting).

Problem 2.3. Verify that bµν = ληµν + ωµν and cµνρ = ηµρbν + ηµνbρ − ηνρbµ are the only
solutions for bµν and cµνρ consistent with (2.28).

Problem 2.4. Verify that the infinitesimal versions of the transformations in table 2.2
recover aµ, bµν and cµνρ.
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• translations: x′µ = xµ + aµ

• Lorentz: x′µ = Λµ
νx

ν

• dilatations (scale transformations): x′µ = λxµ

• special conformal transformations: x′µ = xµ−bµx2

1−2b·x+b2x2

Figure 1: The finite versions of the generators of the conformal symmetry group.

As the special coordinate transformations are somewhat ugly, it is often useful to intro-
duce one further discrete element of the conformal group, the inversion

I : xµ → x′µ =
xµ

x2
, (2.37)

where clearly I2 is the identity element.

Problem 2.5. Demonstrate that an inversion followed by a translation followed by a further
inversion is equivalent to a special coordinate transformation.

Parallel to the earlier discussion of the Poincaré group, it is useful to have a more abstract
presentation of the conformal group and its corresponding Lie algebra in terms of a set
of generators and their commutation relations. Extending the Poincaré group to include
dilatations D and special conformal transformations Kµ, we can write the transformation
rule on a coordinate as

δxµ = iaνPν(x
µ) +

i

2
ωνλMνλ(x

µ) + ibνKν(x
µ) + iλD(xµ) . (2.38)

From this expression, we infer how these transformations act on functions. We have Pµ =
−i∂µ and Mµν = i(xµ∂ν−xν∂µ) as we had before in the case of the Poincaré group, to which
we add two more:

D = −ixµ∂µ , Kµ = −i(2xµxν∂ν − x2∂µ) . (2.39)

From this representation, it is then a straightforward although tedious exercise to work out
how to extend the Poincaré group commutation relations to include the conformal group:

[D,Pµ] = iPµ , [D,Kµ] = −iKµ , [D,Mµν ] = 0 , [Kµ, Kν ] = 0 ,

[Mµν , Kρ] = i(ηνρKµ − ηµρKν) , [Pµ, Kν ] = −2i(ηµνD +Mµν) .

Importantly, Pµ does not commute with dilatation or special conformal transformations, in
apparent contradiction of the Coleman-Mandula theorem and also implying that massive
states are not good eigenstates of the full conformal group.

One further remark is that Mµν , Pµ and D form a subgroup, and it is a subtle point
whether there may exist theories which have scale invariance and Poincaré symmetry without
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also having the special conformal transformations. People have looked at this question in
detail, and the lore seems to be that examples with scale but not conformal invariance are
not physically interesting – they are non-unitary or have an unbounded spectrum or are
non-interacting.

Problem 2.6. Compute the commutator of P 2 with Kµ and D. What happens to a massive
particle state |p〉 (where P 2|p〉 = m2|p〉, m2 6= 0) under the infinitesimal special conformal
transformation Kµ?

Problem 2.7. If µ, ν = 0, . . . , d − 1, then define Jµν = Mµν along with Jµ,d = 1
2
(Pµ −

Kµ), Jµ,d+1 = 1
2
(Pµ + Kµ), and Jd,d+1 = D, along with the constraint that Jab = −Jba

is antisymmetric. Show that the commutators of these generators are the same as for a
(d+ 2)-dimensional orthogonal group, with metric signature (2, d), i.e. SO(2, d).

Problem 2.8. Write out the consistency relations (2.28) in d = 2 in the coordinate system
x± = x± t. What can you conclude about the allowed form of εµ?

Problem 2.9. Compute Ω(x) for the (finite) special conformal transformations.

3 Constraints of Conformal Symmetry

We would like to understand how the conformal symmetry group acts on quantum states
and fields. In the case of the Poincaré group, it is often convenient to choose fields that
are eigenvectors of the momentum operator Pµ. In the context of the conformal symmetry
group, Pµ no longer plays as privileged a role. Pµ does not commute with Kµ nor with D.

In the case of conformal symmetry, dilatation D largely replaces the privileged role of P t.
The commutation relations [D,Pµ] = iPµ and [D,Kµ] = −iKµ are suggestively close to the
commutation relations for the raising and lower operators of the harmonic oscillator with
the identifications H ∼ D, Pµ ∼ a† and Kµ ∼ a. Recall that for the harmonic oscillator, the
raising and lower operators commute to give [a, a†] = 1 and the Hamiltonian can be written
as a combination of these raising and lower operators: H = a†a+E0, where E0 is a constant
(the ground state energy). A short computation leads to the conclusion [H, a] = −a and
[H, a†] = a†. If there is a lowest weight state |0〉, such that a|0〉 = 0, then H|0〉 = E0|0〉.
Moreover, the relation H(a†)n|0〉 = (E0 + n)(a†)n|0〉 follows from the commutation relations
of H with a†.

We can play a very similar game with the conformal group. We declare a lowest weight
state – or primary state – to be an eigenvector of the dilatation operator and also annihilated
by special conformal transformations

D|φI〉 = i∆|φI〉 , (3.1)

Kµ|φI〉 = 0 . (3.2)

The factor of i is rather funny and is a consequence of the fact that the conformal group
has indefinite signature, either SO(d+ 1, 1) or SO(d, 2), depending on whether we include a
time-like direction. The dilatation operator does not have real eigenvalues!
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If we like, we can also associate with the state an irreducible representation of the Lorentz
group, indicated by the generalized index I. In this case, we have the rule that

i

2
ωµνMµν |φI〉 =

i

2
ωµν(Mµν)

I
J |φI〉 = g J

I φJ〉 , (3.3)

where by placing further I and J indices on Mµν , we have converted it from a generalized
operator to a specific matrix representation of the Lorentz group. The rules for dealing with
these more general representations of the Lorentz group quickly get involved, and so for the
most part we will content ourselves with representations with no, one, or two vector indices.

Just as the harmonic oscillator has excited states that are formed by acting with a† on
the ground state, conformal primary states have descendant states which are constructed by
acting with derivatives Pµ = −i∂µ on the conformal primary state. Acting with Pµ n times
increases the conformal weight ∆→ ∆ + n. Acting with Kµ decreases the weight.

Most of the conformal field theory literature is phrased in terms of operators and cor-
relation functions rather than states. We thus replace these conformal primary states with
operators at the origin acting on the vacuum that create these states. A conformal primary
operator φI(x) is one such that

φI(0)|0〉 = |φI〉 . (3.4)

Part of the definition of the vacuum is that it is conformally invariant; it is annihilated by
all of the generators of the conformal group. We could have chosen any point in space-time
to insert the operator as all points are related via the conformal group. However, our choice
of generators, for example D = −ixµ∂µ, make the origin a simpler choice.

The action of the group on the operator is then given in terms of commutation relations:

[D,φI(0)] = i∆φI(0) , (3.5)

[Mµν , φI(0)] = (Mµν)
J
I φJ(0) , (3.6)

[Kµ, φI(0)] = 0 . (3.7)

To recover the action of D, Mµν and Kµ on φI(x) away from the origin, we use the fact that
φI(x) = eiP ·xφI(0)e−iP ·x and the commutator algebra of the conformal group. For instance

[D,φI(x)] = DeiP ·xφI(0)e−iP ·x − eiP ·xφI(0)e−iP ·xD

= eiPx(e−iP ·xDeiP ·xφI(0)− φI(0)e−iP ·xDeiP ·x)e−iP ·x

= eiP ·x[D̂, φI(0)]e−iP ·x , (3.8)

where we have defined D̂ = e−iP ·xDeiP ·x. We then compute D̂ explicitly,

D̂ =

(
1− ix · P − (x · P )2

2
+ . . .

)
D

(
1 + ix · P − (x · P )2

2
+ . . .

)
= D − ixµ[Pµ, D]− 1

2
xµxν [Pµ, [Pν , D]] + . . . (3.9)

and from the commutator algebra conclude that [Pµ, [Pµ, D]] and all higher order terms

vanish. In short D̂ = D − xµPµ and

[D,φI(x)] = i(∆ + xµ∂µ)φI(x) . (3.10)

A similar simplification occurs for the other elements of the conformal group.
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Problem 3.1. Verify that

[Kµ, φI(x)] = −2ixµ∆φI(x)− i(2xµxν∂ν − x2∂µ)φI(x)− 2xρ(Mρµ) J
I φJ(x) . (3.11)

From the infinitesimal action of the conformal group, one can in principle reconstruct
the finite action on the field φI(x). For scalar fields (trivial representation of the Lorentz
group), the rule is that

φ′(x′) = Ω∆/2φ(x) . (3.12)

Instead of constructing the finite version of the transformation from the infinitesimal one, it
is more straightforward to check that the infinitesimal action of D and Kµ can be recovered
from the finite transformations. Let us check D and leave Kµ for the reader. We want to
look at the variation of the field at a particular point,

δφ ≡ φ′(x)− φ(x) . (3.13)

Note carefully which objects are primed and which are not in comparing this expression with
(3.12). Now consider the dilatation x′ = (1 + λ)x for small λ� 1. The infinitesimal change
in the field is given by (3.10):

δφ = iλ[D,φ(x)] = −λ(∆ + xµ∂µ)φ(x) . (3.14)

For the dilatation x′ = (1 + λ)x, we know Ω = (1 + λ)−2 and therefore from (3.12)

φ′(x′) = (1 + λ)−∆φ(x) ≈ (1−∆λ)φ(x) . (3.15)

We could equally well consider the variation of the field at x′ as at x:

δφ(x′) = φ′(x′)− φ(x′) . (3.16)

We then expand out φ(x′) in a Taylor series, φ(x′) ≈ φ(x) + λxµ∂µφ(x), yielding

δφ(x′) ≈ −∆λφ(x)− λxµ∂µφ(x) . (3.17)

Then, because we are already working at linear order in λ, we are free to replace x on the
right hand side with x′, yielding the desired transformation rule.

Problem 3.2. Verify that the rule (3.12) for the finite conformal symmetry transformations
is also consistent with the infinitesimal transformation rule (3.11) for the special conformal
transformations Kµ.

For tensor fields, the power of Ω in the transformation rule is adjusted by the spin of the
operator:

T ′ν1···νn
µ1···µm(x′) = Ω

∆+n−m
2

∂x′ν1

∂xβ1
· · · ∂x

′νn

∂xβn
∂xα1

∂x′µ1
· · · ∂x

αm

∂x′νm
T β1···βn
α1···αm(x) . (3.18)
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3.1 Conformal Symmetry from Curved Space

The conformal symmetry group is complicated, and it is often valuable to try to find concep-
tually more efficient ways of representing it. One method which we shall not touch in these
lectures is the embedding space or null-cone formalism, where one uplifts the d-dimensional
CFT to d+ 2 dimensions where SO(d, 2) acts linearly, as matrix multiplication. Another is
to think about d-dimensional flat space as a limit of the QFT in curved space. It is often a
surprisingly simple exercise to write a flat space space action in a diffeomorphism invariant
form in curved space. For example, the massless scalar field in flat space

S = −1

2

∫
ddx(∂µφ)(∂µφ) , (3.19)

where indices are raised and lowered with the Minkowski tensor ηµν , becomes

S = −1

2

∫
ddx
√
−g(∂µφ)(∂µφ) (3.20)

in curved space where now indices are raised and lowered with the full metric tensor gµν
and
√
−g is shorthand for

√
− det(gµν). Such a naive approach will miss terms that vanish

in flat space, for example Rφ2 where R is the Ricci scalar, which can turn out to be very
important.

Conformal symmetry from the curved space perspective are the set of diffeomorphisms
which leave the metric invariant up to rescaling by a local function:

gµν → g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ = Ω(x)gµν . (3.21)

As diffeomorphism is trivially a symmetry of the theory in curved space, what we require
from this perspective for conformal symmetry is an additional symmetry under rescaling of
the metric. The additional symmetry has a name – Weyl symmetry.

Problem 3.3. In the case of the free scalar field, the simple (∂φ)2 action is not Weyl
symmetric. However, if one adds the Rφ2 term

S = −1

2

∫
ddx
√
−g
[
(∂µφ)(∂µφ) + ξRφ2

]
(3.22)

where ξ = (d−2)
4(d−1)

, the action is Weyl symmetric. Verify this fact, assuming φ→ Ω
d−2

4 φ and

gµν → Ω−1gµν under Weyl rescaling.

A convenient side effect of moving to curved space is a simple method for computing
the stress-energy tensor. This tensor, which describes the flow of energy and momentum,
is usually introduced in the context of Noether’s theorem and translation invariance. The
stress-energy tensor is the conserved current associated with translation symmetry. However,
an alternate definition is the response of the action to variation of the metric:

δS =

∫
ddx
√
−gT µνδgµν . (3.23)
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Diffeomorphisms are symmetries for which infinitesimally xµ → x′µ = xµ−εµ(x). The metric
changes infinitesimally as δgµν = ∇µεν+∇νεµ. That this transformation is a symmetry means
that δS should vanish in this case. Integrating by parts, we conclude the stress-tensor is
conserved ∇µT

µν = 0. If we also insist Weyl scaling δgµν = λ(x)gµν is a symmetry, then we
conclude that the stress-tensor is traceless, T µµ = 0.34

Tracelessness of the stress tensor is an oft cited property of conformal field theories. In
fact, Weyl symmetry is almost always anomalous. In other words it is a symmetry classically
but spoiled by quantum effects, when we consider the full path integral for the field theory.
One finds in general curved space-time that the trace of the stress tensor is proportional to
a sum over curvature invariants with special properties. These “trace anomalies” feature
prominently in the stud of conformal field theory, but we do not have space to discuss them
in detail. In 2d CFT, for example, 〈T µµ〉 = c

24π
R where R is the Ricci scalar curvature and

c is a constant, the central charge of the CFT. The Zamolodchikov c-theorem states in part
that if two CFTs are connected by a renormalization group flow, c at the UV fixed point
must be larger than c at the IR fixed point.

Problem 3.4. Compute the stress tensor in the flat space limit gµν = ηµν for the scalar

field of problem 3.3 with the conformal coupling ξ = (d−2)
4(d−1)

. Check that T µν is conserved and
traceless on-shell in the flat space limit.

3.2 Correlation Functions

In the study of quantum field theory, a central role is played by the notion of a correlation
function. These correlation functions are defined through the path integral

〈φ(x1)φ(x2) · · ·φ(xn)〉 ≡ 1

Z

∫
[dφ]φ(x1) · · ·φ(xn)eiS[φ] , (3.24)

for a generic action S[φ] that is a functional of a field φ(x). Here Z =
∫

[dφ]eiS[φ]. We
are interested in QFTs that are invariant with respect to a symmetry. That means, at a
quantum level, both S and the measure [dφ] should be invariant with respect to the action
of the symmetry group. (Theories where S is invariant but the measure fails to be invariant
are said to have the symmetry classically but possess an anomaly.) These symmetries have
consequences for the correlation functions, consequences which are called Ward identities.

Let us suppose that the symmetry acts on φ via φ→ R(φ). We would like to understand
how the symmetry affects the correlation function:

〈R(φ(x1))R(φ(x2)) · · ·R(φ(xn))〉 =
1

Z

∫
[dφ]R(φ(x1)) · · ·R(φ(xn))eiS[φ] . (3.25)

3Note that global scale invariance, where λ is a constant, is not enough to guarantee tracelessness. It
only guarantees that Tµµ is a total derivative. The special conformal transformations, where λ depends on
x, are needed to guarantee tracelessness.

4We are playing a little fast and loose here. In analyzing the transformation of the action with respect
to the symmetry, either Weyl rescaling or diffeomorphism, the fields will transform as well. However, these
conditions on the stress tensor are expected to hold only on-shell, after applying the equations of motion.
The equations of motion are derived by varying the action with respect to the fields. Thus the equations of
motion can be used to zero out the contribution from varying the fields in computing δS for the symmetry
transformation, leaving only the contribution from δgµν .
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With respect to earlier notation R(φ(x)) = φ′(x′). Because the measure and the action are
invariant under the symmetry, we can make the replacements [dφ] = [dR(φ)] and S[φ] =
S[R(φ)] without changing the value of the correlation function:

〈R(φ(x1))R(φ(x2)) · · ·R(φ(xn))〉 =
1

Z

∫
[dR(φ)]R(φ(x1)) · · ·R(φ(xn))eiS[R(φ)] .

Further, it is important to realize that R[φ] is just a dummy integration variable. We are
free to replace it with φ itself. However, for space-time symmetries, this replacement will
not affect the action of the symmetry group on the locations xi of the φ(xi) insertions:

〈R(φ(x1))R(φ(x2)) · · ·R(φ(xn))〉 =
1

Z

∫
[dφ]φ(R(x1)) · · ·φ(R(xn))eiS[φ] .

We are left with the result, slightly generalizing to the case where the fields are distinct,

〈φ1(R(x1))φ2(R(x2)) · · ·φn(R(xn))〉 = 〈R(φ1(x1))R(φ2(x2)) · · ·R(φn(xn))〉 . (3.26)

For conformal symmetry and scalar primary operators, we can put (3.26) and (3.12)
together to learn that

〈φ1(x′1) · · ·φn(x′n)〉 =

(
n∏
i=1

Ω∆i/2(xi)

)
〈φ1(x1) · · ·φn(xn)〉 . (3.27)

In the case of translations and Lorentz transformations, we have that Ω = 1. For translations
more particularly, we find that the correlation function depends only on the relative positions
of the insertions

〈φ(x1 + a) · · ·φ(xn + a)〉 = 〈φ(x1) · · ·φ(xn)〉 . (3.28)

For Lorentz transformations, indices must be contracted in a Lorentz invariant way.
But we have two more transformations at our disposal – dilatations and special conformal

transformations – which turn out to be strong enough to fix the form of two and three point
functions of scalar primaries up to constants. Let us see how these constraints arise in more
detail.

Two Point Functions

For two point functions of scalars, Poincaré invariance implies the correlation function can
only depend on the Lorentz invariant distance between the insertions

〈φ1(x1)φ2(x2)〉 = f(|x1 − x2|) . (3.29)

Scale transformations x→ x′ = λx further imply

〈φ1(x1)φ2(x2)〉 = λ∆1+∆2〈φ1(λx)φ2(λx)〉 , (3.30)

from which we conclude f(|x1 − x2|) = λ∆1+∆2f(λ|x1 − x2|). The only way to satisfy this
constraint is to choose

〈φ(x1)φ(x2)〉 =
C12

|x1 − x2|∆1+∆2
. (3.31)
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Finally, we consider special conformal transformations. From Problem 2.9, you should have
learned that

Ω = (1− 2b · x+ b2x2)2 (3.32)

Let us define γi ≡ 1 − 2b · xi + b2x2
i . A remarkable property about special conformal

transformations is that

|x′1 − x′2| =
|x1 − x2|
γ

1/2
1 γ

1/2
2

, (3.33)

from which we can see that

C12

|x1 − x2|∆1+∆2
=

1

γ∆1
1 γ∆2

2

C12

|x′1 − x′2|∆1+∆2
=

(γ1γ2)
∆1+∆2

2

γ∆1
1 γ∆2

2

C12

|x1 − x2|∆1+∆2
(3.34)

where in the first equality, we used the Ward identity. This expression can only make sense
if ∆1 = ∆2 or if C12 = 0, since γ1 and γ2 are independent quantities. The final result for the
correlation function of two scalar primary operators is thus

〈φ1(x)φ2(x)〉 =

{
0 ∆1 6= ∆2

C12

|x1−x2|2∆1
∆1 = ∆2 .

(3.35)

Often it is possible to normalize the fields such that C12 = 1. For example, for the free
scalar field φ(x), a kinetic term in the action normalized with a 1/2 in front will lead to a
particular value of Cφφ. However, by sending φ→ φ′ = cφ, one will shift the normalization
Cφφ → Cφφ/c

2.

Problem 3.5. Verify the remarkable property (3.33).

Three Point Functions

Three point functions 〈φ1(x1)φ2(x2)φ3(x3)〉 of scalar primary operators are fixed in a similar
manner. Poincaré plus scale invariance fix the correlation function to be a sum over terms
of the form

1

|x12|a|x23|b|x13|c
, (3.36)

where a+b+c = ∆1+∆2+∆3. We have also introduced the compact notation xij = |xi−xj|.
Special conformal invariance then fixes one particular choice of the constants a, b, and c. In
particular, one finds the constraint

C123

|x12|a|x23|b|x13|c
=

(γ1γ2)a/2(γ2γ3)b/2(γ3γ1)c/2

γ∆1
1 γ∆2

2 γ∆3
3

C123

|x12|a|x23|b|x13|c
(3.37)

For this ratio of gamma factors to be unity,

a = ∆1 + ∆2 −∆3 ,

b = ∆2 + ∆3 −∆1 , (3.38)

c = ∆3 + ∆1 −∆2 . (3.39)
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The final result is that

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C123

|x12|∆1+∆2−∆3 |x23|∆2+∆3−∆1|x31|∆3+∆1−∆2
. (3.40)

While the coefficients of two-point functions can often be absorbed through changing the
normalization of the fields, the ratios of three point function coefficients Cijk to two-point
coefficients Cij contain physical information.

Four Point Functions

Once we have four positions at our disposal, something new occurs. We can form the
invariant cross ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

, (3.41)

which are invariant under the full conformal group. Unlike the two and three point functions,
the four point function is not completely fixed by conformal invariance

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =
F (u, v)∏
i<j |x2

ij|δij
, (3.42)

where
∑

j 6=i δij = ∆i. The function F (u, v) is not constrained in any obvious way from this
point of view.

Vector and Tensor Operators

One can play the same game with operators in nontrivial representations of the Lorentz
group. Two important example worth mentioning are a conserved current Jµ and the stress
tensor T µν . Conservation here implies that ∂µJ

µ = 0 and ∂µT
µν = 0, which places further

constraints on the correlation functions.
Let us begin with 〈Jµ(x)Jν(0)〉, where by translation invariance, we are free to put

the second current at the origin without loss of generality. The game is played by trying
to construct the most general symmetric two index tensor out of the elementary building
blocks available to us, in this case ηµν and xµ. Poincaré and scaling symmetry tell us that
the two-point function must have the form

〈Jµ(x)Jν(0)〉 = τ
ηµν + αx

µxν

x2

|x|2∆
(3.43)

where τ and α are constants. The general transformation rule for a vector field is

J ′µ(x′) =
∂x′µ

∂xν
Ω

∆+1
2 Jν(x) . (3.44)

Combined with the Ward identity 〈Jµ(x′)Jν(y′)〉 = 〈J ′µ(x′)J ′ν(y′)〉 for special conformal
transformations, we find α = 2. The tensor

Iµν(x) = ηµν − 2
xµxν

x2
, (3.45)
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called the inversion tensor, plays an important role in conformal field theory.
Finally, we enforce the conservation condition ∂µ〈Jµ(x)Jν(0)〉 = 0, which tells us either

τ = 0 or ∆ = d− 1. In other words, conserved currents must have scaling dimension d− 1,
which makes sense from a dimensional analysis point of view. The time component J0 is a
charge density, which carries some units of dimensionless charge per unit volume.

The stress tensor two-point function can also be expressed in terms of the inversion
tensor. One finds, after a similar analysis,

〈T µν(x)T ρσ(0)〉 =
c

|x|2d

(
1

2
(Iµσ(x)Iνρ(x) + Iµρ(x)Iνσ(x))− 1

d
ηµνησρ

)
. (3.46)

The conservation condition ∂µ〈T µν(x)T ρσ(0)〉 = 0 fixes the dimension ∆ = d, which again
makes sense from a dimensional analysis point of view. The component T 00 is the energy
density, which has units of mass per unit volume, or in our relativistic field theory framework
where ~ = c = 1, dimensions of mass to the d power. Unlike the case of conformal primary
operators, whose normalization can often be adjusted, the normalization of the two-point
function of the stress tensor is a physical quantity. The stress-tensor is a composite operator,
made up of a product of conformal primaries. It is thus secretly a higher point correlation
function in a limit where some of the points are taken to be coincident and divergences
subtracted. The number c is called the central charge. The numbers τ and c play an
important role in characterizing CFTs.

4 Radial Quantization and the Operator Product Ex-

pansion

In introducing the notion of a conformal primary state |φI〉 and conformal primary operator
φI(x) in the previous chapter, the origin played a special role: |φI〉 = φI(0)|0〉. The origin
plays such a role because in defining the dilatation operator on function space, D = xµ∂µ,
we chose to think about it as scale transformations with respect to the origin. (Of course, we
could equally well have chosen to dilate space about some other point D̂(x) = e−iPxDeiPx.)

There is a different and useful way of thinking about the origin. Let’s instead return
to the standard QFT framework, where we can create in and out states by acting on the
vacuum in the far past and far future, |ψin〉 = limt→−∞ ψ̂(t)|0〉 and |ψout〉 = limt→∞ ψ̂(t)|0〉,
with some local operator ψ̂(t).

In a conformal field theory, in a Euclidean context where all the coordinates are spatial,
people often choose to think about the radial coordinate as a time-like coordinate. Suppose
we write the line element of flat space as a foliation of spheres

ds2 = dr2 + r2dΩ2 (4.1)

where dΩ2 is the line element on a (d−1)-dimensional sphere of unit radius and r > 0. Then
we could equally well decide to define a new radial coordinate r = eτ in which case the line
element becomes

ds2 = e2τ
(
dτ 2 + dΩ2

)
. (4.2)
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In the new coordinate system τ ranges from −∞ < τ < ∞. We can think about the point
r = 0 as the far past. Similarly r →∞ is the far future.

We mentioned before that in a CFT context, the dilatation operator D largely replaces
the Hamiltonian P 0. While in QFT, we can use the evolution operator U(t) = eitP

0
to

move from time slice to time slice, in a CFT framework, we can use instead the operator
U(r) = eiτD to move from radial slice to radial slice. In QFT, we have P 0 = −i∂t. In CFT,
on the other hand, we have D = −ixµ∂µ = −ir∂r = −i∂τ .

From this point of view of “radial quantization”, the conformal primary state |φI〉, created
at the origin by φI(0), can be thought of as a standard in-state in a usual QFT context.
Similarly, there are out states which are created by inserting operators at large radial distance
from the origin.

There are some technical perils in this program which we will not dwell on overly. The
first is that eiτD is not unitary. Another is how exactly to define a useful inner product with
the out states.

4.1 Operator Product Expansion

The next exercise is to consider the state

|ψ〉 = φ1(x)φ2(0)|0〉 . (4.3)

For simplicity, we can consider the case where both operators are scalars. Because ψ is a
state and because the space of states is spanned by eigenstates of the dilatation operator,
we can expand ψ in a basis of such states:

|ψ〉 =
∑
n

cn|∆n〉 . (4.4)

Moreover, we know that these eigenstates come in multiplets. Each multiplet contains a
conformal primary state |φI〉 and its descendants P µ1 · · ·P µn|φI〉. We can therefore write
the state |ψ〉 in the form

φ1(x)φ2(0)|0〉 =
∑
φI

C∆,I(x, ∂)φI(0)|0〉 , (4.5)

where we will discuss the precise form of C∆,I(x, ∂) momentarily. Here ∆ is the scaling
dimension of φI .

In fact, we can promote this operator product expansion from a discussion of states to a
discussion of the operator algebra itself:

φ1(x)φ2(0) =
∑
φI

C∆,I(x, ∂)φI(0) , (4.6)

where implicitly the equality holds only inside correlation functions, and also only where the
additional operators inside the correlation function are inserted outside the sphere, centered
at the origin, of radius |x|. Said another way, the insertion of a third operator φ(x′) in the
correlation function 〈φ(x′)φ1(x)φ2(0)〉 sets a radius of convergence for the small x expansion,
namely |x| < |x′|.
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Now let us try to pin down the form of C∆,I . By dimensional analysis, for a scalar
operator φ(x) of dimension ∆, we can see that

C∆(x, ∂)φ(0) =
c

|x|∆1+∆2−∆
(φ(0) + . . .) . (4.7)

The ellipsis refers to all of the descendants of φ(x). To check this guess, we can act with the
dilatation operator. Acting on the left hand side of (4.6) yields

Dφ1(x)φ2(0)|0〉 = i(∆1 + xµ∂µ)φ1(x)φ2(0)|0〉+ i∆2φ1(x)φ2(0)|0〉
= i(∆1 + ∆2)φ1(x)φ2(0)|0〉+ xµ∂µφ1(x)φ2(0)|0〉 . (4.8)

We now substitute the guess (4.7) for φ1(x)φ2(0) in the second term, focusing on the contri-
bution of dimension ∆ to this operator product expansion:

Dφ1(x)φ2(0)|0〉 ∼ i(∆1 + ∆2 − (∆1 + ∆2 −∆))
c

|x|∆1+∆2−∆
(φ(0) + . . .)|0〉 . (4.9)

Acting directly on the right hand side of (4.7) with D yields the same result to leading order
in a small x expansion:

D
c

|x|∆1+∆2−∆
(φ(0) + . . .)|0〉 = i∆

c

|x|∆1+∆2−∆
(φ(0) + . . .)|0〉 . (4.10)

Problem 4.1. Continuing the small |x| expansion of C∆(x, ∂), we find at next order

C∆(x, ∂)φ(0) =
c

|x|∆1+∆2−∆
(1 + αxµ∂µ + . . .)φ(0) .

By acting with Kµ on boths sides, show that α = ∆1−∆2+∆
2∆

.

In fact conformal invariance completely fixes the form of C∆,I(x, ∂) up to an overall
constant, which we called c in the discussion above. A more efficient way to compute
C∆(x, ∂) is as follows. Consider expanding the following three point function of three scalar
operators using the operator product expansion

〈φ1(x)φ2(0)φ∆(z)〉 =
∑
∆′

C12∆′C∆′(x, ∂y)〈φ∆′(y)φ∆(z)〉y=0 . (4.11)

The constant c has now been renamed C12∆′ and pulled out of the definition of C∆(x, ∂). All
the higher spin primaries in the operator product expansion will have vanishing expectation
value with φ∆ and so we can restrict the sum to scalar primaries. In fact only scalar primaries
with dimension ∆′ = ∆ will contribute to the sum:

〈φ1(x)φ2(0)φ∆(z)〉 = C12∆C∆(x, ∂)〈φ∆(y)φ∆(z)〉y=0 . (4.12)

Conformal invariance forces the two and three point functions to have the form

〈φ∆(y)φ∆(z)〉 =
1

|y − z|2∆
, (4.13)

〈φ1(x)φ2(0)φ∆(z)〉 =
C12∆

|x|∆1+∆2−∆|z|∆2+∆−∆1|x− z|∆1+∆−∆2
. (4.14)
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where we have taken the liberty of fixing the normalization of the two-point function in
a conventional CFT way. By expanding out the left hand side of (4.12) for small |x| and
matching to the right hand side, we can fix the form of C∆(x, ∂). Note that having normalized
the two-point function to unity, the constant C12∆ in the operator product expansion and in
the three point function are naturally identified, fixing a normalization for C∆(x, ∂).

Problem 4.2. Use this procedure to compute the first three terms in C∆(x, ∂).

4.2 Conformal Blocks

We now apply this notion of the operator product expansion to higher point functions. For
simplicity, let us consider the correlation function of four identical scalar primaries Φ(x) with
dimension η. From the discussion at the end of section 3, we saw that conformal symmetry
constrains the four point correlation function to have the form

〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉 =
G(u, v)

|x12|2η|x34|2η
(4.15)

where u and v were the invariant cross ratios (3.41) formed from combinations of the differ-
ences xij between the insertion locations.

Given the technology of the operator product expansion, we can take x1 close to x2 and x3

close to x4 and write pairs of the operators in the four point function as sums over conformal
primaries:

φ(x1)φ(x2) =
∑
∆,I

c∆,IC∆,I(x12, ∂y)φ∆,I(y)|y=x2
, (4.16)

φ(x3)φ(x4) =
∑
∆,I

c∆,IC∆,I(x34, ∂z)φ∆,I(z)|z=x4
. (4.17)

The c∆,I are the OPE coefficients, or equivalently the coefficients in the three point functions
if we normalize the two-point functions in the conventional way. Inserting these decomposi-
tions into the four point function, we obtain the sum (see fig. 2a)

〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉 =
∑
∆,I

c2
∆,I [C∆,I(x12, ∂y)C∆,I(x34, ∂z)〈φ∆,I(y)φ∆,I(z)〉]

∣∣
y=x2,z=x4

(4.18)

Note the double sum collapses to a single sum because the two point function between two
conformal primaries vanishes unless the operators have the same conformal dimension and
spin.

The important point here is that the term in brackets is completely fixed by conformal
invariance. By convention, we define a conformal block G∆,I(u, v) such that

[C∆,I(x12, ∂y)C∆,I(x34, ∂z)〈φ∆,I(y)φ∆,I(z)〉]|y=x2,z=x4
=

G∆,I(u, v)

|x12|2η|x34|2η
. (4.19)

The conformal block is defined in a theory independent fashion by a choice of Lorentz
representation I and conformal dimensions η and ∆. The theory dependent data in the four
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Figure 2: The decomposition of a) a four-point function and b) a five-point function into a
sum over conformal blocks.

point function reduces to the operator product coefficients c∆,I and the conformal dimensions
∆.

A similar story holds true for higher point functions as well (see fig. 2). By bringing the
insertions close together pairwise, one can decompose an arbitrary correlation function into
a sum over conformal blocks. One can make thus a stronger statement that a conformal field
theory is defined by the data – the spin and scaling dimension – of its conformal primaries
along with the coefficients in their three point functions. With those in hand, one can
reconstruct any correlation function in a conformal partial wave decomposition. In the case
of the four point function, we can write

G(u, v) =
∑
∆,I

c2
∆,IG∆,I(u, v) . (4.20)

We will see in the next section how to further constrain the operator spectrum and OPE
coefficients that define a CFT by examining a particular constraint on this sum.

To be more concrete, we can give G∆,I for four identical scalars in four dimensions:

G∆,`(z, z̄) =
zz̄

z − z̄
(k∆+`(z)k∆−`−2(z̄)− (z ↔ z̄) , (4.21)

where we have defined

kβ(z) = z
β
2 2F1

(
β

2
,
β

2
, β, z

)
.

We have also introduced u = zz̄ and v = (1−z)(1− z̄). To understand these new coordinates
geometrically, one can place x1 = (0, 0, . . .), x3 = (1, 0, 0, . . .) and x4 at infinity. Then rotate
the coordinate system to put x2 in the xy-plane. The z coordinate is x2, thinking of the
xy-plane as a complex coordinate system (see fig. 3).

Problem 4.3. By explicitly computing the first few terms in a small z expansion, verify the
form of the conformal block for ` = 0 and d = 4 by comparing it against your previous small
x expansion of C∆(x, ∂).

4.3 Deriving the Conformal Blocks

One method for deriving the expression (4.21) for the conformal blocks is to find a differential
equation satisfied by G∆,I(u, v) and solve it. The claim is that G∆,I(u, v) is an eigenvector
of the Casimir operator for the conformal group.
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x1 x3

x4

x2

Figure 3: A useful configuration for understanding the z and z̄ cross ratios.

What is the Casimir operator? You have seen this object for the SO(3) rotation group in
quantum mechanics. In that case the Casimir operator was also called J2 and it was equal
to the sum J2 = J2

x +J2
y +J2

z . This operator had eigenvalues `(`+1) for a 2`+1 dimensional
representation of SO(3). More generally for a rotation (or Lorentz) group, we can write

cas =
1

2
MµνM

µν . (4.22)

In the case of SO(3), we have the relations Jx = Myz, Jy = Mzx, and Jz = Mxy. The claim
is that [cas,Mµν ] = 0. Therefore everything in the same irreducible representation of the
group will have the same eigenvalue with respect to the action of the Casimir operator.

In problem 2.7, we saw that the conformal group was also a rotation group, in particular
the group SO(d+ 1, 1) (in the Euclidean case), with the identifications

M−10 = D , M0i =
Pi +Ki

2
, M−1i =

Pi −Ki

2
(4.23)

with the metric η−1,−1 = −1 and η00 = ηii = 1. The remaining elements Mij are the
generators of the usual Lorentz (or rotation) group inside the conformal group.

If we expand the Casimir operator out in terms of our more familiar Pi and Kj, we find
that

cas =
1

2
MµνMµν

=
1

2
M ijMij −D2 +

1

2
PiK

i +
1

2
KiP

i

=
1

2
M ijMij −D(D − i d)− PiKi , (4.24)

where in the second line, I used the commutator [Ki, Pj]. We now apply this object to a
primary state |φ∆,I〉 in order to learn its eigenvalue. (Note i d is i times the the dimension d,
not the identity matrix.) For simplicity, let us assume that φ∆,I transforms in a symmetric,
traceless representation of the Mij with spin `. The claim is that

cas|φ∆,I〉 = [(`(`+ d− 2) + ∆(∆− d)] |φ∆,I〉 . (4.25)
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The first part of the eigenvalue `(`+ d− 2) is the generalization of the `(`+ 1) result for the
SO(3) group. The second term ∆(∆− d) can be read off by acting with D on |φ∆,I〉.

We are now ready to return to the question of conformal blocks for the four point function
〈φ(x1)φ(x2)φ(x3)φ(x4)〉 of four identical scalar operators. Let us insert a resolution of the
identity into the four point function:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
∑
ψ

〈φ(x1)φ(x2)|ψ〉〈ψ|φ(x3)φ(x4)〉 . (4.26)

We then restrict the sum to |φ∆,I〉 and its descendants, i.e. a representation of the conformal
group, every member of which will have the same eiegenvalue with respect to the action
of the Casimir operator. This restriction is by definition the contribution of one conformal
block to the four point function:∑

ψ

′
〈φ(x1)φ(x2)|ψ〉〈ψ|φ(x3)φ(x4)〉 =

G∆,I(u, v)

|x12|2η|x34|2η
. (4.27)

The claim is that cas|ψ〉 = [`(` + d − 2) + ∆(∆ − d)]|ψ〉 where |φ∆,I〉 is in a symmetric,
traceless, spin ` representation of the Lorentz group and |ψ〉 in the multiplet with |φ∆,I〉.
Inserting a Casimir operator and defining λ∆,` ≡ `(`+ d− 2) + ∆(∆− d), we see that

〈φ(x1)φ(x2)|cas|ψ〉 = λ∆,`〈φ(x1)φ(x2)|ψ〉 . (4.28)

But we can also act with the Casimir operator to the left, using the representation of the
conformal group on φ(x1)φ(x2). (Of course, we could run the same argument with φ(x3)φ(x4)
as well, and will get the same answer.) When the dust settles, we find a second order, linear
partial differential equation in the cross ratios u and v of the form

casG∆,`(u, v) = λ∆,`G∆,`(u, v) . (4.29)

The solution to this differential equation are the conformal blocks of (4.21).

5 The Conformal Bootstrap

Say we just took out of a hat a random set of conformal primaries and OPE coefficients.
Would such a selection provide the data to define a CFT? We would quickly find that such
a random selection would lead to an inconsistent procedure for generating four and higher
point correlation functions.

Consider the correlation function of four identical scalars of dimension η:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 . (5.1)

At the end of the previous section, we decomposed this object into a sum over conformal
blocks by taking x1 close to x2 and x3 close to x4. However, we could equally well have
proceeded by taking instead x1 close to x4 and x2 close to x3. This alternate procedure is
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Figure 4: The basic crossing symmetry constraint.

equivalent to swapping x2 and x4 in the original decomposition. From the form of the cross
ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

,

this swap also exchanges u and v. We learn that

G(u, v)

|x12|2η|x34|2η
=

G(v, u)

|x14|2η|x23|2η
(5.2)

or equivalently vηG(u, v) = uηG(v, u). Inserting the partial wave decomposition, this relation
becomes

vη
∑
∆,I

c2
∆,IG∆,I(u, v) = uη

∑
∆,I

c2
∆,IG∆,I(v, u) . (5.3)

The exchange is illustrated pictorially in figure 4.
Now there is one operator in the spectrum of every CFT on whose presence we can rely,

the identity operator. This operator has no descendants because the momentum operator
annihilates constant valued functions. The OPE coefficient of φ×φ with the identity can be
taken to be one, assuming we have normalized our two point functions conventionally, to have
the form |x − y|−2η. Removing the identity operator from the partial wave decomposition,
we find

vη

(
1 +

∑
∆,I

′
c2

∆,IG∆,I(u, v)

)
= uη

(
1 +

∑
∆,I

′
c2

∆,IG∆,I(v, u)

)
. (5.4)

The conformal bootstrap equation is then the following slight massage of the previous
expression: ∑

∆,I

′
c2

∆,I

(
vηG∆,I(u, v)− uηG∆,I(v, u)

uη − vη

)
= 1 . (5.5)

Generically, a random selection of conformal primaries and their OPE coefficients will be
inconsistent with this relation. One could take a step back and insist only on a random
selection of conformal primaries. Perhaps then the c∆,I can be adjusted to make the equation
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Figure 5: A crossing symmetry constraint for a five-point function.

true. In fact, however, one can use this expression to place bounds on the operator spectrum
as well!

Before we proceed further with trying to constrain the operator spectrum, a natural
question to ask is whether considering higher point functions will lead to further constraints
on the set of possible conformal field theories. The answer is no. By imposing four point
crossing symmetry on intermediate channels of higher point functions, one can access all
possible ways of decomposing the higher point functions into conformal blocks. The case of
a five point function is illustrated in fig. 5. From a more formal standpoint, we are making
a statement about the associativity of the operator algebra.

5.1 Interlude on Unitarity Bounds

In order to determine these bounds on the operator spectrum, one imposes additionally
unitarity. Unitarity implies that the dimension of a field of spin ` in a symmetric traceless
representation is bounded below by

∆ ≥ `+ d− 2 if ` = 1, 2, 3, . . .

∆ ≥ d− 1

2
if ` =

1

2
,

∆ ≥ d− 2

2
if ` = 0 .

It also imposes that the OPE coefficients are real, so that c2
∆,I ≥ 0. Note that the minimum

dimension of a scalar d−2
2

is the engineering dimension of a free scalar in d dimensions. The
minimum dimension for ` = 1

2
is the engineering dimension of a free spin one half fermion.

The minimum dimension for a vector field ` = 1 is in fact the dimension of a conserved
current. Similarly, the minimum dimension of a symmetric, traceless spin two field is the
same as the dimension of the stress tensor. In other words, the dimensions of a generic field
in CFT must be, according to its spin, greater or equal to that of a free scalar, free fermion,
conserved current or stress tensor. There is a pattern here, that the multiplets generated
from a primary of the smallest conformal dimension tend to be smaller. There is a shortening
condition, where some of the descendants vanish. In the case of the free scalar, the condition
is that �φ = 0. For the fermion, it’s the Dirac equation. For the conserved current and
stress tensor, that ∂µJ

µ = 0 = ∂µT
µν .
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Let us try to understand where these bounds come from in more detail. When we talk
about unitarity for a Euclidean CFT (where time is like all the other spatial coordinates),
what we really mean is reflection positivity:

〈R(O)O〉 ≥ 0 , (5.6)

where O is some arbitrary operator, possibly composite, and R is a reflection operator that
reflects all of the insertions in O about some plane, for example {(x1, x2, . . .) : x1 = 0} or
{(x1, x2, . . .) : x1 = 1}. Indeed, since this is a conformal field theory, we can act on the space
with special conformal transformations which will in general turn planes into spheres.

Problem 5.1. Show that a special conformal transformation with bµ = (1,~0) turns the
plane xµ = (1/2,~0) into a sphere centered at the origin of radius one. Furthermore, show
that reflection about the plane x1 = 1/2 becomes inversion after the special conformal trans-
formation.

Thus another way of insisting on reflection positivity is to work with the cylindrical
coordinate system from section 4 where τ = log r and to claim

〈T (O)O〉 ≥ 0 . (5.7)

where T sends τ → −τ (or equivalently r → 1/r) in all the insertions that make up O. In a
Lorentzian context, Wick rotating time τ → it, we can then sometimes go further and think
of T (O) as a Hermitian conjugate O†.

From our experience building up representations of the conformal algebra using Pµ and
Kµ, we saw that Pµ functioned like a raising operator while Kµ was a lowering operator.
Given this intuition, let us see whether there is some sense in which Kµ can be treated as a
reflection (or Hermitian conjugate) of Pµ. We make the change of variables xµ = eτnµ and
hence τ = 1

2
log x2 and nµ = xµ/

√
xνxν . We find then that

iPµ = ∂µ =

(
∂τ

∂xµ
∂

∂τ
+
∂nν
∂xµ

∂

∂nν

)
= e−τ

(
nµ

∂

∂τ
+ (δµν − nµnν)

∂

∂nν

)
. (5.8)

Building off the previous result, we quickly see that for the special conformal transformation

iKµ =
[
x2∂µ − 2xµ(x · ∂)

]
= eτ

[
−nµ

∂

∂τ
+ (δµν − nµnν)

∂

∂nν

]
. (5.9)

In other words T (iPµ) = iKµ. We have swept a factor of −1 under the rug here by including
some extra factors of i. This factor deserves a longer discussion that I would prefer not to
get into here.

Consider now a primary state |φI〉, pushing our insertions off to τ → ±∞. From reflection
positivity follow a number of claims, two of which will be important for us:

−〈φI |KµPν |φJ〉 ≥ 0 , (5.10)

〈φI |KµKνPλPρ|φJ〉 ≥ 0 , (5.11)
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are non-negative as matrices (i.e. all the eigenvalues are zero or positive). Applying the
commutation relation of translations with special conformal transformations to (5.10), along
with the constraint that Kµ annihilates |φJ〉, we find that

−2i〈φI |(δµνD −Mµν)|φJ〉 ≥ 0 . (5.12)

(Notice we have replaced ηµν with δµν because we are working with a Euclidean theory, not a
Lorentzian one.) For a scalar operator, Mµν will annihilate |φJ〉, and we find the constraint
that ∆ ≥ 0. Comparing with (5.6), you may be confused because the scalar is supposed to
be bounded below by d−2

2
while we just found the constraint ∆ > 0. In fact, ∆ = 0 must

be allowed, as it corresponds to the identity operator. What happens more precisely is that
there is a gap in the spectrum and the next allowable dimension is that of a free field, d−2

2
.

To see this, one has to consider (5.11):

Problem 5.2. By studying 〈φ|K2P 2|φ〉 for scalar primary φ, demonstrate that the conformal
dimension must satisfy the quadratic constraint ∆(2(∆ + 1)− d) ≥ 0.

A little bit of group theory allows one to analyze the general case of (5.12), which we will
not do here. However, we know how to represent Mµν for spinors and vectors from chapter
2, from which you can deduce the corresponding bounds (5.6):

Problem 5.3. Use the explicit representation of Mµν from problem 2.2 for spinors and
vectors to show that ∆ is bounded below by d−1

2
and d− 1 respectively.

A natural question is if any further constraints on the spectrum can be found by consid-
ering more complicated correlation functions involving Kµ and Pµ. The answer appears to
be no.

One way to argue that three point function coefficients are real in CFT is to consider
〈R(O)O〉 where O = φ1(x1)φ2(x2)φ3(x3). By taking a reflection plane that is very far form
the insertions, we expect the dominant contribution of this six point function to be of the
form 〈R(O)O〉 ∼ 〈R(O)〉〈O〉. For this quantity to be positive, the three point functions
need to be real.

5.2 The Bootstrap

Now let us define

F∆,I(u, v) ≡ vηG∆,I(u, v)− uηG∆,I(v, u)

uη − vη
. (5.13)

and imagine that we have found a candidate spectrum for the theory. We have some set, pos-
sibly infinite, of dimensions for scalar operators, some set of dimensions for vector operators,
and so on. Now we design a linear operator O such that

O(F∆,I(u, v)) ≥ 0 , (5.14)

for every operator in the spectrum but O(1) < 0. Then, because we know c2
∆,I > 0, we

can rule this spectrum out as possible data for a CFT. In fact, by cleverly choosing O, it is
possible to rule out whole families of possible CFTs.
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Figure 6: Upper bound on the dimension of ∆ε of the lowest dimension scalar in the σ× σ
OPE, where σ is a real scalar primary in a unitary 3d CFT with a Z2 symmetry. [[ From
Simmons-Duffin’s TASI lectures ]]

Let us consider a CFT with a scalar operator σ of dimension ∆σ. The OPE of two such
scalars will have the generic form

σ(x)σ(0) =
1

|x|2∆σ

(
1 + Cσσε|x|∆εε(0) + . . .

)
, (5.15)

where ε(x) is the leading operator to appear in the OPE after the identity. In a free CFT,
we anticipate that ε(x) will be the normal ordered product of σ(x) with itself. In this case,
∆σ = d−2

2
and ∆ε = d − 2. But more generally, it is not obvious what ∆ε should be. By

applying the bootstrap procedure, we can determine an upper bound for ∆ε as a function of
∆σ. See fig. 6. Reassuringly, the point (1

2
, 1) lies on the bounding curve in d = 3. Moreover,

there is a kink in the bounding curve close to the location of the 3d Ising model.
In fact, by imposing crossing symmetry on more than one four point function, one can

often further pin down the data of interesting CFTs. For example, the most accurate data
for the 3d Ising model at the critical point currently come from bootstrap bounds:5

(∆σ,∆ε) = (0.518151(6), 1.41264(6)) . (5.16)

One might ask if these results have some experimental relevance. Recall the 3d Ising
model has Hamiltonian

H = −J
∑
〈i,j〉

si · sj , (5.17)

where si = ±1 and the sum is over nearest neighbors on a 3d cubic lattice. When we
talk about the CFT associated with the Ising model, we mean the CFT that describes the
behavior of the lattice model at the critical temperature, where it is on the border between an

5D. Simmons-Duffin, A Semidefinite Program Solver for the Conformal Bootstrap, JHEP 06 (2015) 174,
arxiv.org/abs/1502.02033.
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ordered low temperature and a disordered high temperature system. While I am not aware
of a measurement of the critical exponents for Ising, there is one for a small generalization
of Ising. We can promote ~si to n-component vectors of unit length. In the case n = 2, the
associated CFT is believed to also describe helium along the line in the temperature-pressure
plane that separates the superfluid from the ordinary fluid.

The analog of ∆ε above for the n = 2 model was calculated from a bootstrap approach
to be 1.51136(22).6 However, the experiment (which needs to be done in space to avoid
the effects of gravity) measured 1.50946(22). This discrepancy is eight standard deviations,
which as far as I am aware, remains unexplained. My reading is that while it seems likely
that the theoretical result is correct is far as it goes, the physics measured by the experiment
may not be precisely that of a CFT. On that slightly unsatisfactory note, I conclude this
discussion of CFT, leaving it to one of you to improve the story in the next retelling.

6 Spinors and Clifford Algebras

To learn SUSY, we must first master the formalism necessary to describe spinors and
fermions. We can attribute much of this formalism to Dirac, who had the insight that
the Dirac equation should be a kind of square root of the Klein-Gordon equation:

(γµ∂µ −m)ψ = 0 . (6.1)

Acting on the left with (γµ∂µ +m), one finds

(γµγν∂µ∂ν −m2)ψ = 0 . (6.2)

This second equation is equivalent to the Klein-Gordon equation,

(∂2 −m2)ψ = 0 , (6.3)

provided

{γµ, γν} = γµγν + γνγµ = 2ηµν . (6.4)

From this innocuous looking anti-commutation relation follows an intricate structure that
depends sensitively on the space-time dimension – the Clifford algebra and its representa-
tions.7 The matrix γµ has a vector index that we can lower and raise using the metric ηµν
and its inverse.

6Chester et al., Carving out OPE space and precise O(2) critical exponents, JHEP 06 (2020) 142,
arxiv.org/abs/1912.03324.

7Clifford became a student at KCL in 1860, at the tender age of 15. He later was elected a fellow at
Trinity College, Cambridge in 1868. After surviving a shipwreck along the Sicilian coast during a voyage to
observe the solar eclipse of December 1870, he started work as a professor mathematics and mechanics at
UCL. He suffered a pair of nervous breakdowns, perhaps due to overwork, and succumbed to tuburcolosis
in 1879, at the age of 33. In the Ethics of Belief, he wrote “It is wrong always, everywhere, and for anyone,
to believe anything upon insufficient evidence.”
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6.1 Clifford Algebras

Introducing fermions ψ requires also introducing a set of γ-matrices. The choice of ψ and
the associated γµ furnish a representation of the Clifford algebra. Generically, we take the
representation to be over the complex numbers. For now, we suppress the spinor indices
α, β, . . . on ψ and γµ. Thus when we write

{γµ, γν} = 2ηµν , (6.5)

there is an implicit identity matrix in spinor space idαβ on the right hand side.
Let us begin with the even dimensional case d = 2k + 2. We group the gamma matrices

into k + 1 pairs of anti-commuting raising and lowering operators

γ0± =
1

2
(±γ0 + γ1) , (6.6)

γa± =
1

2
(γ2a ± iγ2a+1) , a = 1, . . . , k . (6.7)

Problem 6.1. Show that these linear combinations satisfy the relations

{γa+, γb−} = δab , (6.8)

{γa+, γb+} = {γa−, γb−} = 0 .

In particular, note that (γa+)2 = 0 = (γa−)2. By repeatedly acting with the k + 1 γa− on a
spinor, we can eventually reach a lowest weight state ζ such that

γa−ζ = 0 for all a . (6.9)

Starting from ζ and acting with the raising operators γa+, at most once each, we can
obtain all of the 2k+1 = 2d/2 states in the representation. The states can be labeled
s = (s0, s1, . . . , sk), where each of the sa = ±1

2
:

ζ(s) ≡ (γk+)sk+1/2 · · · (γ0+)s0+1/2ζ . (6.10)

The lowest weight state ζ corresponds to all sa = −1
2
.

Taking the ζ(s) as a basis, we derive the matrix elements of γµ from the definitions and
the anti-commutation relations. Starting in d = 2, we find

γ0 =

(
0 1
−1 0

)
, γ1 =

(
0 1
1 0

)
. (6.11)

The 2 × 2 matrices are chosen to obey the anticommutation relation {γµ, γν} = 2ηµν but
additionally such that the states in the representation take the simple form where

ζ(−1/2) =

(
0
1

)
, ζ(+1/2) =

(
1
0

)
. (6.12)

Note that the 2× 2 matrices that appear are related to two of the Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (6.13)
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In particular, γ0 = iσ2 and γ1 = σ1. This relation is not surprising since these matrices give
a three dimensional Euclidean representation of the Clifford algebra

{σi, σj} = 2δij . (6.14)

Increasing d by two doubles the size of the γ-matrices. Given a representation Γµ in 2k
dimensions, we can construct a representation γµ in 2k+2 dimensions using the prescription,

γµ = Γµ ⊗
(
−1 0
0 1

)
= −Γµ ⊗ σ3 , µ = 0, . . . , d− 3 , (6.15)

γd−2 = id⊗
(

0 1
1 0

)
= id⊗σ1 , γd−1 = id⊗

(
0 −i
i 0

)
= id⊗σ2 .

The 2× 2 matrices that we add act on the index sk, which newly appears in going from 2k
to 2k + 2 dimensions. (In what follows, we will set d = 2k + 2.)

The basis choice is not unique. There are many ways of constructing this 2d/2 dimensional
representation of a Clifford algebra. We claim, however, that they are all equivalent up to
an appropriate unitary transformation, γµ → UγµU−1. In four dimensions, for instance, the
construction above leads to the γ-matrices

γ0 =

(
−iσ2 0

0 iσ2

)
, γ1 =

(
−σ1 0

0 σ1

)
, (6.16)

γ2 =

(
0 id
id 0

)
, γ3 =

(
0 −i id
i id 0

)
.

A different, more popular choice of basis in four dimensions, often found in field theory text
books, is

γµ =

(
0 σµ

σ̄µ 0

)
, (6.17)

where σµ = (id, σi) and σ̄µ = (− id, σi).

Problem 6.2. Demonstrate a unitary transformation U that relates the representations
(6.16) and (6.17). See if you can choose a basis such that the 4d gamma matrices are purely
real, a so-called “really real” representation.

The representation ζ(s) of the Clifford algebra is also a representation – the so-called
Dirac spinor representation – of the Lorentz group. In an earlier exercise, we demonstrated
that the Lorentz generators can be written as

Mµν = − i
4

[γµ, γν ] . (6.18)

The generators M2a,2a+1 commute and can be simultaneously diagonalized to give the weights
of the representation. (Each of the M2a,2a+1 operators functions like a Jz angular momentum
operator in quantum mechanics.) In terms of our raising and lowering operators, we have

Sa ≡ iδa,0M2a,2a+1 = γa+γa− − 1

2
. (6.19)
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In this way ζ(s) is a simultaneous eigenstate of the Sa with eigenvalues sa. The spinors ζ(s)

thus form the 2k+1 dimensional spinor representation of the Lorentz algebra so(2k + 1, 1).
While the representation ζ(s) is irreducible as a representation of the Clifford algebra, it

is in general not irreducible as a representation of the Lorentz group. Because the Lorentz
generator Mµν is quadratic in the γ-matrices, it can never flip an odd number of spins when
acting on ζ(s). Thus the states with even and odd numbers of −1/2 spins will not mix under
the action of Mµν , and the Dirac representation falls apart into two smaller representations
in an even number of space-time dimensions.

In fact, we can construct a matrix, the analog of “gamma five” in four dimensions, to
help perform this decomposition. The matrix detects the “chirality” of the state, i.e. the
parity of the number of down spins, and commutes with Mµν . This matrix is a product of
all the other gamma matrices:

γ ≡ i−kγ0γ1 · · · γd−1 . (6.20)

Problem 6.3. Show that in terms of the Sa operators, we can write

γ = 2k+1S0S1 · · ·Sk . (6.21)

As a result, it is clear that γ is diagonal in our ζ(s) basis, taking the eigenvalue +1 when
there are an even number of −1

2
spins and −1 for an odd number of −1

2
spins. The states

with eigenvalue +1 form a Weyl representation of the Lorentz algebra, while the states with
eigenvalue −1 form a second, inequivalent Weyl representation. The eigenvalue of γ is often
called the chirality of the representation.

The matrix γ performs a second key function by allowing us to construct representations
of the Clifford algebra in odd dimensions. We simply use γ as the dth gamma matrix, as
it satisfies the requisite anti-commutation relations with the other gamma matrices to give
{γµ, γν} = 2ηµν . One interesting fact is that we could just as well take −γ as the dth

gamma matrix, which gives a second inequivalent representation of the Clifford algebra in
odd dimensions. (Note we cannot change only the sign of γ and leave the other γµ untouched
under conjugation γ → UγU−1.)

6.2 Majorana spinors

A subtle feature of representations of the Clifford algebra is the possibility of imposing a
Majorana condition. A Majorana representation is a “real” (as opposed to complex repre-
sentation), and thus has half the dimensionality of Dirac representation. The subtlety comes
from the fact that we need to consider a more general reality condition than ζ∗ = ζ. We
need to allow for the fact that ζ∗ is some linear operator B acting on ζ:

ζ∗ = Bζ . (6.22)

Indeed, under a unitary transformation ζ → Uζ, and hence B → U∗BU−1. Thus even if
we can find a particular basis where B is the identity, after acting by U , we will in general
find some nontrivial B. Taking the conjugate of the definition (6.22) yields an additional
consistency condition, ζ = B∗ζ∗ = B∗Bζ, implying B∗B = id.
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As we saw earlier in an exercise, an infinitesimal Lorentz transformation is generated by
something quadratic in the gamma matrices, Mµν = − i

2
γµν . For this reality condition to

make sense, we need it to be compatible with the Lorentz transformations:

(δζ)∗ = (Bδζ) , (6.23)

− i
2
ωµν(Mµνζ)∗ =

i

2
ωµνBMµνζ , (6.24)

(Mµνζ)∗ = −BMµνζ . (6.25)

On the right hand side, we can expand BMµνζ = BMµνB
−1Bζ while on the left (Mµνζ)∗ =

M∗
µνζ
∗. Thus, the matrix B had better act as

BMµνB
−1 = −M∗

µν (6.26)

on the Lorentz generators. On the individual gamma matrices, we are then allowed a sign
ambiguity, BγµB

−1 = ±γ∗µ.
We will leave the general story as a problem and focus on three low dimensional cases

of interest, d = 2, 3 and 4. In d = 2, the gamma matrices γ0 = iσ2 and γ1 = σ1 (6.11)
are manifestly real. As a result, we can take B = id. The “gamma five” matrix γ =
γ0γ1 = σ3 is real and diagonal. While the original Dirac representation is two complex
(or four real dimensional), we can reduce this representation into different types of smaller
representations. There are Weyl representations with one complex (or two real) components.
There are Majorana representations with two real components. Finally, because B is the
identity in a basis where γ is diagonal, we can have Majorana-Weyl spinors with one real
component.

In d = 3, the gamma matrices γ0 = iσ2, γ1 = σ1 and γ3 = σ3 are again all manifestly
real, allowing for a Majorana representation with B = id. In odd dimensions, there are no
Weyl representations.

In d = 4, for the basis (6.17), we can write B = γ2γ. We know that B has the correct
properties to impose a Majorana condition because

BγµB−1 = (γµ)∗ . (6.27)

In the basis (6.17), “gamma five” is diagonal

γ =

(
id 0
0 − id

)
(6.28)

while B is not. Moreover, γ and B do not commute, implying that they cannot be simul-
taneously diagonalized. In other words, we cannot impose both a Majorana and a Weyl
condition at the same time. We can have Majorana spinors or we can have Weyl spinors,
but not both at the same time in four dimensions.

There is an elegant general story which we leave as a problem. Curiously, the represen-
tation theoretic structure has a periodicity modulo eight as a function of dimension. This
periodicity turns out to be a rather deep feature of the Clifford algebra, with relations to
other areas of mathematics, such as Bott periodicity.
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Problem 6.4. In d = 2k+2 dimensions, the matrices γµ∗ and −γµ∗ satisfy the same Clifford
algebra as γµ and so must be related to γµ by a unitary similarity transformation. We would
like to determine explicitly the form of this similarity transformation for the basis (6.15) and
study its properties. Consider two candidate matrices

B1 = γ3γ5 · · · γd−1 , B2 = γB1 . (6.29)

a) Show that

B1γ
µB−1

1 = (−1)kγµ∗ , B2γ
µB−1

2 = (−1)k+1γµ∗ , (6.30)

and also that

BiMµνB
−1
i = −M∗

µν (6.31)

for i = 1 and 2. As a result, the spinors ζ and B−1
i ζ∗ must transform in the same way

under the Lorentz group.

b) Show that

B1γB
−1
1 = B2γB

−1
2 = (−1)kγ∗ . (6.32)

As a result, both B matrices will change the eigenvalue of γ when k is odd and not
when it is even. When (d = 2 mod 4) each Weyl representation is its own conjugate,
while when (d = 0 mod 4), each Weyl representation is conjugate to the other.

c) That ζ and B−1
i ζ∗ transform the same way under the Lorentz group allow us to impose

the Majorana reality condition ζ∗ = Bζ, provided B∗B = id as discussed above. Show
that a Majorana condition is possible using B1 only if k = 0 or 3 (mod 4) and using
B2 only if k = 0 or 1 (mod 4).

d) Extending to odd dimensions, show that a Majorana condition is possible only when
k = 0 or 3 (mod 4).

e) Make sure that you understand the contents of Figure 7.

f) How do the details of the previous arguments change if we use a metric with mostly
minus signature?

Having completed the exercise above, one may ask if there are any other possible B’s to
consider which may satisfy the consistency conditions. If so, then BMµνB

−1 = B′MµνB
′−1,

which implies there is a linear operator B−1B′ which commutes with all of the Lorentz gen-
erators. By Schur’s Lemma, anything that commutes with all elements of an irreducible
representation must be a multiple of the identity. In odd dimensions, where the Dirac
representation is irreducible, there can be nothing else. In even dimensions, the Dirac rep-
resentation splits into two Weyl representations, and B−1B′ is not necessarily the identity.
It is instead a linear combination of the identity with γ, the two operators which act like
multiples of the identity when restricted to the Weyl representations. Indeed, in the exercise
above, we had B1 and B2 in the even dimensional case, which differed by a factor of γ.
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d Majorana Weyl Majorana-Weyl min. rep.
2 yes self yes 1
3 yes - - 2
4 yes complex - 4
5 - - - 8
6 - self - 8
7 - - - 16
8 yes complex - 16
9 yes - - 16

10=2+8 yes self yes 16
11=3+8 yes - - 32
12=4+8 yes complex - 64

Figure 7: Properties of spinor representations in various dimension. A dash indicates the
condition cannot be imposed. “self” means the Weyl representation is self-conjugate under
complex conjugation while “complex” indicates complex conjugation gives the other Weyl
representation. The dimension of the smallest representation is given in the last column. The
conditions – Majorana, Weyl, Majorana-Weyl – that can be imposed on the representations
repeat as a function of the dimension modulo 8.

6.3 Spinor Inner Product

In addition to the annoying complexity that the reality condition for spinors should be
generalized to ψ∗ = Bψ, a second irritating feature about spinors is that ψ†ψ is not a
Lorentz scalar, as we now verify. Under an infinitesimal Lorentz transformation, we showed
earlier that

δψα =
1

4
ωµν(γµν)α

βψβ . (6.33)

It follows that the Hermitian conjugate spinor transforms as

δψ† =
1

4
ψ†ωµνγ†νγ

†
µ (6.34)

From the iterative construction (6.15) of the gamma matrices, it is clear that

γ†0 = −γ0 , γ†i = γi . (6.35)

Problem 6.5. Verify (6.35) for both odd and even dimensions.

In fact, under a unitary similarity transformation γµ → UγµU−1, this property is preserved,
and we expect it to hold in general. As a result, we can write the Hermitian conjugation
relation as

γ†µ = γ0γµγ0 , (6.36)

and the transformation rule (6.34) can be written

δψ† = −1

4
ψ†ωµνγ0γνγµγ0 =

1

4
ψ†ωµνγ0γµνγ0 . (6.37)
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(While we have suppressed the spinor index, the structure (γ0γµνγ0)α
β means it is most

natural to write the Hermitian conjugate spinor with an upper index, (ψ†)α.) The sign and
the additional factors of γ0 will not cancel, and ζ†ψ has a nontrivial transformation under
the Lorentz group. It is in other words not a scalar quantity. In the γ0 sickness lies the cure,
and we can define a modified conjugate spinor

ψ̄ ≡ ψ†γ0 . (6.38)

In this case, the infinitesimal Lorentz transformation becomes

δψ̄ = −1

4
ψ̄ωµνγµν (6.39)

and hence

δ(ζ̄ψ) = δζ̄ψ + ζ̄δψ

= −1

4
ζ̄ωµνγµνψ +

1

4
ζ̄ωµνγµνψ

= 0 . (6.40)

Thus ζ̄ψ is a Lorentz scalar.
From two spinors, we can construct other Lorentz covariant objects as well, such as

vectors and anti-symmetric tensors:

ζ̄γµψ , ζ̄γµνψ , . . . (6.41)

Problem 6.6. Show that vµ = ζ̄γµψ is a vector, i.e. show that δvµ = −ωµνvν under the
transformation (6.33).

We should next consider how this modified definition of spinor conjugation, ψ̄ = ψ†γ0,
interfaces with the Majorana condition ψ∗ = Bψ:

ψ̄ = ψ†γ0 = ψT∗γ0 = ψTBTγ0 (6.42)

The combination C ≡ BTγ0 is often referred to as the charge conjugation matrix, and for
Majorana spinors (in fact Dirac spinors as well), we can write the Lorentz covariant objects
as ζTCψ, ζTCγµψ, ζTCγµνψ, etc. Before, we had the relation γ†µ = γ0γµγ0. The equivalent
condition that guarantees compatibility with the Lorentz group for Majorana spinors is

−γTµ = CγµC
−1 . (6.43)

Restoring indices, we can think of Cαβ as a metric on spinor indices, such that ψ̄ζ =
ψTCζ = ψαC

αβζβ. The inverse metric is then C−1
αβ with lower indices, and we can raise

indices via ψα = ψβC
βα.

Before closing this section, we should discuss some elementary spinor manipulations that
will be useful later on in demonstrating supersymmetry. First, spinor fields are Grassman
valued, which means they anticommute:

ψαζβ = −ζβψα . (6.44)
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There is a sign ambiguity then in how to define complex conjugation. We make the choice

(ψαζβ)∗ = ζ∗βψ
∗
α , (6.45)

analogous to the way Hermitian conjugation acts on matrices.
We will often need to perform various manipulations with Majorana spinors, the simplest

of which is perhaps

(ζ̄ψ)∗ = (ζαC
αβψβ)∗ = ψβC

αβζα = −ζαCαβψβ = −ζ̄ψ (6.46)

where we have made use of the fact that we can work in a basis where ζ, ψ, and C are real,
yielding the curious result that ζ̄ψ is pure imaginary.8

Problem 6.7. The Majorana Flip Relations. Show that in d = 2, 3 and 4,

λTCγµ1γµ2 · · · γµpχ = (−1)pχTCγµp · · · γµ2γµ1λ . (6.47)

In these dimensions, which allow for Majorana spinors, if we impose that λ and χ are
Majorana, then we can replace λTC with λ̄ and similarly for χ. How are these rules modified
in d = 2 and 4 to incorporate a γ matrix?

6.4 Fierz re-arrangement

Consider the following list of gamma matrices and antisymmetric products of gamma ma-
trices:

γΓ ∈ {id, γ, γµ, γµγ, γµν , γµνγ, . . .} (6.48)

where Γ = µνλ · · · is a generalized index and γµνλ··· is an antisymmetric product over the
given indices with weight one, e.g.

γµν =
1

2
(γµγν − γνγµ) (6.49)

in the two index case. We would like to think about these matrices as vectors in a matrix
valued inner product space, with inner product 〈M1,M2〉 = tr(M †

1M2). Because of the
relation γ ∼ γ0γ1 · · · γd−1, these matrices are not all linearly independent. In fact they stop
being linearly independent once the number of indices is larger than d/2.

Problem 6.8. Convince yourself that the counting works out, that there are precisely enough
linearly independent matrices in the list (6.48) to span a vector space that has dimension

2b
d
2c × 2b

d
2c, i.e. the size of a gamma matrix.

8One way to change this property is to modify the definition of a barred spinor to include a factor of
i (see for example Freedman and van Proeyen). Another is to work in a mostly minus convention for the
metric (see for example Peskin and Schroeder).
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Provided we restrict the number of indices, the list of vectors is actually orthogonal with
respect to our inner product. A key observation required is that a single gamma matrix is
traceless:

2ηµν tr(γλ) = tr({γµ, γν}γλ)
= tr(γµγνγλ + γνγµγλ)

= tr(γµγνγλ + γµγλγν)

= tr(γµ{γν , γλ})
= 2ηνλ tr(γµ) . (6.50)

Choosing µ = ν 6= λ then implies tr(γλ) = 0.

Problem 6.9. Generalize this result to show that tr(γµ1···µn) = 0, provided 0 < n < d. From
this tracelessness, argue that the list of vectors γΓ ∈ {id, γµ, γµγ, γµν , γµνγ, . . .} is orthogonal,
provided we restrict the indices such that they are linearly independent.

A completeness relation for our basis set (6.48) is then

δβαδ
δ
γ =

∑
ΓΓ′

cΓΓ′(γΓ)γ
β(γΓ′)α

δ (6.51)

for some constants to be determined cΓΓ′ where Γ and Γ′ are generalized indices that range
over the list of independent elements in the list (6.48). To determine the cΓΓ′ , we multiply
both sides by (γΓ′′)β

γ, and sum over β and γ:

(γΓ′′)α
δ =

∑
ΓΓ′

cΓΓ′ tr(γΓγΓ′′)(γΓ′)α
δ , (6.52)

By orthogonality, tr(γΓγΓ′′) = 0 unless Γ = Γ′′ and the double sum reduces to a single sum

(γΓ′′)α
δ =

∑
Γ′

cΓ′′Γ′ tr(γ
2
Γ′′)(γΓ′)α

δ . (6.53)

For this equality to hold, we must have that cΓ′′Γ′ = 0 unless Γ′ = Γ′′. In the case of equality,
we have further that

cΓΓ =
1

tr(γ2
Γ)

= ±Γ
1

2b
d
2c

, (6.54)

where ±Γ arises because γ2
Γ = ±1 and the power of 2 occurs as a dimension of the represen-

tation of the Clifford algebra tr(id) = 2b
d
2c.

We have gone through this abstract argument because we will frequently be in a situation
in the future where we want to be able to shuffle spinor bilinears around, a manipulation of
the form (λ̄ψ)(ζ̄χ) → (λ̄χ)(ζ̄ψ). Consider a slightly more general situation where we have
only three spinors, two of which are contracted together. We will use our decomposition of
the identity δβαδ

δ
γ in terms of the generalized gamma matrix (6.48):

(λ̄ψ)χα = λ̄γψδχβδ
β
αδ

δ
γ (6.55)

= −
∑

Γ

cΓΓλ̄
γ(γΓ)γ

βχβ(γΓ)α
δψδ

= − 1

2b
d
2c
∑

Γ

±Γ(λ̄γΓχ)(γΓψ)α . (6.56)
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This swapping of ψ and χ in the contraction is called a Fierz re-arrangement identity.

Problem 6.10. Show that in three dimensions, the Fierz re-arrangement identity is

(λ̄ψ)χα = −1

2
(λ̄χ)ψα −

1

2
(λ̄γµχ)(γµψ)α . (6.57)

Furthermore, show that in the special case λ = χ and the spinors are Majorana, this identity
reduces to

(λ̄ψ)λα = −1

2
(λ̄λ)ψα . (6.58)

Problem 6.11. There is yet another type of spinor representation, symplectic Majorana
fermions. They can be useful for writing down actions with extended supersymmetry. These
spinors ψiα carry an extra index i = 1 or 2, and satisfy the following reality property:

ψ̄i = εijψTj C̃ . (6.59)

The tensor ε12 = −ε21 = 1 and is zero otherwise. Construct C̃ using the B1 and B2 matri-
ces from problem 6.4. In what dimensions are symplectic Majorana fermions allowed? In
what dimensions can fermions be simultaneously symplectic Majorana and Weyl. (Note the
language may be slightly confusing. Symplectic Majorana fermions are not also Majorana.)

6.5 Two Component Notation

In even dimensions, it is sometimes useful to work directly with the irreducible Weyl repre-
sentations rather than the reducible Dirac representation. This practice is especially common
in four dimensions and has its own formalism, sometimes called Weyl notation or two com-
ponent notation. In Weyl notation, where γ is diagonal, one breaks the four component
Dirac spinor into two, two-component pieces

ψ =

(
λa
χ̄ȧ

)
(6.60)

where a, ȧ = 1, 2 and uses the Clifford algebra in the basis (6.17). In this basis, λ has
chirality +1 and χ̄ is chirality −1.

In much of the previous discussion, we almost always suppressed the spinor indices.
However, in this two component language, writing down the indices often helps indicate
what kinds of contractions are possible. Thus it has a very distinct look and feel to it. We
will not use this notation in the rest of the module, but we present it here for completeness.

Let us reconsider some of our inner products in this two component notation. For the
usual inner product,

ψ̄ψ = ψ†γ0ψ = λ†χ̄− χ̄†λ = λ̄ȧχ̄
ȧ − χaλa (6.61)

where we define λ† = λ̄ȧ and χ̄† = χa. Note that C = −iγ0γ2γ = −i diag(σ2, σ2). For the
inner product associated with Majorana spinors

ψTCψ = λT (−iσ2)λ+ χ̄T (−iσ2)χ̄ = λaε
abλb + χ̄ȧεȧḃχ̄

ḃ , (6.62)
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which allows us to think about the completely antisymmetric tensor εab as a metric on these
two component spinors, allowing us to raise and lower indices. We are treating

εab = εab = εȧḃ = εȧḃ =

(
0 1
−1 0

)
. (6.63)

There is actually a small problem at this point, because contracting εab with two εbc with
lower indices will give −εab. Let us therefore use cab = εab and cȧḃ = εȧḃ, while cab = −εab
and cȧḃ = −εȧḃ. We then write the Majorana inner product in the form

ψTCψ = λac
abλb − χ̄ȧcȧḃχ̄

ḃ = λaλb − χ̄ȧχ̄ȧ . (6.64)

Let’s do one more, an inner product involving a gamma matrix:

ψ̄γµψ = ψ†γ0γµψ = λ̄ȧ(σ̄
µ)ȧbλb − χa(σµ)aḃχ̄ḃ . (6.65)

Finally, we write down the Majorana condition in two component notation. From the
condition

ψ∗ = Bψ (6.66)

where B = −iγ2γ, one finds that

λ∗ = iσ2χ̄ , χ̄∗ = −iσ2λ . (6.67)

Adding back the indices, we see that λ∗ȧ = cȧḃχ̄
ḃ and χ̄∗a = cabλb or equivalently λ∗ȧ = χ̄ȧ

and χ̄∗a = λa.
As this two-component formalism is not central to our approach, we will leave the subject

here after this brief and incomplete introduction.

7 Elementary Consequences of Supersymmetry

A generic supersymmetry algebra can be written as follows:

{Qα, Q̄
β} = 2(γµ)α

βPµ ,

[Qα, Pµ] = 0 , (7.1)

[Mµν , Qα] =
1

2
(γµν)α

βQβ ,

along with the Poincaré generators (2.8).9 The most important relation is the first line, that
the supercharges square to space-time translations. The second line means that the Qα’s
are invariant under translations, while the third implies that the Qα transform as space-time
spinors, as they should given their index. This basic algebra typically comes with a Majorana

9There is some arbitrariness in the normalization of the Q’s. We have chosen the two on the right hand
side of the first line in order to write some supersymmetry variations later on in a simpler way, with fewer
factors of two.
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condition that Q̄ = QTC, and so will only be allowed in the dimensions that admit Majorana
spinors.

Part of what makes supersymmetry so interesting is the variety of different algebras
that can occur along with the intricate rules that determine when they can and cannot
be constructed. Beyond the simple algebra above, one can construct so called N -extended
algebras with more super charges where QI

α carries an additional index I that runs from
one to N . There are also centrally extended algebras with additional “central elements” on
the right hand side of the first relation. In certain curved manifolds with a high degree of
symmetry, such as anti-de Sitter space, the underlying Poincaré symmetry can be replaced
with a different bosonic algebra and then extended to a super Lie algebra.

We can gain much insight from the supersymmetry algebra alone. We begin with some
elementary manipulations of the first line of (7.1), multiplying both sides by γ0:

{Qα, (Q
†)β} = −2(γµγ0)α

βP µ (7.2)

Tracing over the spinor indices then yields

tr(QQ† +Q†Q) = 2b
d
2c+1P 0 , (7.3)

where we have used the fact that tr(γµν) = 0 and that tr(id) = 2b
d
2c. The momentum

component is just the energy P 0 = E and so we see that

E =
1

2b
d
2c

tr(Q†Q) . (7.4)

(In a “really real” representation, we can replace Q†α with Qα.)
The quantity Q†Q is manifestly positive, and thus the energy in a SUSY theory is a

positive definite quantity. States |0〉 with E = 0, if they exist, are the lowest energy, or
vacuum states. Any such state must furthermore be annihilated by the supercharges

Qα|0〉 = 0 , (7.5)

and therefore preserve the supersymmetry (i.e. be invariant with respect to supersymmetry
transformations).

The trace relation gives a simple diagnostic for spontaneous symmetry breaking – where
the vacuum state breaks the symmetry although the action is invariant. If one finds that the
vacuum state |Ω〉 has positive energy, then the state breaks the supersymmetry Qα|Ω〉 6= 0.
Similarly if one finds that the vacuum state is not supersymmetric, Qα|Ω〉 6= 0, then it must
have positive energy.

Next, we look at the representations of the SUSY algebra. Since [Pµ, Qα] = 0, it is
also true that [P 2, Qα] = 0. As with the Poincaré group, we can use the eigenvalues of the
Casimir P 2, i.e. the mass squared, to label representations of the SUSY algebra. All the
members of a given irreducible representation will have the same value of m2.10 We pursue
the same strategy that is used in classifying representations of the Poincaré algebra and treat

10There are interesting exceptions to this rule when the space-time is curved and the underlying Poincaré
algebra is replaced with something else.
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the massive and massless cases separately. It will be simpler to perform the analysis in a
“really real” representation where C = γ0 and Q∗ = Q.

In the massive case, we can go to a rest frame where P µ = (m, 0, . . .). The anti-
commutation relation of the supercharges reduces to

{Qα, Qβ} = 2mδαβ. (7.6)

After a rescaling Q̃α = m−1/2Qα, we recover the familiar Clifford algebra

{Q̃α, Q̃β} = 2δαβ , (7.7)

but now in d = 2b
d
2c Euclidean dimensions. As such, it must have 2d/2 = 22b d2c−1

states. As
the number of these Qα matrices is even, we can construct a “gamma five” matrix as well,

(−1)F = i#Q̃1Q̃2 · · · Q̃d (7.8)

which anti-commutes with the other Q̃α. Previously, we interpreted the ±1 eigenvalues of
“gamma five” as chirality of the state, but here they determine whether the state is fermionic
or bosonic. Let |±〉 be an eigenstate of (−1)F . As Qα itself is fermionic, acting with it on a
state will swap the state’s fermionic/bosonic nature:

(−1)FQα|±〉 = −Qα(−1)F |±〉 = ∓Qα|±〉 . (7.9)

One more remarkable thing we can learn comes from the fact that (−1)F is traceless (see
problem 6.9). The trace is also the sum of the eigenvalues, and so there must be an equal
number of bosonic and fermionic states in the super multiplet (irreducible representation).
The pain we endured in learning about Clifford algebras and spinors is paying off!

For massless particles, the best we can do is pick a frame where P µ = (E,−E, 0, 0, . . .),
and the SUSY algebra becomes

{Qα, Qβ} = 2E(id +γ01)αβ . (7.10)

Problem 7.1. Show that the matrix 1
2
(id +γ01) acts like a projector,(

1

2
(id +γ01)

)2

=
1

2
(id +γ01) , (7.11)

half of whose eigenvalues are equal to zero and the other half are equal to one.

Using the projector, we can choose a new basis where half of the Qα commute with one
another and the other half do not:

{Qα′ , Qβ′} = 4Eδα′β′ , {Qα′′ , Qβ′′} = 0 (7.12)

where the primed and double primed indices run over only d
2

= 2b
d
2c−1 values. Rescaling the

nontrivial Q’s a bit differently this time, Q̃α′ = (2E)−1/2Qα′ , we find a Clifford algebra with
half as many Q’s as before. We can repeat the previous argument with this smaller algebra.
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The massless supermultiplet has fewer states, 2d/4 instead of 2d/2. Half of these states are
bosons and the other half fermions.

Finally we draw some conclusions from the commutator [Qα,Mµν ] = i
2
(γµν)α

βQβ or
equivalently the fact that Qα has spin. Acting with Qα thus must change the Lorentz group
representation of the state. Let us focus on the 4d case, where massive states are labeled
by their remaining SO(3) spin quantum number while massless states are characterized by
a helicity under the remaining SO(2). We can think of Qα as carrying spin (or helicity)
one half. Using our quantum mechanics intuition, acting with Qα should be like tensoring
the underlying representation of the particle by a spin one half representation and should
lead to new possible representations with angular momentum either larger or smaller by a
quantized unit of 1/2.

In a supermultiplet, there will be a state with maximum spin jmax (or helicity in the
massless case). The remaining states then have spins jmax − 1

2
, jmax − 1, etc. Acting with

the appropriate lowering Q operator on the jmax state should lead to a new state with spin
or helicity less by an amount one half, jmax − 1/2.

An annoying complication is that if jmax is large enough, the multiplets tend to have
more positive helicity states than negative and so are not CPT complete. The standard
procedure to remedy the problem and obtain a theory that is CPT invariant is to add by
hand a “mirror multiplet” with a corresponding lowest helicity state and use raising instead
of lowering operators.

We can consider a few examples. In four dimensions, the smallest representation of a
Clifford algebra is 4 dimensional. Focusing on massless states, we can then use two of the
four Qα’s to create a multiplet, leading to one raising and one lowering operator and two
states with helicities λ and λ+ 1

2
. One of the states is fermionic and the other bosonic. Such

a set of states is not CPT complete and needs to be supplemented with a mirror multiplet
with helicities −λ and −λ − 1

2
. One important example is the multiplet

(
−1

2
, 0, 0, 1

2

)
–

really
(
0, 1

2

)
and its mirror – corresponding to a field theory with a complex scalar and

a Majorana fermion. (Note the Dirac equation reduces the number of on-shell fermionic
degrees of freedom from the size of the representation, four, down to two.) Another option is
to have

(
−1,−1

2
, 1

2
, 1
)

corresponding to a gauge field and its superpartner, sometimes called
a photino or gluino. A gauge field in 4d has two on-shell degrees of freedom, corresponding
to two polarizations. The massive multiplets will be twice as large. One has

(
−1

2
, 0, 0, 1

2

)
,

which is the same as the massless
(
0, 1

2

)
multiplet along with its mirror. We will construct

actions later in the course with precisely these particle contents.
In general, going to higher dimension forces us to consider representations with larger

and larger spin. While the numbers of Q’s grow exponentially, the number of polarization
states for a particle with a given spin tends to grow as a power law, linearly for a gauge
field for example, or quadratically for a graviton. Ten dimensions turns out to be the largest
dimension with a multiplet with helicities less than or equal to one. In this dimension, the
smallest spinor representation is 16 dimensional Majorana-Weyl. For a massless multiplet, we
can use 8 of the corresponding supercharges to construct four pairs of raising and lowering
operators. Acting with at most four lowering operators will change the spin by at most
an amount 2, corresponding to the helicity difference between the two polarizations of a
photon. (In more detail, the 16 possible states divide up between the 8 polarization states
of a photon and the 8 physical degrees of freedom of a Majorana-Weyl fermion.) In other

50



words, supersymmetric gauge theories (without gravity) must have d ≤ 10.
Eleven dimensions is the largest dimension with a multiplet with helicities less than or

equal to two. Now the smallest representation is a 32 dimensional Majorana spinor. We get
eight pairs of raising and lowering operators, corresponding to a maximum helicity difference
of 4, i.e. the difference in helicity between two polarizations of a graviton. In other words,
supergravity theories (without higher spin fields) must have d ≤ 11.11

7.1 Witten Index

We argued for something above that is not always true. Specifically, we claimed that
tr(−1)F = 0, since it was just like the “gamma five” matrix we considered in our con-
struction of the Clifford algebra. While it is true that the trace vanishes when acting on
a supermultiplet with nonzero energy, for the vacuum there is no such constraint. Witten
took advantage of this fact to write down his index

W = trH(−1)F (7.13)

where the trace is over the whole Hilbert space, not just the positive energy states. Because
tr(−1)F is nearly always zero, this index measures the difference between the number of
fermionic and bosonic vacuum states

W = {# of bosonic vacua} − {# of fermionic vacua} . (7.14)

By definition, it is an integer. It cannot be continously varied and cannot receive correc-
tions as coupling constants are varied. It provides perhaps the simplest example of a non-
renormalization theorem in supersymmetry. In a generic quantum field theory, one could
well imagine that varying parameters leads to a vacuum state becoming a nonzero energy
state or vice versa. In a supersymmetric theory, however, the nonzero energy states are all
paired – one fermion and one boson. Thus the vacuum states have to disappear or appear
in pairs, such that the Witten index remains invariant. A nonzero Witten index must also
mean that supersymmetry cannot be spontaneously broken. There must always be a few
vacuum states left that cannot pair off and disappear.

7.2 The Goldstino

I wanted to elaborate a little bit more about spontaneous breaking of supersymmetry and
how it compares to the usual case of the breaking of a spontaneous global symmetry. In the
usual case of a continuous global symmetry, there is a charge Q that generates that symmetry
and also a conserved current Jµ(x) that follows from Noether’s Theorem. Conservation here

11The multiplet has 44 graviton states, 128 gravitino states, and 84 states associated with an antisymmetric
three-form, for a grand total 28 = 256 states. The number of degrees of freedom of a graviton map to the
number of metric degrees of freedom. The metric starts out as a d×d symmetric matrix, but we can remove
one row and column using diffeomorphism invariance (or the freedom to change variables). The remaining

trace also drops out of the equations of motion, leading to d(d−1)
2 − 1 = d(d−3)

2 degrees of freedom. The
gravitino ψαµ has a spinor and a vector index, but is “gamma traceless”, γµψαµ = 0, leading to 16×9−16 = 128
on-shell degrees of freedom. An anti-symmetric three index tensor has 9× 8× 7/3! = 84 on-shell degrees of
freedom.
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means that the divergence ∂µJ
µ(x) = 0 vanishes. The conserved charge is then the integral

of the charge density over a spatial slice of the theory in question:

Q =

∫
dd−1x J0(x) . (7.15)

Conservation of the current implies that Q is time independent:

dQ

dt
=

∫
dd−1x ∂0J

0(x) = −
∫

dd−1x ∂iJ
i(x) = 0 (7.16)

assuming that Ji(x) falls off suitably fast at spatial infinity.
In the case of spontaneous symmetry breaking, even though the action and the path

integral more generally respect the symmetry, the ground state does not. (The canonical
example here is a complex scalar field φ in the presence of a Mexican hat potential V (φ) =
|φ|4 − |φ|2, where the vacuum does not respect the U(1) symmetry.) If we think of Q as a
generator of the symmetry and |Ω〉 as a ground state, then equivalently,

Q|Ω〉 6= 0 . (7.17)

There is a local manifestation of this symmetry breaking. Instead of shifting the vacuum
everywhere, we can shift it locally, using J0(x). This ability to shift the vacuum locally
is reflected in the guaranteed existence of a massless particle, the Goldstone boson, which
roughly, one can think of as being created from the vacuum by the action of Jµ(x). Equiv-
alently, the inner produce 〈Ω|J0(x)|θ〉 fails to vanish, where |θ〉 is a state that contains a
Goldstone boson.

There is an equivalent statement in the supersymmetric context. Now we have a super-
charge Qα which has a spinor index and generates the supersymmetry transformations. It
can be written as a spatial integral over the time-like component of a supercurrent Sµα, which
has both a spinor and a vector index:

Qα =

∫
dd−1xS0

α . (7.18)

Spontaneous breaking of supersymmetry means that Qα|Ω〉 6= 0. There is again a massless
particle which represents this freedom to shift the vacuum locally. Now however, it must be
fermionic. People call it the Goldstino, and roughly speaking it is created from the vacuum
by the action of the supercurrent. More precisely, the inner product

〈Ω|Sµα|ψ〉 (7.19)

fails to vanish, where |ψ〉 is a state which contains a Goldstino.

Problem 7.2. It is possible to have extended supersymmetry where the QI
α carry an extra

index I = 1, 2, . . .N . Assuming Majorana fermions and forgetting about central charges, the
first (and most important) line of the supersymmetry algebra is modified to

{QI
α, Q

J
β} = −2δIJ(γµC−1)αβPµ . (7.20)

Let us restrict to the four dimensional case where we can choose the QI
α to be N copies of a

four dimensional Majorana-Weyl spinor representation.
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a) What is the typical size of a massive particle multiplet? of a massless one?

b) For a massless multiplet, what is the difference in helicity between the highest weight
and lowest weight states? What is the largest N for which one can restrict to particles
with spin less than or equal to one (i.e. gauge theories)? to particles with spin less
than or equal to two (i.e. gravitational theories)?

c) For N = 2, N = 4 and N = 8 theories, try to describe the particle content of some
massless multiplets with small spin, i.e. less than or equal to two.

Problem 7.3. SUSY Quantum Mechanics. Suppose we have a quantum mechanical
Hamiltonian that can be written in the form H = 1

2
{Q†, Q} where

Q = (P − iW ′(x))

(
0 0
1 0

)
and P = −i∂x is the usual momentum operator while W (x) is a real function of the position
x.

a) Show that H has non-negative eigenvalues. Show also that zero energy states H|ψ〉 = 0
must be annihilated by both Q and Q†, Q|ψ〉 = 0 = Q†|ψ〉.

b) Given a zero energy ground state H|ψ〉 = 0, deduce and solve any first order differential
equations that ψ(x) = 〈x|ψ〉 must satisfy. What relationships, if any, can you deduce
between the asymptotic behavior of W (x) and the normalizability of ψ(x)?

c) Express H in terms in P and W .

d) Let ψ(x) =

(
0
1

)
f(x) be an eigenfunction of H with eigenvalue E 6= 0. Show that

Q†ψ(x) is also an eigenfunction. Compute its eigenvalue.

e) Consider the case W (x) = log(cosh(x)). What form does H take? What are the ground
state(s)?

8 Simple 4d SUSY Models: Wess-Zumino and Maxwell

The simplest four dimensional supersymmetric theory is often called the Wess-Zumino model.
It has a Majorana Fermion ψ(x) along with some scalar fields. Off-shell, ψ(x) has four real
components which are reduced to two real components on-shell by the Dirac equation. As
we saw before, for supersymmetry, there must then be a pair of real scalar fields A(x) and
B(x) as well.

Why does the Dirac equation reduce the number of degrees of freedom from 4 to 2?
From a classical point of view, we associate a degree of freedom to the ability to choose the
position and momentum of a particle. If the particle is described by a second order differential
equation, those two quantities – position and momentum (or equivalently velocity) – are the
integration constants of the differential equation. The Dirac equation, on the other hand, is

53



not a single second order but a quadruplet (in 4d) of first order equations. In general, we
can replace a single second order differential equation with a pair of first order equations,
e.g. in place of

φ′′(x) = p(x)φ′(x) + q(x)φ(x) , (8.1)

we could introduce π(x) = φ′(x) and write instead

π′ = pπ + qφ , (8.2)

φ′ = π . (8.3)

Going backward, we expect the four first order components that make up the Dirac equation
should correspond to a pair of second order differential equations and thus to two degrees
of freedom. Identifying which components of the spinor ψ(x) correspond to “position” and
which to “momentum” is unfortunately a bit ambiguous. The canonical commutation rela-
tion involves ψ(x) with itself and yields no insight. Somehow, the components of ψ(x) should
be thought of as position and momentum at the same time, in some linear combination.

Following our nose, we test the following free theory for supersymmetry

L0 = −1

2
(∂µA)(∂µA)− 1

2
(∂µB)(∂µB)− i

2
ψ̄γµ∂µψ . (8.4)

The bosonic part leads straightforwardly the the expected equations of motion �A = 0 =
�B. Note we can replace the pair of real scalars with a complex scalar φ = A+ iB and its
conjugate φ∗ = A− iB, in which case the Lagrangian becomes

L0 = −1

2
(∂µφ

∗)(∂µφ)− i

2
ψ̄γµ∂µψ . (8.5)

The fermionic action may seem more mysterious. The factor of i should be thought of
as combining with the ∂µ to give the Hermitian generator of translations Pµ. The resulting
expression is indeed real, as we can verify explicitly. We work in a “really real” representation
where the γµ have real coefficients and C = γ0:(

iψ̄γµ∂µψ
)∗

= −i
(
ψ̄γµ∂µψ

)∗
= −i

(
ψTCγµ∂µψ

)∗
. (8.6)

We use the result that (ψαχβ)∗ = χ∗βψ
∗
α = −ψ∗αχ∗β, and further that ψ∗ = ψ in this “really

real” basis for the gamma matrices. As the matrix Cγµ is real, taking the complex conjugate
of the expression in parentheses yields a minus sign showing that indeed(

iψ̄γµ∂µψ
)∗

= iψ̄γµ∂µψ . (8.7)

Let us also verify that we get the correct equation of motion for the fermion. Varying
the action with respect to ψ, we obtain

δL0 = − i
2
δψTCγµ∂µψ −

i

2
ψTCγµ∂µδψ

= − i
2
δψTCγµ∂µψ +

i

2
(∂µψ

T )Cγµδψ − i

2
∂µ(ψTCγµδψ) . (8.8)
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Note that it’s important here that the fermion is real. With a complex fermion, we should
vary ψ and ψ̄ independently, similar to what we would do with a complex scalar. We now
use one of the Majorana flip relations to replace (∂µψ)TCγµδψ with −δψTCγµ(∂µψ). We
also throw out the total derivative term, assuming that we can implement the appropriate
boundary conditions. The result is the Dirac equation:

δL0 = −iδψTCγµ∂µψ (8.9)

To investigate supersymmetry, we will vary the action by an infinitesimal Grassman
valued object ε which transforms as a Majorana spinor. This object ε we can think of in
rough analogy to the parameter aµ that we used in considering infinitesimal translations.
While Pµ has engineering dimension one, the infinitesimal length aµ must have engineering
dimension -1. Similarly, Q as the square root of P will have engineering dimension 1/2 while
ε has engineering dimension −1/2. To translate between δ and Q, we have

[δ1, δ2] = [ε̄1Q, ε̄2Q]

= ε̄α1 ε̄
β
2{Qα, Qβ} . (8.10)

Note that δ = ε̄Q = Q̄ε is bosonic and so it is natural to take a commutator.
The supersymmetric variation should rotate a scalar into a fermionic operator and a

fermion into a scalar operator. By dimension counting, we should be able to relate the
variation of a scalar, e.g. [Q, φ], directly to ψ. The free scalar has engineering dimension
one, while the fermion has engineering dimension 3/2. A natural guess is

δφ = ε̄(a+ bγ)ψ,

δφ∗ = ε̄(−a∗ + b∗γ)ψ , (8.11)

where a and b are constants. The −a∗ in the second line comes from the fact that ε̄ψ is
purely imaginary in our conventions while we find +b∗ because ε̄γψ is real. If we vary φ twice,
we would like to produce a total derivative acting on φ, i.e. an infinitesimal translation. A
natural guess then for the variation of ψ is

δψ =
1

2

(
(1 + cγ)/∂φ+ (1− c∗γ)/∂φ∗

)
ε . (8.12)

We have used the freedom to rescale ε to fix the coefficient of /∂φ to be (1 + cγ) for c an
undetermined constant. The coefficient of /∂φ∗ is then fixed by the Majorana property.

Let us begin by seeing if the constants a, b, and c can be adjusted to make this infinitesimal
transformation a symmetry of the action. (We must check that the variation of the action
vanishes off-shell. Of course it will vanish on-shell, because that is how the equations of
motion are derived in the first place.) The variation takes the form

δL0 = −1

2
(∂µδφ

∗)(∂µφ)− 1

2
(∂µφ

∗)(∂µδφ)− iδψTCγµ∂µψ , (8.13)

where we have used (8.9). We need look only at the terms proportional to φ. The result for
the terms proportional to φ∗ will follow by complex conjugation:

δL0|φ = −1

2
(−a∗ε̄∂µψ + b∗ε̄γ∂µψ) ∂µφ− i

2

[
(/∂φ+ cγ /∂φ)ε

]T
Cγµ∂µψ . (8.14)
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Now using that −γTµC = Cγµ (6.43) while γTC = Cγ, we see that

δL0|φ =
1

2
[a∗ε̄∂µψ − b∗ε̄γ∂µψ + iε̄γµγν∂νψ + icε̄γµγγν∂νψ] (∂µφ) (8.15)

Next, we write γµγν = 1
2
{γµ, γν} + 1

2
[γµ, γν ] = ηµν + γµν and remark that γµν∂µφ∂νψ =

∂µ(γµνφ∂νψ) is a total derivative, allowing us to group terms:

δL0|φ =
1

2
[(a∗ + i) ε̄∂µψ + (−b∗ − ic) ε̄γ∂µψ] (∂µφ) . (8.16)

For the variation to vanish, we thus require a = i and b = ic∗.
Returning now to the issue of whether or not we are dealing with supersymmetry, we can

see if we get something sensible for [δ1, δ2]φ:

δ1δ2φ = δ1ε̄2(a+ bγ)ψ

=
1

2
ε̄2(a+ bγ)

[
(1 + cγ)/∂φ+ (1− c∗γ)/∂φ∗

]
ε1

=
1

2
(a+ bc)ε̄2/∂φε1 +

1

2
(ac+ b)ε̄2γ /∂φε1

+
1

2
(a− bc∗)ε̄2/∂φ∗ε1 +

1

2
(−ac∗ + b)ε̄2γ /∂φ

∗ε1 . (8.17)

To simplify the commutator, we need the Majorana flip relations that ε̄2γ
µε1 = −ε̄1γµε2

along with ε̄2γγ
µε1 = ε̄1γγ

µε2:

[δ1, δ2]φ = (a+ bc)ε̄2/∂φε1 + (a− bc∗)ε̄2/∂φ∗ε1 . (8.18)

We argued before that ε̄2γ
µε1 has the correct transformation properties to be a Lorentz

vector. Thus, if the second term can be made to vanish, we have found that [δ1, δ2] produces
an infinitesimal translation when acting on φ, as it should if we are discussing supersymmetry.
In addition to a = i and b = ic∗ that we found in demanding δL0 vanish, we now also find
a = bc∗, allowing us to set c∗ = ±1 and b = ±i. We will make the positive sign choice,
leading to

[δ1, δ2]φ = 2iε̄2/∂φε1 . (8.19)

The supersymmetry transformation can be cast in a more compact form using the pro-
jectors Π± ≡ 1

2
(1 + γ):

δφ = 2iε̄Π+ψ , δφ∗ = 2iε̄Π−ψ , (8.20)

δψ = Π+/∂φε+ Π−/∂φ
∗ε . (8.21)

These operators Π± project the fermions onto positive or negative chirality states, i.e. into
the space of Weyl fermions. It perhaps makes sense that some kind of projector appears, as
the fermion has more degrees of freedom than a single scalar.

Finally, we need to check that [δ1, δ2]ψ is indeed an infinitesimal translation. We find
that

δ1δ2ψ = 2i(∂µε̄1Π+ψ)γµΠ−ε2 + 2i(∂µε̄1Π−ψ)γµΠ+ε2

= i(ε̄1∂µψ)γµε2 − i(ε̄1γ∂µψ)γµγε2 (8.22)
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This doesn’t yet look much like ε̄1γ
µε2 multiplying ∂µψ, in analogy to what we obtained for

the scalar, but we can use our Fierz rearrangement identities. In 4d, we have the following
independent gamma matrices:

id , γµ , γ , γµγ , γµν . (8.23)

Note that there are 1 + 4 + 1 + 4 + 6 = 16 of these matrices, which is indeed equal to 4× 4,
the size of gamma matrices for these Majorana fermions in 4d. The relevant Fierz identity
is then

(λ̄ρ)χ = −1

4
(λ̄χ)ρ− 1

4
(λ̄γµχ)(γµρ)− 1

4
(λ̄γχ)(γρ)

+
1

4
(λ̄γµγχ)(γµγρ) +

1

8
(λ̄γµνχ)(γµνρ) . (8.24)

The extra factor of 1/2 in the last term compensates for the overcounting from γµν = −γνµ.
We are interested in the special case (ε̄1ρ)ε2− (ε̄2ρ)ε1 where ρ is either ∂µψ or γ∂µψ. Because
of the Majorana flip relations (6.47) supplemented by a couple of extra relations that also
involve γ, it turns out only the terms that involve γµ and γµν survive:

(ε̄1ρ)ε2 − (ε̄2ρ)ε1 = −1

2
(ε̄1γµε2)(γµρ) +

1

4
(ε̄1γµνε2)(γµνρ) . (8.25)

Problem 8.1. Show that ψTCγλ = λTCγψ and ψTCγγµλ = λTCγγµψ.

We find then the following

[δ1, δ2]ψ = − i
2

(ε̄1γµε2)γλγµ∂λψ +
i

8
(ε̄1γµνε2)γλγµν∂λψ

+
i

2
(ε̄1γµε2)γλγγµγ∂λψ −

i

8
(ε̄1γµνε2)γλγγµνγ∂λψ

= −i(ε̄1γµε2)γλγµ∂λψ

= −2i(ε̄1γµε2)∂µψ + i(ε̄1γµε2)γµγλ∂λψ . (8.26)

In proceeding from the first to the second line, we have used that γ anticommutes with γµ

but commutes with γµν and also that γ2 = 1. In going from the second to the third equality,
we used the anticommutation relations for γλ and γµ.

We haven’t completely succeeded here. There is still the second term in the last line of
(8.26), but notice that this second term is proportional to the equation of motion for the
fermion, γµ∂µψ = 0. What is going on here is that the supersymmetry algebra has failed to
close off-shell. In order to get the required translation, we need to impose the equation of
motion. We say that the supersymmetry algebra here closes on-shell. More formally, we can
write

ε̄α1 ε2β{Qα, Q̄
β} = 2ε̄1γµε2P

µ

= 2ε̄α1 ε2β(γµ)α
βP µ . (8.27)

as expected from the first line of our original statement of the supersymmetry algebra (7.1)
back in section 4.
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In this particular case, there is an improved formalism where we can get the supersym-
metry algebra to close off-shell as well, but it requires adding auxiliary fields, i.e. fields that
do not carry dynamical degrees of freedom. In this case, we would need to add a complex
scalar field traditionally called F . Then the degrees of freedom would balance off-shell – four
bosonic and four fermionic.

Problem 8.2. Consider the following improved Lagrangian

L = −1

2
(∂µφ

∗)(∂µφ)− i

2
ψ̄γµ∂µψ +

1

2
F ∗F , (8.28)

along with the improved SUSY transformation rules

δφ = 2iε̄Π+ψ ,

δψ = γµ(∂µφ)Π−ε+ γµ(∂µφ
∗)Π+ε+ FΠ+ε+ F ∗Π−ε , (8.29)

δF = 2iε̄Π−γ
µ∂µψ . (8.30)

a) Why doesn’t F show up in δφ? Why doesn’t φ show up in δF?

b) Verify that the Lagrangian is invariant under these SUSY transformations.

c) Verify that the SUSY algebra closes off-shell, i.e. without imposing the equations of
motion. This problem is rather lengthy, requiring examining [δ1, δ2] acting on φ, ψ,
and F .

Finding the appropriate auxiliary fields to close the SUSY algebra off-shell is in fact in
general a difficult problem. In the case of N = 1 and 2 supersymmetry, answers are usually
known. For many cases with N = 4 and 8 SUSY, the problem remains unsolved.

8.1 Interactions

We can add interactions to this model, but only in a rather limited fashion because of the
constraints from supersymmetry. In the interest of simplicity, we will work with on-shell
SUSY and no additional auxiliary fields. Consider the following interaction Lagrangian

Lint = −V (φ, φ∗) + U(φ, φ∗)iψ̄Π+ψ + U(φ, φ∗)∗iψ̄Π−ψ . (8.31)

Note the second and third terms are complex conjugates of each other. Provided then
that V is real, the interaction is a real quantity as well. (One reason to ignore a (ψ̄ψ)2

type interaction is that it is irrelevant in the language of the renormalization group.) This
modified Lagrangian is not invariant under the original SUSY transformations, but it is
under a minor modification of them,

δφ = 2iε̄Π+ψ , δφ∗ = 2iε̄Π−ψ ,

δψ = γµ(∂µφ)Π−ε+ γµ(∂µφ
∗)Π+ε+W (φ, φ∗)Π−ε+W (φ, φ∗)∗Π+ε . (8.32)

To verify SUSY of the new interacting Lagrangian, we start with the extra pieces that now
do not cancel out in δL0 because of the modification of the supersymmetry transformations.
From the derivation of the equation of motion for ψ, we can write the left-over piece as

δL0|leftover = −iψ̄γµ∂µ (W ∗Π+ε+WΠ−ε) (8.33)

= −iψ̄
[
(∂W ∗)(/∂φ)Π+ε+ (∂̄W ∗)(/∂φ∗)Π+ε+ (∂W )(/∂φ)Π−ε+ (∂̄W )(/∂φ∗)Π−ε

]
.

58



Next we consider the SUSY variation of the interactions, which we break up into terms that
are linear and cubic in ψ: δLint = δ1Lint + δ3Lint. The linear terms are as follows

δ1Lint = −(∂V )(2iε̄Π+ψ)− (∂̄V )(2iε̄Π−ψ) (8.34)

+iU(γµ(∂µφ)Π−ε+ γµ(∂µφ
∗)Π+ε+W ∗Π+ε+WΠ−ε)

TCΠ+ψ + c.c.

+iUψTCΠ+(γµ(∂µφ)Π−ε+ γµ(∂µφ
∗)Π+ε+W ∗Π+ε+WΠ−ε) + c.c.

We use that Π+γµ = γµΠ−, γTµC = −Cγµ and γTC = Cγ, along with projection conditions
that Π±Π∓ = 0 and Π2

± = Π±:

δ1Lint = −(∂V )(2iε̄Π+ψ)− (∂̄V )(2iε̄Π−ψ) (8.35)

−iUε̄(/∂φ)Π+ψ + iUW ∗ε̄Π+ψ + c.c.

+iUψ̄(/∂φ)Π−ε+ iUW ∗ψ̄Π+ε+ c.c. (8.36)

Using the Majorana flip identities, this expression simplifies somewhat further

δ1Lint = −(∂V )(2iψ̄Π+ε)− (∂̄V )(2iψ̄Π−ε) (8.37)

+2iUψ̄(/∂φ)Π−ε+ 2iUW ∗ψ̄Π+ε+ c.c.

The combination δL0 + δ1Lint has to vanish independently of δ3Lint because of the differ-
ing numbers of fermions in the expressions. Pairing up terms, we find that the following
expressions (and their complex conjugates) must vanish

∂W − 2U = 0 ,

∂̄W = 0 , (8.38)

∂V − UW ∗ = 0

The second equation implies the remarkable fact that W must be a holomorphic function
of the fields, i.e. depend only on φ and not its complex conjugate φ∗. The first and third
equations (along with their complex conjugates) can be assembled and used to solve for V
as a function of W :

V =
1

2
WW ∗ . (8.39)

(There are some integration constants which we have set to zero here.)

Problem 8.3. Verify that δL3 = 0 as well, and so the action is supersymmetric. You will
need some Fierz identities.

Problem 8.4. Verify that the SUSY variations (8.32) close on-shell.

The holomorphic function W(φ) defined such that

∂W
∂φ

= W (8.40)

is usually given the name superpotential. The choice ofW determines all of the interactions
in the Wess-Zumino model! Note this discussion can easily be promoted to a collection of
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scalar fields, φi, i = 1, 2, . . . N , leading to a superpotential that is a holomorphic function of
all of them W(φi).

Consider for a moment a superpotential of the form

W =
1

2
mφ2 +

1

3
λφ3 . (8.41)

We see that the quadratic term proportional to φ2 will produce mass terms m2 for the scalar
φ and m for its superpartner ψ in the original Lagranigan. The cubic term will on the other
hand lead to genuine interactions, a Yukawa and its complex conjugate of the schematic
form φψ̄ψ as well as a quartic |φ|4 potential for the scalar.

The holomorphic nature of W along with some global symmetries can greatly constrain
the way in which W can be renormalized as a function of energy scale and also the way in
which SUSY can be spontaneously broken. First consider a U(1) symmetry under which φ
and Π+ψ have the same charge q, φ→ eiαqφ and Π+ψ → eiαqΠ+ψ. Hence, φ∗ and Π−ψ will
have the opposite charge, φ∗ → e−iαqφ∗ and Π−ψ → e−iαqΠ−ψ. The correlation between
φ and Π+ψ appears for consistency with the SUSY transformation rules (8.32). A more
concise way of writing the transformation rule for the fermion is to use the gamma five
matrix, ψ → eiqαγψ.12 By construction, the potential V as well as the Yukawas Uψ̄Π+ψ and
U∗ψ̄Π−ψ will be inert under such a symmetry transformation providedW is inert under this
U(1) as well.

There is the possibility of a more subtle global symmetry as well, under which the su-
percharge Q transforms. This symmetry is usually called R-charge, and the conventional
normalization is that Π+Q should have charge -1, Q→ e−iαγQ. Hence, the R-charge of Π+ψ
must be one less than the R-charge of φ for consistency with the SUSY transformation rules.
If the superpotential itself W has R-charge 2, then the Lagrangian will again be invariant
with respect to this global symmetry.

Coming back to the simple model (8.41), the first step in the renormalization argument
is to assume that m and λ are not numbers but scalar fields in part of some larger supersym-
metric field theory. Their only role for us, however, will be to take on expectation values 〈m〉
and 〈λ〉 that lead to masses and interactions of the dynamical field φ and its super partner
ψ. Given their new interpretation as fields, we can restore a U(1)×U(1)R symmetry to the
theory. The relevant charge assignments for the individual fields such that the superpotential
has charge zero and two respectively are

U(1) U(1)R
φ 1 1
m −2 0
λ −3 −1

(8.42)

When λ is very small, the theory is nearly free, and we have good perturbative control
over the behavior. However, as λ gets larger, so do the interactions, and much more compli-
cated behavior can ensue in a generic quantum field theory. Through loop corrections one

12One might worry that such a transformation destroys the reality property of the Majorana spinor.
Consider however a “really real” representation where ψ∗ = ψ. In such a basis, γ is pure imaginary and
hence eiqαγ is purely real.
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can generate additional interactions, for example φ4. Non-polynomial and non-perturbative
expressions like e−φ

2/λ could appear as well. Here, however, supersymmetry and the U(1)
symmetries make the rules much stricter. To respect the symmetries, the potential must be
a holomorphic function with the scaling form

W = mφ2f

(
λφ

m

)
. (8.43)

Without holomorphicity, we could satisfy the charge constraints much more easily by includ-
ing the complex conjugate fields φ∗, m∗, and λ∗. In the limit where λ is very small, we can
expand this function out as a power series involving only non-negative powers of λ. After
all, the theory should be well-behaved with respect to λ in this nearly free limit:

W =
∞∑
n=0

gnm
1−nλnφn+2 . (8.44)

However, we also ought to be able to take a massless limit and expect the theory to be
well-behaved. Thus we can rule out all terms with n > 1. The generic form of the super
potential is then

W = g0mφ
2 + g1λφ

3 . (8.45)

We can determine the constants g0 and g1 by matching to (8.41) in the weakly interacting
limit λ → 0. However, the constants g0 and g1 must be independent of λ, m and φ and
so we have fixed W for all λ, and the super potential is not renormalized. There are some
subtleties here which have to do with choice of renormalization group scheme and other
subtleties associated with massless limits and Wilsonian RG, but we shall gloss over them.

This argument is easily generalizable to more complicated superpotentials. Each time we
add a new coupling and new interaction term, e.g. λ′φ4, we also get a new U(1) symmetry
to add to the mix, which constrains the renormalization of the new coupling. This argument
can be further generalized to include gauge fields, which I hope we will have time to see
later.

Problem 8.5. Can you modify the argument above for a superpotential of the form W =
1
2
mφ2 + λφr for r some positive integer, r ≥ 3?

The form of the superpotential has consequences for spontaneous SUSY breaking as
well. As we discussed earlier, to preserve SUSY, there must be a zero energy ground state
available to the system. In the current language, the potential V must vanish or equivalently
there must be a solution to the N unknowns 〈φi〉 from the N constraints ∂φiW = 0. For a
generic holomorphicW , for example a polynomial in φi, we expect to be able to satisfy these
constraints without difficulty. Thus even if there are other local minima in V with V > 0
(where SUSY is broken) they will at best be metastable. The fields φi can tunnel out to the
true vacuum eventually. If this process is long compared to the age of the universe, it might
still be relevant for model building. Some phenomenologists have looked into this idea of
meta-stable SUSY breaking because actually breaking SUSY spontaneously can be difficult.
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In what generic situation then can we expect SUSY to be spontaneously broken? To be
concrete, consider the following superpotential

W(Xa, φi) =
N∑
a=1

Xafa(φi) (8.46)

whee Xa and φi are complex scalar fields and i = 1, . . . ,M . Given our discussion of symme-
tries above, it is natural to associate the N Xa fields with an R-charge two and the φi with
R-charge zero. The conditions for unbroken supersymmetry in the ground state are that

fa(φi) = 0 and
∑
a

Xa∂φifa = 0 (8.47)

If M > N , then we can satisfy the N equations fa(φi) = 0 generically. The remaining M
equations can be satisfied by choosing Xa = 0. However if N > M , then there will not
generically be solutions to all fa(φi) = 0, and supersymmetry is broken in the vacuum.

The scalar potential takes the form

V =
∑
a

|fa|2 +
∑
i,a

|Xa∂ifa|2 . (8.48)

If we choose the φi to minimize the first term, then the second term can be minimized by
putting M linear constraints on the N Xa, giving a whole N − M dimensional space of
vacua, all with the same positive energy. As these vacua all break supersymmetry, we do
not generically expect the situation to be stable with respect to quantum corrections. The
potential V will be altered by these corrections, and likely only a single vacuum state will
remain when the dust settles.

This model relates the concepts of spontaneous SUSY breaking and the spontaneous
symmetry breaking of R-symmetry. Since at a generic point on the vacuum manifold 〈Xa〉 is
not equal to zero, the R-symmetry is spontaneously broken. Indeed, the mantra is that for
supersymmetry to be spontaneously broken, the R-symmetry must be spontaneously broken
as well. This situation is bad news for phenomenology since we know SUSY is broken, but we
have no evidence of a Goldstone boson from the spontaneously broken R-symmetry. There
is a way out, however. What happens in many generic theories is that the superpotential
is not generic. Quantum effects can give rise to precisely the right type of non-generic
superpotential that break SUSY spontaneously without needing an R-symmetry.

8.2 Maxwell Field

Gauge symmetry is an important part of real world physics, in particular the Standard
Model, and it is a critical part of these lectures to incorporate supersymmetry into gauge
theories. Given the space we spent developing conformal field theory in these lectures, we
have time now to deal with only the simplest gauge theory – a Maxwell field with a U(1)
symmetry group. The lessons we learn in this simpler case are useful in dealing with more
complicated non-abelian gauge theories although we will not have time for them in this class.

Before embarking, let us first do some simple counting on our fingers. A gauge theory is
characterized by a massless vector field Aaµ that transforms in the adjoint representation of
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the gauge group. Naively, Aµ should have the same number of space-time degrees of freedom
as the number of dimensions, µ = 0, 1, . . . , d−1. However, this counting does not agree with
our experience in four dimensions where the photon has just two polarizations. In Lorentz
gauge ∂µA

µ = 0, the equation of motion for the photon is that of d massless scalar fields
∂2Aµ = 0. However ∂µA

µ = 0 does not completely fix the gauge and we are free to perform a
shift Aµ → Aµ+∂µΛ provided ∂2Λ = 0. This freedom allows us to remove one component of
Aµ, say A1. The gauge constraint ∂µAµ = 0 then removes an additional degree of freedom.
If we choose a reference frame where the photon is traveling in the 1 direction, then its
momentum vector will be pµ = (E,E, 0, 0, . . .). In momentum space, the gauge constraint
pµAµ = 0 along with the freedom to shift Aµ → Aµ+pµ, means the components A2, A3, . . . ,
Ad−1 are enough to specify the physical degrees of freedom.

For the simplest supersymmetry, we should then add the same number of fermionic
degrees of freedom in the form of spin 1/2 fermions. [[ Spin 3/2 particles are called gravitinos.
A discussion of them would quickly lead us into supergravity which I want to avoid. ]] So
we should look at our table of fermions in various dimensions contained in figure 7 and see
when the counting matches. Recall that the Dirac equation removes half of the degrees
of freedom, and so we need to see when the numbers in the last column, divided by two,
are equal to d − 2. The match happens precisely for d = 3, 4, 6 and 10. We can have
supersymmetric gauge theories in other dimensions as well, but they will require adding
fields in other representations of the Lorentz group, for example scalars.

We will focus on the four dimensional case in what follows. Our action here is constructed
from a U(1) gauge field Aµ and its corresponding field strength Fµν = ∂µAν − ∂νAµ and a
Majorana fermion λ where λ̄ = λTC:

SSM = −
∫

d4x

(
1

4
FµνF

µν +
i

2
λ̄γµ∂µλ

)
, (8.49)

The theory is free, and perhaps not very interesting on its own. We could add charged
matter fields to get a supersymmetric version of QED. Our interest here though is in the
fact that it is supersymmetric:

δAµ = iε̄γµλ , (8.50)

δλ = −1

2
Fµνγ

µνε . (8.51)

Note that the transformation rules are consistent with naive engineering dimensions of the
fields, where Aµ has dimension one and λ has dimension 3/2. We need to deal with the
variation δλ̄:

δλ̄γµ∂µλ = ∂µ(δλ̄γµλ)− (∂µδλ̄)γµλ

= ∂µ(δλ̄γµλ) + λ̄γµ∂µδλ , (8.52)

integrating by parts and using one of the Majorana flip identities (6.47). Discarding the
total derivative, the total SUSY variation reduces to

δS = −
∫

d4x
(
F µν∂µδAν + iλ̄γρ∂ρδλ

)
= −

∫
d4x

(
F µνiε̄γν∂µλ−

i

2
λ̄γρ∂ρFµνγ

µνε

)
. (8.53)
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To proceed, we use again a Majorana flip identity, this time on ε̄γν∂µλ, and rewrite γργµν =
γρµν + ηρµγν − ηρνγµ:

δS = −
∫

d4x

(
−iF µν(∂µλ̄)γνε−

i

2
λ̄(∂ρFµν)(γ

ρµν + 2ηρµγν)ε

)
. (8.54)

The combination γρµν∂ρFµν = γρµν∂[ρFµν] = 0 vanishes by a Bianchi identity, and the re-
maining bits combine to give a total derivative:

δS =

∫
d4x ∂µ

(
iF µνλ̄γνε

)
, (8.55)

which can be discarded assuming SUSY preserving boundary conditions.
We next verify that the SUSY algebra closes in the proper way, consistent with (7.1).

The simpler task is closure on the gauge field:

[δ1, δ2]Aµ = −iε̄2γµ
(

1

2
F λργλρε1

)
− (1↔ 2)

= −iε̄2
(

1

2
γµλρ + ηµλγρ

)
F λρε1 − (1↔ 2) . (8.56)

By the Majorana flip identities (6.47), the γµνρ term will cancel out of the commutator,
leaving

[δ1, δ2]Aµ = −2iε̄2γ
νε1Fµν

= (2iε̄2γ
νε1)∂νAµ − ∂µ(2iε̄2γ

νε1Aν) (8.57)

The first term is a translation and the second a gauge transformation. Thus the supersym-
metry closes up to gauge transformations.

Closure on the fermions, as usual, is a more complicated story involving Fierz rearrange-
ment identities. We find

[δ1, δ2]λ = −2∂µ

(
i

2
ε̄1γνλ

)
γµνε2 − (1↔ 2)

= −iγµν(ε̄1γν∂µλ)ε2 − (1↔ 2) . (8.58)

We will need in particular the same 4d Fierz identity (8.24) that we used in verifying closure
of the SUSY algebra for the Wess-Zumino model. We take λ = ε1, χ = ε2, and ρ = γν∂µλ.
From the Majorana flip identities (6.47), the only term on the right hand side of the Fierz
identity that will contribute to the commutator are the ones that involve γµ and γµν . Hence
we find

[δ1, δ2]λ =
i

2
(ε̄1γρε2)γµνγργν∂µλ−

i

4
(ε̄1γ

ρσε2)γµνγρσγν∂µλ (8.59)

We now need to go through some rather tedious manipulations with the gamma matrices.
The strategy here is to try to either get an infinitesimal translation, i.e. ε̄1γµε2∂

µλ, or some-
thing that will vanish by the equations of motion, i.e. stuff times /∂λ. Here we go for the
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simpler one:

γµνγργν = −γµνγνγρ + 2γµρ

= −3γµγρ + 2γµρ

= −3ηµρ − γµρ

= −4ηµρ + γργµ . (8.60)

And now for the more complicated one:

γµνγρσγν = [γµν , γρσ]γν + γρσγµνγν

= 2(ηνργµσ − ηµργνσ + ηµσγνρ − ηνσγµρ)γν + 3γρσγµ

= 2γµσγρ + 6ηµργσ − 6ηµσγρ − 2γµργσ + 3γρσγµ

= 2γµσρ + 2γµηρσ + 4ηµργσ − 2γµρσ − 2γµηρσ − 4ηµσγρ + 3γρσγµ

= 4γσρµ + 4ηµργσ − 4ηµσγρ + 3γρσγµ

= 4γσργµ + 3γρσγµ

= −γρσγµ (8.61)

In the second line, we used the fact that − i
2
γµν are generators of the Lorentz algebra.

Assembling the various pieces, we find for the commutator

[δ1, δ2]λ = −2i(ε̄1γ
µε2)∂µλ+

i

2
(ε̄1γρε2)γργµ∂µλ+

i

4
(ε̄1γρσε2)γρσγµ∂µλ . (8.62)

The first term is a translation. The second two vanish by the equations of motion. There is no
gauge transformation piece here because λ does not transform under gauge transformations.
Thus we have demonstrated that the SUSY algebra closes on-shell.

We did not expect the algebra to close off-shell. Fixing a gauge in 4d, the gauge field
has 3 off-shell degrees of freedom while the Majorana fermion has 4. Thus we need one
more bosonic degree of freedom to put together an off-shell formalism. The corresponding
auxiliary field is often given the name D.

Problem 8.6. How does the calculation of δS and [δ1, δ2] above get modified in three dimen-
sions?

Problem 8.7. Consider the following modification of the super Maxwell Lagrangian in four
dimensions:

LSYM = −
(

1

4
FµνF

µν +
i

2
λ̄/∂λ− 1

2
D2

)
.

We have added an auxiliary field D that will allow us to close the SUSY algebra off-shell.
The SUSY transformation rules for these adjoint fields are

δAµ = iε̄γµλ ,

δλ = −1

2
Fµνγ

µνε− iγDε ,

δD = ε̄γ /∂λ .

Verify that the action is supersymmetric and the SUSY algebra closes off-shell, up to gauge
transformations.
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A Sources

I set the level and course material largely using these two sets of notes:

• L. F. Alday, “Conformal Field Theory”, class notes from a set of lectures delivered at
Oxford University,

courses.maths.ox.ac.uk/node/view material/5310

• N. Lambert, “Supersymmetry” (class notes for CM439Z/CMMS40 at King’s College
London) as well as “Supersymmetry and Gauge Theory” (class notes for 7CMMS41),

nms.kcl.ac.uk/neil.lambert/

Here are further references on conformal field theory:

• P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory, Springer, 1997.

The canonical reference for conformal field theory, also called “the yellow book”. The
early chapters cover CFT in general dimension and are useful for this course. The later
chapters, which constitute most of the book, are devoted to CFT in d = 2.

• P. Ginsparg, “Applied Conformal Field Theory,”

arxiv.org/abs/hep-th/9810828

Another good reference, but again focused mostly on CFT in d = 2.

• S. Rychkov, “EPFL Lectures on Conformal Field Theory in D ≥ 3 Dimensions,”

arxiv.org/abs/1601.05000

D. Simmons-Duffin, “TASI Lectures on the Conformal Bootstrap,”

arix.org/abs/1602.07982

Covers roughly the same material that is in this course, but targeted toward more
advanced graduate students.

• J. Cardy, “Conformal Field Theory and Statistical Mechanics,” Les Houches Lecture
Notes, 2008

www-thphys.physics.ox.ac.uk/people/JohnCardy/
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In fact a variety of lecture notes are available from the home page of this master of
conformal field theory.

Additional reference material for supersymmetry:

• J. Polchinski, String Theory, vol. 2, Appendix B.

All you need to know about supersymmetry in 35 pages. The style is very dense, and
you can spend hours working out the equations on each page.

• D. Z. Freedman and A. Van Proeyen, Supergravity.

Supergravity does not start until page 185, and many of the early chapters duplicate
material that we will cover in a nicer and more thorough fashion than we have time
for.

• S. Weinberg, Quantum Field Theory, vol. 3.

Technical, thorough, and index heavy. Weinberg uses four component fermions. An
early chapter includes a proof of Coleman-Mandula. Another reasonable looking source
for a proof is a Scholarpedia page,

http://www.scholarpedia.org/article/Coleman-Mandula theorem

apparently written by Mandula himself.

• J. Wess and J. Bagger, Supersymmetry and Supergravity.

The canonical reference. They use two component fermions. The book is easy to read,
but one often wishes for more text and fewer equations. As equation heavy as it is,
much of the technical detail is left to exercises.

• P. Argyres, An Introduction to Global Supersymmetry, 2001.

A very nice set of lecture notes (essentially a text book) from a course that Phil Argyres
taught at Cornell nearly 20 years ago. It was the canonical reference when I was a
graduate student. It is available free from his website

http://homepages.uc.edu/∼argyrepc/cu661-gr-SUSY/index.html

• K. Intriligator and N. Seiberg, “Lectures on Supersymmetric Gauge Theories and
Electric-Magnetic Duality,” arXiv:hep-th/9509066.

A canonical reference for the low energy behavior of SQCD.
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