EE3252 Electronic Engineering Labs II

MATLAB : Session 1

What is Matlab?

MATrix LABoratory: Matlab is a tool for doing numerical computations with matrices and vectors. It can also display information graphically.

What can we do with MATLAB?

- Basic Arithmetic

- Logical Operations

- Polynomial Operations

- Signal Processing

 any other type of numerical processing

- Plotting

- Systems :

*Design

*Simulation

*Test

- Input/Output data files (text or Matlab format)

All this by means of:

+ on-line commands

+ programs and functions

Remember that all these applications are matrix-oriented.

Toolboxes

Sets of programs developed for a specific field. Different Toolboxes provided by MathWorks include:

- Simulink

- Image Processing

- Signal Processing

- Control Systems

- Symbolic Maths

- Neural Networks

- Fuzzy Logic

You can make your own toolbox!

Need help?

If you don't know where to start:

>> help

Specific help about a known topic (command, function, directory):

>> help fft

Keyword search in the descriptions of the commands:

>> lookfor plot

Getting started

Here is a sample session with Matlab. Text in bold is what you type, ordinary text is what the computer "types." You should read this example, then imitate it at the computer.

>> 3*4

ans =

12

>> d=[11 12 13 ; 21 22 23 ; 31 32 33]

d =

 11 12 13

 21 22 23

 31 32 33

Matlab has many built-in functions:

>> sqrt(64)

ans =

8

>> e = ones(3,3)

e =

 1 1 1

 1 1 1

 1 1 1

>> f = d + e

f =

 12 13 14

 22 23 24

 32 33 34

>> f'

ans =

 12 22 32

 13 23 33

 14 24 34

You can use complex numbers:

>> a=[1+i 2]

a =

 1.0000 + 1.0000i 2.0000

>> b=[4-2i 5+10i];

>> the_product = a * b

??? Error using ==> *

Inner matrix dimensions must agree.

>> the_product = a' * b

the_product =

 2.0000 - 6.0000i 15.0000 + 5.0000i

 8.0000 - 4.0000i 10.0000 +20.0000i

The "colon" (:) operator:

>> numbers1 = 2:2:8

numbers1 =

 2 4 6 8

>> numbers2 = 2:8

numbers2 =

 2 3 4 5 6 7 8

Element-by-element operations:

>> elem_prod = a' .* b

??? Error using ==> .*

Matrix dimensions must agree.

>> elem_prod = a .* b

elem_prod =

 6.0000 + 2.0000i 10.0000 +20.0000i

What is the difference?

Summary (Matrix operations, array operations):

The following matrix operations are available in MATLAB:

+
Addition

-
subtraction

*
multiplication

^
Power

'
transpose

\
left division

/
right division

x = A \ b is the solution of A * x = b and, resp.,

x = b / A is the solution of x * A = b.

Graphing

Functions of one variable

To make a graph of y = sin(t) on the interval t = 0 to t = 10 we do the following:

 >> t = 0:.3:10;

 >> y = sin(t);

 >> plot(t,y)

The command t = 0:.3:10; defines a vector with components ranging from 0 to 10 in steps of 0.3. The y = sin(t); defines a vector whose components are sin(0), sin(0.3), sin(0.6), etc. Finally, plot(t,y) use the vector of t and y values to construct the graph.

Functions of two variables

Here is how we graph the fuction z(x,y) = x exp(- x^2 - y^2):

 >> [x,y]=meshgrid(-2:0.2:2);

 >> z = x .* exp(-x.^2 - y.^2);

 >> plot3(x,y,z)

The first command creates a matrix whose entries are the points of a grid in the square -2 <= x <= 2, -2 <= y <= 2. The small squares which make up the grid are 0.2 units wide and 0.2 unit tall. The second command creates a matrix whose entries are the values of the function z(x,y) at the grid points. The third command uses this information to construct the graph.

Putting several graphs in one window

The subplot command creates several plots in a single window. To be precise, subplot(m,n,i) creates mn plots, arranged in an array with m rows and n columns. It also sets the next plot command to go to the ith coordinate system (counting across the rows). Here is an example:

>> t = (0:.1:2*pi);

>> subplot(2,2,1)

>> plot(t,sin(t))

>> subplot(2,2,2)

>> plot(t,cos(t))

>> subplot(2,2,3)

>> plot(t,exp(t))

>> subplot(2,2,4)

>> plot(t,1./(1+t.^2))

Programs (Scripts)

Once you have a general routine in a matlab file, it allows you to perform more complex operations, and it is easier to repeat these operations. Matlab executable files (called M-files) must have the extension ".m". By creating M-file with the extension .m you can easily write and run programs. If you were to create a program file nothing.m in the MATLAB language, then you can make the command nothing from MATLAB and it will run like any other MATLAB function. You do not need to compile the program since MATLAB is an interpretative (not compiled) language.

Text file (Menu: File -> New -> M-file) :

power = 3;

for ind = 1:10

x(ind) = ind+5;

y(ind) = x(ind)^power;

end

[x;y]

Create a directory for your files (say "n:\Matlab")

Save as .m file (say "nothing.m")

Call your program from the command window:

>> nothing

???Undefined function or variable nothing.

What?!

>> cd N:\matlab

>> nothing

ans =

 Columns 1 through 6

6

7

8

9

10

11

216
343
512
729
1000
1331

 Columns 7 through 10

12 13 14 15

 1728 2197 2744 3375

This programming language is an interpreter. Save your text file every time you change something.

Plotting (and more programs)

step = 0.1; u = []; w = []; s=0;

while(length(u)<=30)

u = [u;s];

w = [w;sin(s)];

s = s+step;

end

[u,w]

plot(u,w)

Let's try a 3D plot:

step = 0.1; u = [];v = []; w = []; s=0;

while(length(u)<=30)

u = [u;s];

v = [v;s^2];

w = [w;sin(s)];

s = s+step;

end

[u,v,w]

plot3(u,v,w,'blue')

grid

Other possibilities are:

- logarithmic scales (loglog, semilogx, semilogy)

- text labels for axes (xlabel, ylabel)

- plot titles (title)

- multiple graphs in the same window (subplot)

Functions

M-files can be either scripts or functions. Scripts are simply files containing a sequence of MATLAB statements. Functions make use of their own local variables and accept input arguments.

A line at the top of a function M-file contains the syntax definition. The name of a function, as defined in the first line of the M-file, should be the same as the name of the file without the .m extension.

Text file:

function f = my_fact(n) % Function definition line

% FACT Factorial. % H1 line

% FACT(N) returns the factorial of N, H! % Help text

% usually denoted by N!

% Put simply, FACT(N) is PROD(1:N).

f = prod(1:n); % Function body

Save as "my_fact.m"

Something nice:

>> help my_fact

 FACT Factorial. % H1 line

 FACT(N) returns the factorial of N, H! % Help text

 usually denoted by N!

 Put simply, FACT(N) is PROD(1:N).

>> p = 9;

Now call the function with parameter "p":

>> my_fact(p)

ans =

 362880

More functions:

function ar = area1(x1,y1)

% AREA Area between a curve and the X axis

index=1; acc_area=0;

while(index < length(x1))

base = x1(index+1) - x1(index);

height = y1(index);

acc_area = acc_area + base*height;

index = index + 1 ;

end

ar = acc_area;

Call the function:

>> the_area = area1(u,w)

the_area =

 1.9813

Now call this function, area(x,y) is a funtion defined in Matlab.

>> area(u,w)

Next session you will practise Reading/Writing text files.

Usually any book for Matlab is alright and, moreover, the on-line help is very good as well.

There is a good book for digital signal processing with Matlab:

Vinay K. Ingle , John G. Proakis "Digital Signal Processing Using Matlab V.4"PWS Publishing Company USA, 1997

Mona. Ghassemian Sep-Nov 2002

